(* Explanation *)

(* To appreciate the physical meaning of a numerically computed Schrodinger propagator K, it is desirable to evaluate integrals of the form

$$
\psi(t, x)=\int_{-\infty}^{\infty} d y K(t, x, y) f(y)
$$

with a well localized initial wave packet f.
Typically, K does not decay as $|x-y|$ becomes large, but instead becomes rapidly oscillatory. Therefore, a naive numerical integration is unsatisfactory for two reasons:

1. The oscillations require a very small step size, making the numerical quadrature unacceptably slow.
2. More fundamentally, such a numerical approximation is inherently nonuniform in x. A standard numerical approximation of this integral (such as by Simpson's rule) is a linear combination of finitely many terms $K\left(x-y_{j}, t\right)$. From the known form of the free propagator we expect that in the neighborhood of a point x, each such term resembles an elementary trigonometric function of angular frequency $m\left|x-y_{j}\right| / \hbar t$. The sum therefore behaves like a periodic or almost periodic function; destructive interference is only temporary and gives way again to constructive interference as x increases. The computed function displays spurious echoes of the central peak periodically along the x axis. Only when all frequencies are included, in a true integral, do we attain the correct decay of $\psi(t, x)$ at all large x. Obviously, these numerical artifacts can be seriously misleading when we don't know the answer beforehand. *)

(* Demonstration code in Mathematica *)

(* The propagator. This function contains the essence of the one-dimensional free propagator, without extraneous complications. *)
$\mathrm{kr}\left[\mathrm{x}_{-}, \mathrm{y}_{-}\right]:=\operatorname{Cos}\left[(\mathrm{x}-\mathrm{y})^{\wedge} 2\right]$
(* Numerical integration. This integrates kr against a step function (the characteristic function of the unit interval) by the trapezoidal rule and plots the result. *)
$\operatorname{trap}\left[\mathrm{n}_{-}\right.$, range_] := Plot[
$(k r[x, 0]+k r[x, 1]) /(2 n)+\operatorname{Sum}[k r[x, j / n],\{j, 1, n-1\}] / n$,
\{x, -range, range\}, PlotRange -> \{-1, 1\}]
(* Execution. After loading naivgaus.m into Mathematica at the command line, the user should execute the command trap $[n$, range $]$ for $n=1,2,4,8, \ldots$ and range $=10$, $20,40, \ldots$ to observe the effect. *)

(* Gaussian initial data *)

(* To separate the Fourier echoes from the effects of the discontinuities in the initial data, let's consider a Gaussian initial packet that falls nearly to zero at the endpoints of the integration interval. *)
(* Numerical integration. We are now approximating

$$
\int_{-\infty}^{\infty} d y \cos \left[(x-y)^{2}\right] e^{-c\left(y-\frac{1}{2}\right)^{2}}
$$

where c must be chosen sufficiently large that $e^{-c / 4}$ is negligible. *)

```
gausstrap[c_, n_, range_] := Plot[
    Exp[-c/4]*(kr[x,0] + kr[x,1])/(2n) +
    Sum[Exp[-c*((j/n)-0.5)^2]*kr[x, j/n], {j, 1, n-1}]/n,
    {x, -range, range}, PlotRange -> {-1, 1}]
```

(* Execution. Try gausstrap [c, n, range] for c between 1 and 40 and the other parameters as before. *)
(* The exact solution. Our Gaussian integral can be evaluated as

$$
\Re\left\{\left(\frac{\pi}{c^{2}+1}\right)^{\frac{1}{2}}(c+i)^{1 / 2} \exp \frac{\left(i c^{2}-c\right)\left(x-\frac{1}{2}\right)^{2}}{c^{2}+1}\right\}
$$

Since we are dealing with a fairly large c, it is a good approximation to neglect 1 relative to c^{2} and neglect i relative to c; in that approximation we have the more transparent expression

$$
\left(\frac{\pi}{c}\right)^{\frac{1}{2}} e^{-\left(x-\frac{1}{2}\right)^{2} / c} \cos \left[\left(x-\frac{1}{2}\right)^{2}\right]
$$

That is, for a sufficiently narrow initial packet the output is essentially the free propagator with a broad Gaussian envelope. The centroid is the same as that of the initial data (since the mean momentum was 0), but the spread is reminiscent of the initial momentum distribution, which overwhelms the initial position spread.

The plot of gausstrap[16, 8, 10] is nearly identical to that of exact [16, 10]. But increasing the range from 10 to 40 in gausstrap reveals that the echo (or aliasing) is still present at larger $x . *$)

```
exact[c_, range_] := Plot[Re[Sqrt[Pi*(c+I)/(c^2+1)] *
    Exp[(I*c^2 - c)*(x - 0.5)^2 / (c^2 + 1)] ] ,
    {x, -range, range}, PlotRange -> {-1,1}]
```

```
(* Comparison. Here we plot the difference between the exact solution and the trape-
zoidal approximation. *)
exactfn[c_, x_] := Re[Sqrt[Pi*(c+I)/(c^2+1)] *
    Exp[(I*C^2 - c)*(x - 0.5)^2 / (c^2 + 1)] ]
trapfn[c_, n_, x_] := Exp[-c/4]*(kr[x,0] + kr[x,1])/(2n) +
Sum[Exp[-c*((j/n)-0.5)^2]*kr[x, j/n], {j, 1, n-1}]/n
compare[c_, n_, range_, height_] := Plot[ exactfn[c,x] - trapfn[c,n,x],
    {x, -range, range}, PlotRange -> {-height, height}]
(* end *)
```


naivgaus

Demonstration of the propagator integration problem

Page
Explanation 1
Demonstration code in Mathematica 1
The propagator. 1
Numerical integration. 1
Execution. 1
Gaussian initial data 2
Numerical integration. 2
Execution. 2
The exact solution. 2
Comparison. 3

