
Explanation naivgaus – 1

(* Explanation *)

(* To appreciate the physical meaning of a numerically computed Schrodinger propa-
gator K, it is desirable to evaluate integrals of the form

ψ(t, x) =

∫ ∞

−∞
dyK(t, x, y) f(y)

with a well localized initial wave packet f .

Typically, K does not decay as |x − y| becomes large, but instead becomes rapidly
oscillatory. Therefore, a naive numerical integration is unsatisfactory for two reasons:

1. The oscillations require a very small step size, making the numerical quadrature
unacceptably slow.

2. More fundamentally, such a numerical approximation is inherently nonuniform
in x. A standard numerical approximation of this integral (such as by Simpson’s
rule) is a linear combination of finitely many terms K(x − yj , t). From the
known form of the free propagator we expect that in the neighborhood of a point
x, each such term resembles an elementary trigonometric function of angular
frequency m|x − yj |/h̄t. The sum therefore behaves like a periodic or almost
periodic function; destructive interference is only temporary and gives way again
to constructive interference as x increases. The computed function displays
spurious echoes of the central peak periodically along the x axis. Only when
all frequencies are included, in a true integral, do we attain the correct decay
of ψ(t, x) at all large x. Obviously, these numerical artifacts can be seriously
misleading when we don’t know the answer beforehand. *)

(* Demonstration code in Mathematica *)

(* The propagator. This function contains the essence of the one-dimensional free
propagator, without extraneous complications. *)

kr[x_, y_] := Cos[(x - y)^2]

(* Numerical integration. This integrates kr against a step function (the characteristic
function of the unit interval) by the trapezoidal rule and plots the result. *)

trap[n_, range_] := Plot[

(kr[x,0] + kr[x,1])/(2n) + Sum[kr[x, j/n], {j, 1, n-1}]/n,

{x, -range, range}, PlotRange -> {-1, 1}]

(* Execution. After loading naivgaus.m into Mathematica at the command line, the
user should execute the command trap[n, range] for n = 1, 2, 4, 8, . . . and range = 10,
20, 40, . . . to observe the effect. *)
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2 – naivgaus Gaussian initial data

(* Gaussian initial data *)

(* To separate the Fourier echoes from the effects of the discontinuities in the initial
data, let’s consider a Gaussian initial packet that falls nearly to zero at the endpoints
of the integration interval. *)

(* Numerical integration. We are now approximating∫ ∞

−∞
dy cos[(x− y)2] e−c(y− 1

2)
2

where c must be chosen sufficiently large that e−c/4 is negligible. *)

gausstrap[c_, n_, range_] := Plot[

Exp[-c/4]*(kr[x,0] + kr[x,1])/(2n) +

Sum[Exp[-c*((j/n)-0.5)^2]*kr[x, j/n], {j, 1, n-1}]/n,

{x, -range, range}, PlotRange -> {-1, 1}]

(* Execution. Try gausstrap[c, n, range] for c between 1 and 40 and the other
parameters as before. *)

(* The exact solution. Our Gaussian integral can be evaluated as

<
{(

π

c2 + 1

) 1
2

(c+ i)1/2 exp
(ic2 − c)(x− 1

2)2

c2 + 1

}
.

Since we are dealing with a fairly large c, it is a good approximation to neglect 1 relative
to c2 and neglect i relative to c; in that approximation we have the more transparent
expression (π

c

) 1
2
e−(x− 1

2)
2
/c cos[(x− 1

2)2].

That is, for a sufficiently narrow initial packet the output is essentially the free propa-
gator with a broad Gaussian envelope. The centroid is the same as that of the initial
data (since the mean momentum was 0), but the spread is reminiscent of the initial
momentum distribution, which overwhelms the initial position spread.

The plot of gausstrap[16, 8, 10] is nearly identical to that of exact[16, 10]. But
increasing the range from 10 to 40 in gausstrap reveals that the echo (or aliasing) is
still present at larger x. *)

exact[c_, range_] := Plot[Re[Sqrt[Pi*(c+I)/(c^2+1)] *

Exp[(I*c^2 - c)*(x - 0.5)^2 / (c^2 + 1)] ] ,

{x, -range, range}, PlotRange -> {-1,1}]
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Gaussian initial data naivgaus – 3

(* Comparison. Here we plot the difference between the exact solution and the trape-
zoidal approximation. *)

exactfn[c_, x_] := Re[Sqrt[Pi*(c+I)/(c^2+1)] *

Exp[(I*c^2 - c)*(x - 0.5)^2 / (c^2 + 1)] ]

trapfn[c_, n_, x_] := Exp[-c/4]*(kr[x,0] + kr[x,1])/(2n) +

Sum[Exp[-c*((j/n)-0.5)^2]*kr[x, j/n], {j, 1, n-1}]/n

compare[c_, n_, range_, height_] := Plot[ exactfn[c,x] - trapfn[c,n,x],

{x, -range, range}, PlotRange -> {-height, height}]

(* end *)
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Demonstration of the propagator integration problem
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