
PSEUDODIFFERENTIAL OPERATORS,

COVARIANT QUANTIZATION,

THE INESCAPABLE VANVLECK–MORETTE DETERMINANT,

AND THE R
6

CONTROVERSY

S. A. FULLING

Mathematics Department, Texas A&M University,

College Station, Texas, 77843–3368, USA

What Is a Pseudodifferential Operator?

(and why should a physicist care?)

The important point is that physicists already know about pseudodifferential opera-
tors. In essence, a pseudodifferential operator (ΨDO) is nothing other than what is called
in quantum mechanics a function of both position (x) and momentum (−ih̄ ∂

∂x). This
generalizes two familiar classes of operators:

differential operator,
constant coefficients

ւ ց
function of
momentum

differential operator,
variable coefficients

ց ւ
pseudodifferential

operator

A polynomial function of momentum is just a differential operator (although if the co-
efficients depend on x, this “quantization” is afflicted by the notorious factor ordering
ambiguity, about which more later). A nonpolynomial function of momentum alone can
be defined by the Fourier transform. But what operator corresponds to a general (smooth)
function, a(x,p)? The simplest answer to this question is given by the conventional ΨDO
calculus:

Semiformal Definition: A pseudodifferential operator is one whose action on func-
tions ψ(x) can be expressed in the form

[Aψ](x) = (2πh̄)−
d
2

∫

Rd

dp eip·x/h̄ a(x,p) ψ̂(p)

for some function a(x,p) on the phase space R2d. The Fourier transform here is defined
by

ψ̂(p) ≡ (2πh̄)−
d
2

∫

Rd

dx e−ip·x/h̄ ψ(x).

The function a is called the symbol of the operator A.

This definition is only “semiformal” because, in the mathematical literature [e.g., 15,
16, 27, 29], the term pseudodifferential operator is confined to the results of applying
this construction to symbols satisfying certain technical conditions. Roughly speaking, the
standard ΨDOs include all differential operators and also the inverses of elliptic differential
operators, but not the inverses of hyperbolic ones. Thus we have the usual situation
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that what is easy to do rigorously in Euclidean manifolds becomes harder in Lorentzian
manifolds.

To make the formulas simpler, I shall now adopt units in which h̄ = 1 and hence
2π = h.

If a(x,p) is a polynomial in p, such as exp in dimension 1, then A is the corresponding
differential operator, with the x-dependent coefficients standing on the left of the deriva-
tives: −i ex d

dx .

Another way of writing the definition of A is

[Aψ](x) =

∫

Rd

dyA(x,y)ψ(y),

where

(S→ K) A(x,y) = h−d

∫

Rd

dp eip·(x−y) a(x,p).

(In general, the kernel A is a distribution, not a genuine function.) Inverting the Fourier
transform, we get

(K→ S) a(x,p) =

∫

Rd

dy eip·(y−x)A(x,y).

These two kernel↔ symbol formulas will be the focus of our discussion of possible refine-
ments and generalizations of the ΨDO formalism.

This conventional symbolic calculus for ΨDOs has two glaring deficiencies, especially
for physical applications:

1. Real symbols do not generally correspond to self-adjoint operators. (x and y are
treated asymmetrically. Derivatives are arbitrarily put on the right of coefficient
functions. The symplectic structure of phase space is not properly revealed.) This is
remedied by the Weyl calculus (the mathematician’s name for the operator half of the
Wigner–Weyl–Moyal formulation of quantum mechanics) [20, 29].

2. The formalism is not geometrically covariant. (The conventional symbol is not in-
trinsically defined as a function on T*(M) (the cotangent bundle of the configuration
space).) Even in flat space, it is not gauge-invariant when a vector potential is present.
The problem is that already in the symbol of a differential operator, only the lead-
ing term transforms as a tensor. The coefficients of the lower-degree terms become
tensors only after coordinate derivatives are replaced by covariant derivatives. The
counterpart of this step for ΨDOs is performed by the intrinsic calculus developed by
Bokobza, Widom, and Drager.

Unfortunately, the Weyl formalism and the intrinsic formalism are orthogonal im-
provements at best; in some ways they actually seem to work at cross purposes. We set
ourselves the goal of finding the common generalization of the Weyl and Widom calculi:

conventional
ւ ց

Weyl intrinsic
ց ւ

?
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Even on the formal level this turns out to be far from trivial.

The Weyl Calculus

In the Weyl calculus, the conventional relations between kernel and symbol are re-
placed by the more symmetrical formulas (I redisplay the conventional formulas for com-
parison)

(S→ K) A(x,y) = h−d

∫

Rd

dp eip·(x−y) a

(

x+ y

2
, p

)

(

was A(x,y) = h
−d

∫

Rd

dp e
ip·(x−y)

a(x,p)
)

and

(K→ S) a(q,p) =

∫

Rd

dv e−ip·vA
(

q+
v

2
, q− v

2

)

(

was a(x,p) =

∫

Rd

dy e
ip·(y−x)

A(x,y)
)

.

Thus the classical position variable q is associated with the midpoint of the straight line
segment joining x and y, and the Fourier variable conjugate to p is the vectorial difference
between x and y.

Other definitions of Weyl quantization are more common in the physics literature:

1. Weyl’s definition: If

a(q,p) =

∫

R2d

du dv â(u,v) ei(u·q−v·p),

then

A =

∫

R2d

du dv â(u,v) ei(u·Q−v·P),

where Q and P are the quantum operators.

2. McCoy’s formula: The quantization of qnpm is (in one dimension)

1

2n

n
∑

l=0

(

n

l

)

Qn−lPmQl.

These two constructions are equivalent to the Fourier-transform definition I have stated.
Both of them, of course, were developed to resolve the factor ordering ambiguity in the
passage from commuting to noncommuting variables.
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When applied to a momentum polynomial a(q,p) = Aα(q)p
α, Weyl quantization

gives

Aψ(x) = (−i∂y)α
[

Aα

(

x+ y

2

)

ψ(y)

]

y=x

.

(Here α is a multiindex, running over all the independent (unordered) choices of the indices
of a totally symmetric tensor.) Working this out for the example Aµν(q)pµpν , we get the
differential operator

A = −Aµν(x)∂µ∂ν −
(

∂µA
µν(x)

)

∂ν − 1
4
∂µ∂ν

(

Aµν(x)
)

= 1
2PµA

µν(Q)Pν + 1
4PµPνA

µν(Q) + 1
4A

µν(Q)PµPν .

This result is Hermitian, but it is not uniquely determined by the requirement of Hermitic-
ity. (In general, real-valued symbols (phase-space observables) correspond to Hermitian
operators, as one would expect of any decent quantum-mechanical formalism.)

In the Wigner–Weyl–Moyal formulation of quantum mechanics [e.g., 23, 24], the ex-
pectation value of the observable A is the phase-space integral

〈ψ|A|ψ〉 =
∫

R2d

dq dp a(q,p)W (q,p),

where W is the Wigner function of the quantum state ψ. The Wigner function is obtained
from the density matrix of the state by a formula just like the Weyl K→ S formula, except
for the normalization constant:

W (q,p) = h−d

∫

Rd

dv e−ip·v ψ
(

q+
v

2

)

ψ
(

q− v

2

)

*.

Having said this, I should emphasize that the Weyl calculus of ΨDOs is not limited to
situations where the elements of the domain of the operators are interpreted as quantum
wave functions. It can be useful when these functions are relativistic quantum fields, or
quantities in classical continuum mechanics, or any things satisfying partial differential
equations or integral equations.

The Intrinsic Symbolic Calculus

Now, what must be done to make the conventional ΨDO calculus covariant? I shall
consider a Riemannian manifold M equipped with the usual covariant differentiation op-
eration (Levi-Civita connection) and another connection that tells us how to differentiate
the fields or wave functions ψ (which are sections of some vector bundle over M). These
connections define parallel transport of objects along curves. Following DeWitt [8], I de-
note by I(x, y) the parallel transport (in the bundle) along a geodesic from y to x. (Other
references on the geometrical formalism used here include [11, 12, 26].)

I adopt the convention that the density
√
g is part of the integration element, not part

of the fields nor part of the kernels. Thus a kernel defines an operator via

[Aψ](x) =

∫

M

dy
√

g(y)A(x, y)ψ(y).
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The analogue of the straight line between two points is a geodesic segment connecting
them. Such a segment exists and is effectively unique if the points are “sufficiently close”.
More precisely, given a base point x, the geodesic flow (or exponential map) sets up a
(local) correspondence between points in the manifold and tangent vectors at x: Given
u ∈ Tx(M), solve the geodesic equation with initial point x and initial direction u, and
travel along it to the point with geodesic parameter ξ = 1; this other endpoint of the
geodesic segment is y ≡ expx(u); the geodesic distance between x and y is the length of
u. Conversely, given x and y sufficiently close, we can solve the two-point boundary value
problem for the geodesic equation, choosing the shortest solution in case of nonuniqueness,
and find the corresponding tangent vector u ≡ exp−1

x (y). Several other notations are used
in this situation:

1. The Synge–DeWitt world function σ(x, y) is half the square of the geodesic distance
from x to y. Equivalently, σ is the action for the geodesic equation regarded as a
dynamical system. Then the gradient of σ with respect to x is essentially u. Precisely,

u ≡ exp−1
x (y) = −(∇xσ)

♯ : uµ = −g(x)µν∂xνσ(x, y).

In the physics literature the gradient is itself denoted by sigma:

σµ ≡ σ;µ ≡ ∇xµσ.

2. Choose a coordinate system (basis) for Tx(M). Then the corresponding labeling of
the points y is a normal coordinate system based at x. The coefficients in a Taylor
series with respect to normal coordinates are the covariant derivatives of the subject
function, evaluated at the expansion point. In other words, ordinary derivatives with
respect to normal coordinates are equivalent in the coincidence limit to symmetrized
covariant derivatives.

In general, there will be a caustic around x, beyond which the geodesics begin to
cross each other and the exponential map is no longer smooth and invertible. For today’s
formal considerations I shall simply ignore caustics; I pretend that all the constructions
are meaningful globally, with the understanding that in a rigorous development, cutoff
functions will be inserted to keep the supports of all the integrands inside the normal
neighborhoods where the necessary exponential maps are defined. (This is closely related to
the other big piece of business I left unfinished earlier, the technical condition characterizing
admissible symbols. For the standard classes of ΨDOs studied by mathematicians, the
kernels A(x, y) are smooth functions except possibly at x = y. Therefore, putting in a
cutoff function changes the kernel by a totally smooth function, corresponding to a symbol
that falls off faster than any power of p and hence can be ignored in the asymptotic
calculations that are the hallmark of applied ΨDO calculus. One should not forget that
there are certain to be major complications when applying pseudodifferential methods to
manifolds with indefinite metric, or (say in Wigner–Weyl theory) to generic phase-space
functions.)

In the DeWitt notation, the VanVleck–Morette determinant is

∆(x, y) ≡ g(x)−1/2g(y)−1/2 det [−σµν′ ]
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(where the prime indicates differentiation with respect to y). It is a scalar function,
symmetric in its arguments. Nevertheless, its primary geometrical importance is in a
very nonsymmetrical role: The Jacobian relation needed to pass from integration over the
tangent space to integration over the manifold is

√

g(x)du = ∆(x, y)
√

g(y)dy
(

u = exp−1
x (y)

)

.

The intrinsic, or covariant, ΨDO calculus was defined (in minor variations) by Bokob-
za [4], Widom [31–32], and Drager [10]; it was developed and used by Kennedy and me
[13–14] and by Gusynin and coworkers [18–19] to calculate heat kernels for operators that
do not yield to the usual Schwinger–DeWitt ansatz. I shall present the basic formulas in the
kernel↔ symbol form, with an extra bit of freedom in the role of the VanVleck–Morette
determinant that has not been discussed in the literature previously.

Given a symbol, one defines a kernel (and hence an operator) by

(S→ K) A(x, y) = h−d∆(x, y)γ
∫

T∗

x

dp
√

g(x)
e−ip·u a(x,p)I(x, y)

(

was A(x,y) = h
−d

∫

Rd

dp e
ip·(x−y)

a(x,p)
)

,

where u = exp−1
x (y) (the negative of the Synge–DeWitt sigma vector) and γ is a parameter.

The Fourier inversion of this formula can be written

(K→ S) a(x,p) =

∫

M

dy
√

g(y) eip·uA(x, y)I(y, x)∆(x, y)1−γ

(

was a(x,p) =

∫

Rd

dy e
ip·(y−x)

A(x,y)
)

.

(Again, I have shown the conventional flat-space formulas for comparison.)

We observe that the S → K formula is simplest if one chooses γ = 0, but the K → S
formula is simplest if one chooses γ = 1. Both definitions were, in effect, studied by Drager
[10]:

γ = 0←→ “parallel-translation symbol”,

γ = 1←→ “covariant-derivative symbol”.

He, and most other authors, have settled on γ = 1 as preferable, because of what it does
to differential operators:

If a(x,p) = Aα(x)p
α, then A = Aα(x)(−i∇)α (when γ = 1).

That is, the “quantization rule” is exactly the same as in the conventional Fourier analysis,
except that coordinate derivatives are replaced by covariant derivatives. (Since covariant
differentiation operators do not commute among themselves, it is important to insist here
that Aα(x) be a symmetric tensor.) Any other choice of γ would modify this correspon-
dence by terms coming from the covariant Taylor expansion of ∆.
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A Proposal for a Covariant Weyl Calculus

One of the reasons why quantum gravity is so hard is that relativity often pulls
the mathematics of physics in one direction while quantum theory pulls it in a different
direction. That is true here. In the intrinsic calculus, calculations leading from operators
to symbols tend to be simple, while those going from symbols to operators are relatively
arcane; in the Weyl calculus, precisely the reverse is true. So, the project of constructing
a covariant analogue of the Weyl calculus is likely to run into obstacles no matter which
way we turn.

At this point I should pause to mention some physical motivations for that project.

1. Recent papers of Osborn and Molzahn [22, 25] have demonstrated that the Weyl
formalism can be very helpful in constructing elegant semiclassical approximations
to quantum dynamics, in either the Schrödinger or the Heisenberg picture. When
external gravitational or gauge fields are present, however, manifest covariance is
lost in these constructions. On the other hand, abandoning the Weyl symmetrization
obscures equally the symplectic structure of mechanics. Therefore, a pseudodifferential
calculus that preserves both of these crucial geometrical structures is highly desired.

2. Naive perturbation theory with respect to a weak external gravitational field leads
to technical difficulties because the perturbation is a differential operator of the same
order as the unperturbed one. Pseudodifferential thinking, however, suggests that one
might write the operator as the sum of an “unperturbed” pseudodifferential operator
and a perturbation of lower order (also pseudodifferential), such that the unperturbed
problem can be solved exactly. In particular, is there a ΨDO whose propagator equals
exactly the leading term of the famous Schwinger–DeWitt series? (These thoughts
were inspired by a paper of Gurarie [17], who proved a theorem on the asymptotic
behavior of resolvent kernels by similar reasoning.) This heuristic point of view turns
out to be an oversimplification, but the general approach remains promising. I call
it covariant perturbation theory with soft, almost local perturbations; I hope that
it will prove to be simply related to the covariant perturbation theory of Barvinsky
and Vilkovisky [2–3] and will help resolve some of the uncertainty about the global
aspects of the latter. Surely, the best prospects in this venture are for a formalism
that displays both covariance and the Weyl symmetry.

To mimic the Weyl calculus on a manifold, the obvious starting point is the following.
Given x and y in M , sufficiently close that the geodesic construction works, define q to be
the midpoint of the geodesic segment joining them, and define v ∈ Tq by

v ≡ 2 exp−1
q (x) = −2 exp−1

q (y).

v/2

u

σ

•
q •

y
•
x
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Then I propose to merge the Weyl and intrinsic S→ K formulas this way:

(S→ K) A(x, y) = h−d∆(x, y)γ
∫

T∗

q

dp
√

g(q)
eip·v I(x, q)a(q,p)I(q, y)

(

was A(x,y) = h
−d

∫

Rd

dp e
ip·(x−y)

a

(

x+ y

2
, p

)

or A(x, y) = h
−d∆(x, y)γ

∫

T∗

x

dp
√

g(x)
e
−ip·u

a(x,p)I(x, y)
)

.

In inverting this Fourier transform we must think of q and v as the independent
variables and define

x = expq

(

+
v

2

)

, y = expq

(

− v

2

)

.

We get

(K→ S) a(q,p) =

∫

Tq

dv
√

g(q) e−ip·v I(q, x)A(x, y)I(y, q)∆(x, y)−γ

(

was a(q,p) =

∫

Rd

dv e
−ip·v

A

(

q+
v

2
, q−

v

2

)

or a(x,p) =

∫

M

dy
√

g(y) eip·uA(x, y)I(y, x)∆(x, y)1−γ

=

∫

Tx

du
√

g(x) eip·u A(x, y)I(y, x)∆(x, y)−γ
)

.

Note that converting the integral over the tangent-space vector v into an integral over the
manifold would destroy the symmetry between x and y that we are working so hard to
maintain.

Since both of the basic formulas contain the factor ∆γ , it may seem that γ = 0 is
the only natural choice. I shall argue, however, that there are two other choices that are
better.

Consider first the passage from a momentum polynomial to a differential operator.
This requires a rather complicated calculation, in which a Jacobian ∆−1 arises. The con-
clusion is just like that in the usual intrinsic calculus: Covariant Weyl quantization with
γ = 1 is exactly the same as conventional Weyl quantization, except that coordinate deriva-
tives are replaced by symmetrized covariant derivatives. Any other choice of γ modifies
the correspondence by terms coming from the covariant Taylor expansion of ∆. This is a
strong argument in favor of γ = 1. (Cf. (3.48) of Avramidi [1].)

On the other hand, let’s contemplate the possibility of a covariant Wigner function.
Presumably it should satisfy the fundamental equation

〈ψ|A|ψ〉 =
∫

T∗(M)

dq dp a(q,p)W (q,p).
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(The symplectic measure on the cotangent bundle is covariant, without any
√
g factors.)

If we assume that the formula for the Wigner function in terms of the density matrix is
essentially the same as the covariant Weyl K→ S formula,

W (q,p) = h−d

∫

Tq

dv
√

g(q) e−ip·v ψ(x)ψ(y)*∆(x, y)−γ,

then a bit of Fourier analysis shows that γ must equal 1
2 for consistency! Any other

choice of γ used in both halves of the Wigner–Weyl–Moyal transformation will replace the
fundamental phase-space integral by a nonlocal formula (i.e., one involving another layer
of integration).

Of course, one could simply accept a Wigner transform that is different from the Weyl
transform. (These are all just definitions, after all.) The local formula for the expectation
value is consistent with any pair of exponents satisfying

γWeyl + γWigner = 1.

However, there is another argument for choosing γ = 1
2 . Recall that I proposed doing

covariant perturbation theory around the so-called WKB propagator (the leading term of
the Schwinger–DeWitt series),

U0(x, y) = (4πt)−d/2eiσ(x,y)/2t∆(x, y)1/2I(x, y).

On the other hand, if the perturbation theory is to be conducted in Fourier space, then
we would expect the covariant symbol of the unperturbed operator to be simply

u0(q,p) = e−itgµν(q)pµpν .

From this latter, the covariant Weyl S→ K formula yields

U0(x, y) = (4πt)−d/2eiσ(x,y)/2t∆(x, y)γ I(x, y).

So, perhaps we should come down midway between the two obvious candidates, 0 and 1.

Let us take a closer look at the covariant Weyl quantization of polynomials. For the
generic second-order case,

a(q,p) = Aµν(q)pµpν ,

one gets the operator

A = −Aµν∇µ∇ν −Aµν
;µ∇ν −

1

4
Aµν

;µν −
γ − 1

3
AµνRµν .

In the special case Aµν = gµν , this is

A = −gµν∇µ∇ν −
γ − 1

3
R ≡ ∆− γ − 1

3
R,
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where ∆ is the Laplace–Beltrami operator and R is the scalar curvature. Now, this equation
has a long history! If one thinks of 1

2
gµνpµpν as the classical Hamiltonian of a free particle

(of unit mass) on a manifold, then our equation says:

1. If γ = 1, then the quantum Hamiltonian is just 1
2
∆.

2. If γ = 0, the quantum Hamiltonian is 1
2∆+ 1

6R (times h̄2, suppressed by my choice
of units).

3. If γ = 1
2 , the curvature term is 1

12R.

For decades, people have been calculating different values for this curvature coefficient,
depending on how they do their path integrals [e.g., 5–6, 7, 9, 34]. (The factor h̄2 indicates
that the term is part of the factor ordering ambiguity.) I believe that they have often been
asking the wrong question. Seventy years after the discovery of quantum mechanics, we
should no longer be asking how to quantize a given classical Hamiltonian. We should think
in the other direction! The Schrödinger equation of a system is a given, to be determined
by experiment. The appropriate question is, “What definitions help us to elucidate the
behavior of this system in the semiclassical limit?” A definition is not true or false. On
the other hand, some definitions are more useful or more elegant than others. So spend
some time deciding which is the best γ for your problem, but do not wage a holy war to
convince the world that yours is the One True γ!

With that, I must close this brief account by an incomplete list of previous related
work. In the physics literature one finds various papers on “covariant Wigner functions”
(notably Winter [33]) that state (in effect) my K→ S formula with γ = 0. In the mathe-
matics literature, papers that attempt to combine geometrical covariance and symplectic
symmetry in something like the present spirit are those of Underhill [30], Liu and Qian
[21], and Safarov [28]. The last of these is an especially thorough and rigorous piece of
work, though it considers only γ = 0.

Addendum: The Product Formula

In many applications of pseudodifferential operators a central role is played by a
formula for the symbol of the product of two operators (say C = AB) in terms of the
symbols of the factors. In each variant of the ΨDO calculus there are two such formulas.
One is a (4d-fold) multiple integral obtained by substituting the S → K formulas for
A and B into the K → S formula for C; this is exact (at least if the symbols decay fast
enough at infinity to make the integrals converge without cutoffs) but very cumbersome for
calculations. The other is a purely local series expansion in successively higher derivatives
of the symbols a and b. This one makes sense only if at least one of the symbols is a smooth
function, and even then only asymptotically — unless the series happens to terminate, as
it does in the important special case of polynomials in p, which dominate both quantum
mechanics and the theory of partial differential equations.

10



In the standard Weyl calculus the series formula is

c(q,p) = e
i
2

(

∂
∂q1

· ∂
∂p2

− ∂
∂p1

· ∂
∂q2

)

[

a(q1,p1)b(q2,p2)
]

q1=q2=q

p1=p2=p

=
∑

α,β

i|β|−|α|

α! β! 2|α|+|β|
∂βq∂

α
pa(q,p) ∂

α
q∂

β
pb(q,p).

When the units are put back in, this is a Taylor series in h̄; the leading term gives “classical
theory” (i.e., c(q,p) = a(q,p)b(q,p)), and (for scalar observables) the leading term in
the commutator [A,B] is ih̄ times the Poisson bracket {a, b}. (There may still be some
quantum mechanics texts that state the principal axiom of quantization as “Replace all
Poisson brackets by commutators”. That is correct for the qs and ps themselves and many
other important special cases, but wrong for general observables, because it neglects all
the higher-order terms in this series.)

The corresponding formula [32, 10, 14, 28] in the Widom intrinsic calculus is much
more complicated, bristling with coincidence limits of derivatives of the world function σ
(which can in principle be expressed in terms of the Riemann tensor). In the special case
of flat space, but with a (possibly non-Abelian) external gauge field, it reduces to

c(x,p) = e
i
(

∂
∂z

· ∂
∂p2

− ∂
∂p1

· ∂
∂x2

)

[

a(x,p1)I(x,x2)

× b(x2,p2)I(x2,x+ x2 − z)I(x+ x2 − z,x)
]

x2=z=x

p1=p2=p

=
∑

α,β,γ

(−i)|α|+|β|+|γ|

α! β! γ!
∂α+β
p a(x,p)∇γ∂βpb(x,p)∇α∇βI(x,x).

(In the last factor, the parallel-transport operator is covariantly differentiated with respect
to its first argument before the arguments are set equal.) To the best of my knowledge,
the exponential version of this formula is published here for the first time.

All this is prologue to the announcement that although I have been unable to reduce
the product formula for the covariant Weyl calculus to a tractable form in the general case,
I can present here the formulas for flat space. I hope to publish elsewhere the details of
the derivation and applications of the result.

Since the kernel of C is the matrix product of the kernels of A and B, substituting
the S → K formulas for A and B into the K → S formula for C yields the exact integral
formula

c(q,p) = h−2d

∫

dv

∫

dy

∫

dk

∫

dl ei(k·v
′′+l·v′−p·v)

× I(q,x)I(x,q′′)a(q′′,k)I(q′′,y)I(y,q′)b(q′, l)I(q′, z)I(z,q),

where

x = q+
v

2
, z = q− v

2
, v′′ = q− y +

v

2
, v′ = y − q+

v

2
,
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q′′ =
1

2

(

y + q+
v

2

)

, q′ =
1

2

(

y + q− v

2

)

.

The strategy of the asymptotic calculation now is: Expand a and b as power series
in k − p and l − p; realize the powers of the momentum differences as derivatives of the
exponential factor with respect to spatial variables; integrate by parts to move the deriva-
tives off the exponentials; evaluate the momentum integrals as delta functions; evaluate
the now trivial coordinate integrals. The result can be written

c(q,p) = e
i
2

(

∂
∂q1

· ∂
∂p2

− ∂
∂p1

· ∂
∂q2

)

[

I(q,q1;q2)a(q1,p1)I(q1,q2;q)

× b(q2,p2)I(q2,q;q1)
]

q1=q2=q

p1=p2=p

,

where I(x,y; z) = I(x,x + y − z)I(x + y − z,y). Expanding the derivatives in terms of
covariant derivatives of the factors, and using the properties of I, one gets the alternative
form

c(q,p) =
∑

α,...,τ

i|β|+|κ|+|ρ|+|σ|−|α|−|λ|−|µ|−|ν|−|τ |

α! β! κ!λ!µ! ν! ρ! σ! τ ! 2|α|+···+|τ |
∇̃ρ∇̃κI(q,q)∇β∂α+κ+λ+µ+ν

p a(q,p)

×∇σ∇λ∇̃µI(q,q)∇α∂β+ρ+σ+τ
p b(q,p)∇ν∇τ I(q,q).

Here ∇̃ represents a derivative that acts on the second argument of I before the arguments
are set equal. All the derivatives of I at equal arguments can be expressed in terms of the
gauge field strength tensor.

Since a or b is a matrix-valued function, the “Christoffel” part of its covariant deriva-
tive is a commutator with the gauge potential. In particular, in the Abelian case the
derivatives of a and b reduce to ordinary derivatives.
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