THE ASYMPTOTIC DISTANCE BETWEEN AN ULTRAFLAT UNIMODULAR POLYNOMIAL AND ITS CONJUGATE RECIPROCAL

TAMÁS ERDÉLYI

February 25, 2019

Dedicated to the memory of Jean-Pierre Kahane

Abstract. Let

\[\mathcal{K}_n := \left\{ Q_n : Q_n(z) = \sum_{k=0}^{n} a_k z^k, \; a_k \in \mathbb{C}, \; |a_k| = 1 \right\}. \]

A sequence \((P_n)\) of polynomials \(P_n \in \mathcal{K}_n\) is called ultraflat if \((n+1)^{-1/2}|P_n(e^{it})|\) converge to 1 uniformly in \(t \in \mathbb{R}\). In this paper we prove that

\[
\frac{1}{2\pi} \int_0^{2\pi} |(P_n - P_n^*)(e^{it})|^q \, dt \sim \frac{2\pi \Gamma \left(\frac{q+1}{2} \right)}{\Gamma \left(\frac{q}{2} + 1 \right) \sqrt{\pi}} \frac{n^{q/2}}{n^{q/2}}
\]

for every ultraflat sequence \((P_n)\) of polynomials \(P_n \in \mathcal{K}_n\) and for every \(q \in (0, \infty)\), where \(P_n^*\) is the conjugate reciprocal polynomial associated with \(P_n\), \(\Gamma\) is the usual gamma function, and the \(\sim\) symbol means that the ratio of the left and right hand sides converges to 1 as \(n \to \infty\). Another highlight of the paper states that

\[
\frac{1}{2\pi} \int_0^{2\pi} |(P_n' - P_n'^*)(e^{it})|^2 \, dt \sim \frac{2n^3}{3}
\]

for every ultraflat sequence \((P_n)\) of polynomials \(P_n \in \mathcal{K}_n\). We prove a few other new results and reprove some interesting old results as well.

1. Introduction

Let

\[\mathcal{K}_n := \left\{ Q_n : Q_n(z) = \sum_{k=0}^{n} a_k z^k, \; a_k \in \mathbb{C}, \; |a_k| = 1 \right\}. \]

Key words and phrases. polynomials, restricted coefficients, ultraflat sequences of unimodular polynomials, angular speed, conjugate polynomials.

2010 Mathematics Subject Classifications. 11C08, 41A17, 26C10, 30C15

Typeset by AMS-TEX
The class \mathcal{K}_n is often called the collection of all (complex) unimodular polynomials of degree n. Let
\[
\mathcal{L}_n := \left\{ Q_n : Q_n(z) = \sum_{k=0}^{n} a_k z^k, \ a_k \in \{-1, 1\} \right\}.
\]
The class \mathcal{L}_n is often called the collection of all (real) unimodular polynomials of degree n. By Parseval’s formula,
\[
\int_0^{2\pi} |P_n(e^{it})|^2 \, dt = 2\pi(n + 1)
\]
for all $P_n \in \mathcal{K}_n$. Therefore
\[
\min_{t \in \mathbb{R}} |P_n(e^{it})| \leq \sqrt{n + 1} \leq \max_{t \in \mathbb{R}} |P_n(e^{it})|.
\]

An old problem (or rather an old theme) is the following.

Problem 1.1 (Littlewood’s Flatness Problem). How close can a polynomial $P_n \in \mathcal{K}_n$ or $P_n \in \mathcal{L}_n$ come to satisfying
\[
|P_n(e^{it})| = \sqrt{n + 1}, \quad t \in \mathbb{R}.
\]

Obviously (1.1) is impossible if $n \geq 1$. So one must look for less than (1.1), but then there are various ways of seeking such an “approximate situation”. One way is the following. In his paper [Li1] Littlewood had suggested that, conceivably, there might exist a sequence (P_n) of polynomials $P_n \in \mathcal{K}_n$ (possibly even $P_n \in \mathcal{L}_n$) such that $(n + 1)^{-1/2}|P_n(e^{it})|$ converge to 1 uniformly in $t \in \mathbb{R}$. We shall call such sequences of unimodular polynomials “ultraflat”. More precisely, we give the following definition.

Definition 1.2. Given a positive number ε, we say that a polynomial $P_n \in \mathcal{K}_n$ is ε-flat if
\[
(1 - \varepsilon)\sqrt{n + 1} \leq |P_n(e^{it})| \leq (1 + \varepsilon)\sqrt{n + 1}, \quad t \in \mathbb{R}.
\]

Definition 1.3. Let (n_k) be an increasing sequence of positive integers. Given a sequence (ε_{n_k}) of positive numbers tending to 0, we say that a sequence (P_{n_k}) of polynomials $P_{n_k} \in \mathcal{K}_{n_k}$ is (ε_{n_k})-ultraflat if each P_{n_k} is (ε_{n_k})-flat. We simply say that a sequence (P_{n_k}) of polynomials $P_{n_k} \in \mathcal{K}_{n_k}$ is ultraflat if it is (ε_{n_k})-ultraflat with a suitable sequence (ε_{n_k}) of positive numbers tending to 0.

The existence of an ultraflat sequence of unimodular polynomials seemed very unlikely, in view of a 1957 conjecture of P. Erdős (Problem 22 in [Er]) asserting that, for all $P_n \in \mathcal{K}_n$ with $n \geq 1$,
\[
\max_{t \in \mathbb{R}} |P_n(e^{it})| \geq (1 + \varepsilon)\sqrt{n + 1},
\]
where $\varepsilon > 0$ is an absolute constant (independent of n). Yet, refining a method of Körner [Kö], Kahane [Ka] proved that there exists a sequence (P_n) with $P_n \in \mathcal{K}_n$ which is (ε_n)-ultraflat, where $\varepsilon_n = O\left(n^{-1/17} \sqrt{\log n}\right)$. (Kahane’s paper contained though a slight error which was corrected in [QS2].) Thus the Erdős conjecture (1.2) was disproved for the classes \mathcal{K}_n. For the more restricted class \mathcal{L}_n the analogous Erdős conjecture is unsettled to this date. It is a common belief that the analogous Erdős conjecture for \mathcal{L}_n is true, and consequently there is no ultraflat sequence of polynomials $P_n \in \mathcal{L}_n$. An interesting result related to Kahane’s breakthrough is given in [Be]. For an account of some of the work done till the mid 1960’s, see Littlewood’s book [Li2] and [QS2].

If Q_n is a polynomial of degree n of the form

$$Q_n(z) = \sum_{k=0}^{n} a_k z^k, \quad a_k \in \mathbb{C},$$

then its conjugate polynomial is defined by

$$Q^*_n(z) := z^n \overline{Q_n(1/z)} := \sum_{k=0}^{n} \overline{a}_{n-k} z^k.$$

Let (ε_n) be a sequence of positive numbers tending to 0. Let the sequence (P_n) of polynomials $P_n \in \mathcal{K}_n$ be (ε_n)-ultraflat. We write

$$P_n(e^{it}) = R_n(t)e^{i\alpha_n(t)}, \quad R_n(t) = |P_n(e^{it})|, \quad t \in \mathbb{R}.$$

It is simple to show that α_n can be chosen to be in $C^\infty(\mathbb{R})$. This is going to be our understanding throughout the paper. It is easy to find a formula for $\alpha_n(t)$ in terms of P_n. We have

$$\alpha'_n(t) = \text{Re} \left(\frac{e^{it} P'_n(e^{it})}{P_n(e^{it})} \right),$$

see formulas (7.1) and (7.2) on p. 564 and (8.2) on p. 565 in [Sa1]. The angular function α^*_n and modulus function $R^*_n = R_n$ associated with the polynomial P^*_n are defined by

$$P_n^*(e^{it}) = R^*_n(t)e^{i\alpha^*_n(t)}, \quad R^*_n(t) = |P_n^*(e^{it})|.$$

Similarly to α_n, the angular function α^*_n can also be chosen to be in $C^\infty(\mathbb{R})$ on \mathbb{R}. By applying formula (1.4) to P^*_n, it is easy to see that

$$\alpha'_n(t) + \alpha'^*_n(t) = n, \quad t \in \mathbb{R}.$$

The structure of ultraflat sequences of unimodular polynomials is studied in [Er1], [Er2], [Er3], and [Er4], where several conjectures of Saffari are proved. In [Er6], based on the results in [Er1], we proved yet another conjecture of Quefflec and Saffari, see (1.30) in [QS2]. Namely we proved asymptotic formulas for the L_q norms of the real part and the
derivative of the real part of ultraflat unimodular polynomials on the unit circle. A recent paper of Bombieri and Bourgain [BB] is devoted to the construction of ultraflat sequences of unimodular polynomials. In particular, they obtained a much improved estimate for the error term. A major part of their paper deals also with the long-standing problem of the effective construction of ultraflat sequences of unimodular polynomials.

For \(\lambda \geq 0 \), let

\[K_n^\lambda := \left\{ P_n : P_n(z) = \sum_{k=0}^{n} a_k k^\lambda z^k, \quad a_k \in \mathbb{C}, \quad |a_k| = 1 \right\}. \]

Ultraflat sequences \((P_n)\) of polynomials \(P_n \in K_n^\lambda\) are defined and studied thoroughly in [EN] where various extensions of Saffari’s conjectures have been proved.

In [Er2] we examined how far an ultraflat unimodular polynomial is from being conjugate reciprocal, and we proved the following three theorems.

Theorem 1.4. Let \((P_n)\) be an ultraflat sequence of polynomials \(P_n \in K_n\). We have

\[
\frac{1}{2\pi} \int_0^{2\pi} \left(|P_n'(e^{it})| - |P_n^*(e^{it})| \right)^2 dt = \left(\frac{1}{3} + \gamma_n \right) n^3,
\]

where \((\gamma_n)\) is a sequence of real numbers converging to 0.

Theorem 1.5. Let \((P_n)\) be an ultraflat sequence of polynomials \(P_n \in K_n\). If the coefficients of \(P_n\) are denoted by \(a_{k,n}\), that is,

\[P_n(z) = \sum_{k=0}^{n} a_{k,n} z^k, \quad k = 0, 1, \ldots, n, \quad n = 1, 2, \ldots, \]

then

\[
\sum_{k=0}^{n} k^2 |a_{k,n} - \sigma_{n-k,n}|^2 = \frac{1}{2\pi} \int_0^{2\pi} \left| (P_n' - P_n^*)(e^{it}) \right|^2 dt \geq \left(\frac{1}{3} + h_n \right) n^3,
\]

where \((h_n)\) is a sequence of real numbers converging to 0.

Theorem 1.6. Let \((P_n)\) be an ultraflat sequence of polynomials \(P_n \in K_n\). Using the notation of Theorem 1.5 we have

\[
\sum_{k=0}^{n} |a_{k,n} - \sigma_{n-k,n}|^2 = \frac{1}{2\pi} \int_0^{2\pi} \left| (P_n - P_n^*) (e^{it}) \right|^2 dt \geq \left(\frac{1}{3} + h_n \right) n,
\]

where \((h_n)\) is the same sequence of real numbers converging to 0 as in Theorem 1.5.

There are quite a few recent publications on or related to ultraflat sequences of unimodular polynomials. Some of them (not mentioned before) are are [Bo], [Sa2], [QS1], [Od], and [Mo].
2. Results

Theorems 2.1–2.4 and 2.6 are new, Theorems 2.5 and 2.7 recapture old results.

In our results below Γ denotes the usual gamma function, and the \sim symbol means that the ratio of the left and right hand sides converges to 1 as $n \to \infty$.

Theorem 2.1. If (P_n) is an ultraflat sequence of polynomials $P_n \in \mathcal{K}_n$ and $q \in (0, \infty)$, then

$$
\frac{1}{2\pi} \int_0^{2\pi} |(P_n - P_n^*)(e^{i t})|^q \, dt \sim \frac{2^q \Gamma \left(\frac{q+1}{2} \right)}{\Gamma \left(\frac{q}{2} + 1 \right) \sqrt{\pi}} n^{q/2}.
$$

Our next theorem is a special case ($q = 2$) of Theorem 2.1. Compare it with Theorem 1.6.

Theorem 2.2. Let (P_n) be an ultraflat sequence of polynomials $P_n \in \mathcal{K}_n$. If the coefficients of P_n are denoted by $a_{k,n}$, that is,

$$
P_n(z) = \sum_{k=0}^{n} a_{k,n} z^k, \quad k = 0, 1, \ldots, n, \quad n = 1, 2, \ldots,
$$

then

$$
\sum_{k=0}^{n} |a_{k,n} - \bar{a}_{n-k,n}|^2 = \frac{1}{2\pi} \int_0^{2\pi} \left| (P_n - P_n^*)(e^{i t}) \right|^2 \, dt \sim 2n.
$$

Our next theorem should be compared with Theorem 1.5.

Theorem 2.3. Let (P_n) be an ultraflat sequence of polynomials $P_n \in \mathcal{K}_n$. Using the notation in Theorem 2.2 we have

$$
\sum_{k=0}^{n} k^2 |a_{k,n} - \bar{a}_{n-k,n}|^2 = \frac{1}{2\pi} \int_0^{2\pi} \left| (P_n' - P_n^{**})(e^{i t}) \right|^2 \, dt \sim \frac{2n^3}{3}.
$$

We also prove the following result.

Theorem 2.4. If (P_n) is an ultraflat sequence of polynomials $P_n \in \mathcal{K}_n$ and $q \in (0, \infty)$, then

$$
\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{d}{dt} (P_n - P_n^*)(e^{i t}) \right|^q \, dt \sim \frac{\Gamma \left(\frac{q+1}{2} \right)}{(q+1) \Gamma \left(\frac{q}{2} + 1 \right) \sqrt{\pi}} n^{3q/2}.
$$

As a Corollary of Theorem 2.2 we can recapture Saffari’s “near orthogonality conjecture” raised in [Sa] and proved first in [Er4].

Theorem 2.5. Let (P_n) be an ultraflat sequence of polynomials $P_n \in \mathcal{K}_n$. Using the notation in Theorem 2.2 we have

$$
\sum_{k=0}^{n} a_{k,n} a_{n-k,n} = o(n).
$$

As a Corollary of Theorem 2.3 we can easily prove a new “near orthogonality” formula.
Theorem 2.6. Let \((P_n)\) be an ultraflat sequence of polynomials \(P_n \in \mathcal{K}_n\). Using the notation in Theorem 2.2 we have
\[
\sum_{k=0}^{n} k^2 a_{k,n} a_{n-k,n} = o(n^3).
\]

Finally we recapture the asymptotic formulas for the real part and the derivative of the real part of ultraflat unimodular polynomials proved in [Er5] first.

Theorem 2.7. If \((P_n)\) is an ultraflat sequence of unimodular polynomials \(P_n \in \mathcal{K}_n\), and \(q \in (0, \infty)\), then for \(f_n(t) := \text{Re}(P_n(e^{it}))\) we have
\[
\frac{1}{2\pi} \int_0^{2\pi} |f_n(t)|^q \, dt \sim \frac{\Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{q}{2} + 1\right) \sqrt{\pi}} n^{q/2}
\]
and
\[
\frac{1}{2\pi} \int_0^{2\pi} |f'_n(t)|^q \, dt \sim \frac{\Gamma\left(\frac{q+1}{2}\right)}{(q+1)\Gamma\left(\frac{q}{2} + 1\right) \sqrt{\pi}} n^{3q/2}.
\]

We remark that trivial modifications of the proof of Theorem 2.1–2.7 yield that the statement of the above theorem remains true if the ultraflat sequence \((P_n)\) of polynomials \(P_n \in \mathcal{K}_n\) is replaced by an ultraflat sequence \((P_{n_k})\) of polynomials \(P_{n_k} \in \mathcal{K}_{n_k}\), where \((n_k)\) is an increasing sequence of positive integers.

3. Lemmas

To prove Theorems 2.1 and 2.2 we need a few lemmas. The first two are from [Er1].

Lemma 3.1 (Uniform Distribution Theorem for the Angular Speed). Suppose \((P_n)\) is an ultraflat sequence of polynomials \(P_n \in \mathcal{K}_n\). Then, with the notation (1.3), in the interval \([0, 2\pi]\), the distribution of the normalized angular speed \(\alpha'_n(t)/n\) converges to the uniform distribution as \(n \to \infty\). More precisely, we have
\[
\text{meas}\{ t \in [0, 2\pi] : 0 \leq \alpha'_n(t) \leq n x \} = 2\pi x + \gamma_n(x)
\]
for every \(x \in [0, 1]\), where \(\lim_{n \to \infty} \max_{x \in [0, 1]} |\gamma_n(x)| = 0\).

Our next lemma is a simple observation of Saffari [Sa1], which follows from (1.4), Bernstein’s inequality, and the ultraflatness property given by Definition 1.3.

Lemma 3.2. Suppose \((P_n)\) is an ultraflat sequence of polynomials \(P_n \in \mathcal{K}_n\). Then, with the notation (1.3), we have
\[
o_n n \leq \alpha'_n(t) \leq n - o_n n, \quad t \in \mathbb{R},
\]
with real numbers \(o_n\) converging to 0.
Lemma 3.3 (Negligibility Theorem for Higher Derivatives). Suppose \((P_n)\) is an ultraflat sequence of polynomials \(P_n \in \mathcal{K}_n\). Then, with the notation (1.3), for every integer \(r \geq 2\), we have
\[
\max_{0 \leq t \leq 2\pi} |\alpha_n^{(r)}(t)| \leq \gamma_{n,r} n^r
\]
with real numbers \(\gamma_{n,r} > 0\) converging to 0 for every fixed \(r = 2, 3, \ldots\).

Our next lemma is a special case of Lemma 4.2 from [Er1].

Lemma 3.4. Suppose \((P_n)\) is an ultraflat sequence of polynomials \(P_n \in \mathcal{K}_n\). Using notation (1.3), we have
\[
\max_{0 \leq t \leq 2\pi} |R_n'(t)| = \varphi_n n^{3/2}, \quad m = 1, 2, \ldots,
\]
with real numbers \(\varphi_n\) converging to 0.

The next lemma follows simply from the ultraflatness property given by Definition 1.3.

Lemma 3.5. Let \(q \in (0, \infty)\). Using the notation (1.3) and
\[
\beta_n(t) := \frac{1}{2}(\alpha_n(t) - \alpha_n^*(t)) = \alpha_n(t) - \frac{nt}{2} - t_0
\]
we have
\[
\frac{1}{2\pi} \int_0^{2\pi} \left| (P_n - P_n^*)(e^{it}) \right|^q \, dt = \int_0^{2\pi} \left| n^{1/2}(1 + \delta_n(t))2\sin(\beta_n(t)) \right|^q \, dt
\]
with real numbers \(\delta_n(t)\) converging to 0 uniformly on \([0, 2\pi]\).

Lemma 3.5*. Let \((P_n)\) be an ultraflat sequence of unimodular polynomials \(P_n \in \mathcal{K}_n\), \(q \in (0, \infty)\), and \(f_n(t) := \text{Re}(P_n(e^{it}))\). Using the notation (1.3) we have
\[
\frac{1}{2\pi} \int_0^{2\pi} |f_n(t)|^q \, dt = \int_0^{2\pi} \left| n^{1/2}(1 + \delta_n(t)) \cos(\alpha_n(t)) \right|^q \, dt
\]
with real numbers \(\delta_n(t)\) converging to 0 uniformly on \([0, 2\pi]\).

The next lemma follows simply from the ultraflatness property given by Definition 1.3 and Lemma 3.4.

Lemma 3.6. Let \(q \in (0, \infty)\). Using the notation (1.3) and
\[
\beta_n(t) := \frac{1}{2}(\alpha_n(t) - \alpha_n^*(t)) = \alpha_n(t) - \frac{nt}{2} - t_0
\]
we have
\[
\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{d}{dt}|(P_n - P_n^*)(e^{it})| \right|^q \, dt
\]
\[
= \int_0^{2\pi} \left| n^{1/2}(1 + \delta_n(t))2\cos(\beta_n(t))\beta'_n(t) + \eta_n(t)n^{3/2} \right|^q \, dt
\]
with real numbers \(\delta_n(t)\) and \(\eta_n(t)\) converging to 0 uniformly on \([0, 2\pi]\).
Lemma 3.6*. Let \((P_n)\) be an ultraflat sequence of unimodular polynomials \(P_n \in K_n\), \(q \in (0, \infty)\), and \(f_n(t) := \text{Re}(P_n(e^{it}))\). Using the notation (1.3) we have

\[
\frac{1}{2\pi} \int_0^{2\pi} |f_n'(t)|^q \, dt
\]

= \int_0^{2\pi} \left| n^{1/2}(1 + \delta_n(t)) \sin(\alpha_n(t)) \alpha'_n(t) + \eta_n(t)n^{3/2} \right|^q \, dt

with real numbers \(\delta_n(t)\) converging to 0 uniformly on \([0,2\pi]\).

To prove Lemmas 3.8 and 3.9 we need the technical lemma below that follows by a simple calculation using formulas (6.2.1), (6.2.2), and (6.1.8) on pages 258 and 255 in [AS].

Lemma 3.7. Assume that \(A, B \in \mathbb{R}\), \(B \neq 0\), \(q > 0\), and \(I \subset [0,2\pi]\) is an interval. Then

\[
\int_I |\cos(Bt + A)|^q \, dt = K(q)\text{meas}(I) + \delta_1(A, B, q)
\]

and

\[
\int_I |\sin(Bt + A)|^q \, dt = K(q)\text{meas}(I) + \delta_2(A, B, q),
\]

where

\[
K(q) := \frac{1}{2\pi} \int_0^{2\pi} |\sin t|^q \, dt = \frac{\Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{q}{2} + 1\right) \sqrt{\pi}}
\]

and

\[
|\delta_1(A, B, q)| \leq \pi |B|^{-1} \quad \text{and} \quad |\delta_2(A, B, q)| \leq \pi |B|^{-1}.
\]

Our next lemma takes care of the most difficult part of the proof of Theorem 2.1.

Lemma 3.8. Suppose that \(\beta_n, n = 1, 2, \ldots, \) are real-valued functions defined on \([0,2\pi]\) such that their second derivatives \(\beta''_n\) are continuous on \([0,2\pi]\). Suppose also that

\[
\text{(3.2)} \quad \text{meas}\{t \in [0,2\pi] : |2\beta'_n(t)| \leq nx\} = \gamma(x) + \gamma_n(x), \quad x \in [0,1],
\]

where

\[
\text{(3.3)} \quad \lim_{x \to 0^+} \gamma(x) = \lim_{n \to \infty} \max_{x \in [0,1]} |\gamma_n(x)| = 0,
\]

and

\[
\text{(3.4)} \quad \max_{0 \leq t \leq 2\pi} |\beta''_n(t)| \leq \gamma_{n,2}n^2
\]

with real numbers \(\gamma_{n,2} > 0\) converging to 0. Then

\[
\text{(3.5)} \quad \frac{1}{2\pi} \int_0^{2\pi} |\sin(\beta_n(t))|^q \, dt \sim K(q) := \frac{\Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{q}{2} + 1\right) \sqrt{\pi}}.
\]
Proof of Lemma 3.8. Let $\varepsilon > 0$ be fixed. Let $L_n := \gamma_{n,2}^{-1/4}$. We divide the interval $[0, 2\pi]$ into subintervals

$$I_m := [a_{m-1}, a_m) := \left[\frac{(m-1)L_n}{n}, \frac{mL_n}{n} \right), \quad m = 1, 2, \ldots, N - 1 := \left\lfloor \frac{2\pi n}{L_n} \right\rfloor,$$

and

$$I_N := [a_{N-1}, a_N) := \left[\frac{(N-1)L_n}{n}, 2\pi \right).$$

For the sake of brevity let

$$A_{m-1} := \beta_n(a_{m-1}), \quad m = 1, 2, \ldots, N,$$

and

$$B_{m-1} := \beta_n'(a_{m-1}), \quad m = 1, 2, \ldots, N.$$

Using Taylor’s Theorem and assumption (3.4) we obtain that

$$|\beta_n(t) - (A_{m-1} + B_{m-1}(t - a_{m-1}))| \leq \gamma_{n,2} n^2 (L_n/n)^2 \leq \gamma_{n,2}^{-1/2} \gamma_{n,2}^{1/2} \leq \gamma_{n,2}^{1/2}$$

for every $t \in I_m$, where $\lim_{n \to \infty} \gamma_{n,2}^{1/2} = 0$. Hence the functions

$$G_{n,q}(t) := \begin{cases}
|\sin(A_0 + B_0(t - a_0))|^q, & t \in I_1, \\
|\sin(A_1 + B_1(t - a_0))|^q, & t \in I_2, \\
\vdots & \\
|\sin(A_{N-1} + B_{N-1}(t - a_{N-1}))|^q, & t \in I_N,
\end{cases}$$

and

$$F_{n,q}(t) := |\sin(\beta_n(t))|^q$$

satisfy

$$\lim_{n \to \infty} \sup_{t \in [0, 2\pi]} |G_{n,q}(t) - F_{n,q}(t)| = 0.$$

Therefore, in order to prove (3.5), it is sufficient to prove that

$$\int_0^{2\pi} G_{n,q}(t) \, dt \sim 2\pi K(q).$$

If $|B_{m-1}| \geq n\varepsilon$, then Lemma 3.7 gives

$$\left| \int_{I_m} G_{n,q}(t) \, dt - K(q)\text{meas}(I_m) \right| \leq \frac{\pi}{n\varepsilon}.$$
By assumption (3.4) we have \(\lim_{n \to \infty} L_n = \lim_{n \to \infty} \gamma_{n,2}^{-1/4} = \infty \), and hence

\[
(3.12) \quad \left| \sum_m \int_{I_m} G_{n,q}(t) dt - K(q) \sum_m \text{meas}(I_m) \right| \leq N \frac{\pi}{n \varepsilon} \leq \left(\frac{2\pi n + 1}{L_n} \right) \frac{\pi}{n \varepsilon} \leq \eta_n(\varepsilon),
\]

where the summation is taken over all \(m = 1, 2, \ldots, N \) for which \(|B_{m-1}| \geq n \varepsilon\), and where \((\eta_n(\varepsilon))\) is a sequence of real numbers tending to 0. Now let

\[
E_{n,\varepsilon} := \bigcup_{m:|B_{m-1}| \leq n \varepsilon} I_m.
\]

If \(|B_{m-1}| \leq n \varepsilon\), then by assumption (3.4) we have

\[
|\beta'_n(t)| \leq |B_{m-1}| + \frac{L_n}{n} \max_{t \in I_m} |\beta''_n(t)| \leq |B_{m-1}| + \frac{\gamma_{n,2}^{-1/4}}{n} \gamma_{n,2} n^2 \leq 2n \varepsilon
\]

for every \(t \in I_m \) if \(n \) is sufficiently large. So

\[
E_{n,\varepsilon} \subset \{ t \in [0, 2\pi] : |\beta'_n(t)| \leq 2n \varepsilon \}
\]

for every sufficiently large \(n \). Hence, by assumptions (3.2) we have

\[
\text{meas}(E_{n,\varepsilon}) \leq \gamma_n(4 \varepsilon) + \gamma_n(4 \varepsilon)
\]

for every sufficiently large \(n \). Combining this with \(0 \leq G_{n,q}(t) \leq 1, t \in [0, 2\pi] \), we obtain

\[
(3.13) \quad \left| \sum_m \int_{I_m} G_{n,q}(t) dt - K(q) \sum_m \text{meas}(I_m) \right| \leq (\gamma(4 \varepsilon) + \gamma_n(4 \varepsilon)(1 + K(q)),
\]

for every sufficiently large \(n \), where the summation is taken over all \(m = 1, 2, \ldots, N \) for which \(|B_{m-1}| < n \varepsilon\), and where \(\lim_{\varepsilon \to 0^+} \gamma(4 \varepsilon) = 0 \) and \(\lim_{n \to \infty} \gamma_n(4 \varepsilon) = 0 \) by assumption (3.3). Since \(\varepsilon > 0 \) is arbitrary, (3.11) follows from (3.12) and (3.13). As we have already pointed out (3.5) follows from (3.11). \(\square \)

Our final lemma takes care of the most difficult part of the proof of Theorem 2.4.

Lemma 3.9. Suppose that \(\beta_n, n = 1, 2, \ldots, \) are real-valued functions defined on \([0, 2\pi]\) such that their second derivatives \(\beta''_n \) are continuous on \([0, 2\pi]\) and

\[
(3.6) \quad \text{meas}(\{ t \in [0, 2\pi] : |2\beta'_n(t)| \leq nx \}) = 2\pi x + \gamma_n(x), \quad x \in [0, 1],
\]

where (3.3) holds (with \(\gamma(x) := 2\pi x \)). Suppose also that (3.4) holds and

\[
(3.7) \quad \max_{t \in [0, 2\pi]} |\beta'_n(t)| \leq cn
\]
with an absolute constant $c > 0$. Then

\begin{equation}
\frac{1}{2\pi} \int_0^{2\pi} |\cos(\beta_n(t))n^{-1}\beta_n'(t)|^q \, dt \sim \frac{K(q)}{2^q(q + 1)} := \frac{\Gamma\left(\frac{q+1}{2}\right)}{2^q(q + 1)\Gamma\left(\frac{q}{2} + 1\right)\sqrt{\pi}}.
\end{equation}

We note that conditions (3.6), (3.3), and (3.7) imply in a standard fashion that

\begin{equation}
\frac{1}{2\pi} \int_0^{2\pi} |2\beta_n'(t)|^q \, dt = \frac{n^q}{q + 1} + \delta_{n,q}n^q
\end{equation}

with real numbers $\delta_{n,q}$ converging to 0 for every fixed $q > 0$.

Proof of Lemma 3.9. Let $\varepsilon > 0$ be fixed. Let $L_n := \gamma_{n,2}^{-1/4}$ be the same as in Lemma 3.8. Let the intervals I_m and the numbers A_m and B_m, $m = 1, 2, \ldots, N$, be the same as in the proof of Lemma 3.8. We define

\[F_{n,q}(t) := |\cos(\beta_n(t))|^q, \]

\[\tilde{F}_{n,q}(t) := F_{n,q}(t)n^{-1}\beta_n'(t)|^q, \]

\[G_{n,q}(t) := \begin{cases} |\cos(A_0 + B_0(t - a_0))|^q, & t \in I_1, \\
|\cos(A_1 + B_1(t - a_0))|^q, & t \in I_2, \\
\vdots & \vdots \\
|\cos(A_{N-1} + B_{N-1}(t - a_{N-1}))|^q, & t \in I_N, \end{cases} \]

\[H_{n,q}(t) := \begin{cases} |n^{-1}B_0|^q, & t \in I_1, \\
|n^{-1}B_1|^q, & t \in I_2, \\
\vdots & \vdots \\
|n^{-1}B_{N-1}|^q, & t \in I_N, \end{cases} \]

and

\begin{equation}
\tilde{G}_{n,q}(t) := G_{n,q}(t)H_{n,q}(t).
\end{equation}

Similarly to the corresponding argument in the proof of Lemma 3.8, we obtain

\begin{equation}
\lim_{n \to \infty} \sup_{t \in [0,2\pi]} |G_{n,q}(t) - F_{n,q}(t)| = 0.
\end{equation}

It follows from assumption (3.4) that

\[\left| |n^{-1}\beta_n'(t)| - |n^{-1}B_{m-1}| \right| = \left| |n^{-1}\beta_n'(t)| - |n^{-1}\beta_n'(a_{m-1})| \right| \]

\[\leq |n^{-1}\beta_n'(t) - n^{-1}\beta_n'(a_{m-1})| \]

\[\leq \frac{L_n}{n} \max_{t \in I_m} |n^{-1}\beta_n'(t)| \leq \frac{\gamma_{n,2}^{-1/4}}{n} n^{-1}\gamma_{n,2}n^2 = \gamma_{n,2}^{3/4} \]
for every $t \in I_m$, where $\lim_{n \to \infty} \gamma_{n,2}^{3/4} = 0$. Hence

\begin{equation}
(3.16) \quad \lim_{n \to \infty} \sup_{t \in [0,2\pi]} \left| H_{n,q}(t) - \left| n^{-1}\beta_n'(t) \right|^q \right| = 0.
\end{equation}

Observe that

\begin{equation}
(3.17) \quad \sup_{t \in [0,2\pi]} \left| \cos(\beta_n(t))^q \right| \leq 1,
\end{equation}

and by the assumption (3.7) we have

\begin{equation}
(3.18) \quad \sup_{t \in [0,2\pi]} \left| n^{-1}\beta_n'(t) \right|^q \leq c^q.
\end{equation}

Now (3.14), (3.16), (3.17), (3.18), and (3.14) imply

\begin{equation}
\lim_{n \to \infty} \sup_{t \in [0,2\pi]} \left| \tilde{G}_{n,q}(t) - \tilde{F}_{n,q}(t) \right| = 0.
\end{equation}

Therefore, in order to prove (3.8), it is sufficient to prove that

\begin{equation}
(3.19) \quad \int_0^{2\pi} \tilde{G}_{n,q}(t) \, dt \sim \frac{2\pi K(q)}{q+1}.
\end{equation}

As a special case of (3.18), we have

\begin{equation}
(3.20) \quad \left| n^{-1}B_{m-1} \right|^q \leq c^q, \quad m = 1, 2, \ldots, N.
\end{equation}

If $|B_{m-1}| \geq n\varepsilon$, then (3.14), (3.20), and Lemma 3.7 give that

\begin{equation}
\left| \int_{I_m} \tilde{G}_{n,q}(t) \, dt - K(q)\text{meas}(I_m) \left| n^{-1}B_{m-1} \right|^q \right| \leq c^q \frac{\pi}{n\varepsilon}.
\end{equation}

It follows from assumption (3.4) that $\lim_{n \to \infty} L_n = \lim_{n \to \infty} \gamma_{n,2}^{-1/4} = \infty$, and hence

\begin{equation}
(3.21) \quad \left| \sum_m \int_{I_m} G_{n,q}(t) \, dt - K(q) \sum_m \text{meas}(I_m) \left| n^{-1}B_{m-1} \right|^q \right| \leq Nc^q \frac{\pi}{n\varepsilon}
\end{equation}

\begin{equation}
\leq c^q \left(\frac{2\pi n}{L_n} + 1 \right) \frac{\pi}{n\varepsilon}
\leq \eta_n(\varepsilon, q),
\end{equation}

where the summation is taken over all $m = 1, 2, \ldots, N$ for which $|B_{m-1}| \geq n\varepsilon$, and where $(\eta_n(\varepsilon, q))$ is a sequence of real numbers tending to 0 for every fixed $\varepsilon > 0$ and $q > 0$. Now let

$$E_{n,\varepsilon} := \bigcup_{m: |B_{m-1}| \leq n\varepsilon} I_m.$$
As in the proof of Lemma 3.8 we have
\[\text{meas}(E_{n,\varepsilon}) \leq 8\pi \varepsilon + \gamma_n(4\varepsilon), \]
for every sufficiently large \(n \). Combining this with (3.17) and (3.20), and recalling the definition of \(\tilde{G}_{n,q} \), we obtain
\[\left| \sum_m \int_{I_m} \tilde{G}_{n,q}(t) dt - K(q) \sum_m \text{meas}(I_m) |n^{-1}B_{m-1}|^q \right| \leq (8\pi \varepsilon + \gamma_n(4\varepsilon))c\phi(1+K(q)) \]
for every sufficiently large \(n \), where the summation is taken over all \(m = 1, 2, \ldots, N \) for which \(|B_{m-1}| < n\varepsilon \), and where
\[\lim_{n \to \infty} \gamma_n(4\varepsilon) = 0 \]
by assumption (3.3). Since \(\varepsilon > 0 \) is arbitrary, from (3.21) and (3.22) we obtain that
\[\int_0^{2\pi} \tilde{G}_{n,q}(t) dt \sim K(q) \int_0^{2\pi} H_{n,q}(t) dt. \]
However, (3.16) and (3.9) imply that
\[\int_0^{2\pi} H_{n,q}(t) dt \sim n^{-q} \int_0^{2\pi} |\beta_n'(t)|^q dt \sim \frac{2\pi}{2^q(q+1)}. \]
The statement under (3.19) now follows by combining (3.23), and (3.24). As we have remarked before, (3.19) implies (3.8). □

4. Proofs of Theorems 2.1–2.7

Proof of Theorem 2.1. Using the notation (1.3) observe that (1.5) implies that the functions
\[\beta_n(t) := \frac{1}{2}(\alpha_n(t) - \alpha_n^*(t)) = \alpha_n(t) - \frac{nt}{2} - t_0 \]
satisfy
\[\beta_n'(t) = \alpha_n'(t) - n/2, \quad t \in \mathbb{R}, \]
and
\[\beta_n''(t) = \alpha_n''(t), \quad t \in \mathbb{R}, \]
and hence Lemmas 3.1, 3.2, and 3.3 imply that the functions \(\beta_n \) satisfy assumptions (3.2), (3.3), and (3.4) of Lemma 3.8. Hence the theorem follows from Lemmas 3.5 and 3.8. □

Proof of Theorem 2.3. Using the notation (1.3) let
\[P_n(e^{it}) = R_n(t)e^{i\alpha_n(t)} \quad \text{and} \quad R_n(t)e^{i\alpha_n^*(t)}, \]
where
\[R_n(t) = |P_n(e^{it})| = |P_n^*(e^{it})| = R_n^*(t), \]
and both \(R_n \) and \(\alpha_n \) are in \(C^\infty(\mathbb{R}) \). Let \((P_n) \) be an ultraflat sequence of polynomials \(P_n \in K_n \). We have
\[(4.2) \quad R_n(t)^2 = n(1 + \delta_n(t)), \quad t \in \mathbb{R}, \quad \lim_{n \to \infty} \max_{t \in [0,2\pi]} |\delta_n(t)| = 0. \]

Let \(\beta_n(t) \) be defined by (4.1). Let \(\varepsilon > 0 \) be fixed. Using the cosine theorem for triangles, Lemmas 3.2, and 3.4, and (4.1), (4.2), and (1.5), we obtain
\[(4.3) \quad \left| (P_n' - P_n^{**}(e^{it}))^2 - |P_n'(e^{it})|^2 - |P_n^{**}(e^{it})|^2 \right| \\
= 2((R_n(t)\alpha_n'(t))^2 + (R_n'(t))^2)(R_n(t)(\alpha_n''(t))^2 + (R_n'(t))^2)^{1/2} \cos(2\beta_n(t)) \\
= 2(R_n(t)\alpha_n'(t))(R_n(t)\alpha_n''(t)) \cos(2\beta_n(t)) + \eta_n(t)n^3 \\
= 2(R_n(t)^2(n\alpha_n'(t) - \alpha_n'(t))^2) \cos(2\beta_n(t)) + \eta_n(t)n^3 \\
= 2(n + \delta_n(t))(n\alpha_n'(t) - \alpha_n'(t))^2 \cos(2\beta_n(t)) + \eta_n(t)n^3 \\
= 2n(n\alpha_n'(t) - \alpha_n'(t))^2) \cos(2\beta_n(t)) + \varphi_n(t)n^3 + \eta_n(t)n^3 \\
= 2n \left(\frac{n^2}{4} - \beta_n'(t)^2 \right) \cos(2\beta_n(t)) + \varphi_n(t)n^3 + \eta_n(t)n^3 \]
with some real numbers \(\eta_n(t) \) and \(\varphi_n(t) \) satisfying
\[\max_{t \in [0,2\pi]} |\varphi_n(t) + \eta_n(t)| < \varepsilon \]
for every sufficiently large \(n \). Observe that
\[(4.4) \quad \int_0^{2\pi} \left(|P_n'(e^{it})|^2 + |P_n^{**}(e^{it})|^2 \right) dt = 4\pi \frac{n(n + 1)(2n + 1)}{6} \]
by the Parseval formula. The integration by parts formula and Lemma 3.3 give that
\[(4.5) \quad \left| \int_0^{2\pi} \beta_n'(t)^2 \cos(2\beta_n(t)) dt \right| \\
= \left| \left[\frac{1}{2}(\sin(2\beta_n(t))\beta_n'(t)) \right]_0^{2\pi} - \int_0^{2\pi} \beta_n''(t) \sin(2\beta_n(t)) dt \right| \\
= \left| \int_0^{2\pi} \beta_n''(t) \sin(2\beta_n(t)) dt \right| \leq \int_0^{2\pi} |\beta_n''(t)| dt = \int_0^{2\pi} |\alpha_n''(t)| dt \\
\leq 2\pi \gamma_{n,2} n^2 < \varepsilon n^2 \]
for every sufficiently large \(n \). Observe also that Lemma 3.8 gives that

\[
\int_0^{2\pi} \cos(2\beta_n(t)) \, dt = \int_0^{2\pi} \left(2\sin^2(\beta_n(t)) - 1 \right) \, dt = 2\pi(2K(2) + h_n - 1)
\]

\[
= 2\pi \left(2 \frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(2)\sqrt{\pi}} + h_n - 1 \right) = 2\pi h_n
\]

with a sequence \((h_n)\) converging to 0. Combining (4.3)–(4.6) we conclude

\[
\left| \frac{1}{2\pi} \int_0^{2\pi} \left| (P_n' - P_n^{*'}) (e^{it}) \right|^2 \, dt - \frac{2n^3}{3} \right| \leq \varepsilon n^3
\]

for every sufficiently large \(n \). As \(\varepsilon > 0 \) is arbitrary, this finishes the proof. \(\square \)

Proof of Theorem 2.4. Using the notation (1.3) observe that (1.5) implies that the functions \(\beta_n \) defined by (4.1) satisfy

\[
\beta'_n(t) = \alpha'_n(t) - n/2, \quad t \in \mathbb{R},
\]

and

\[
\beta''_n(t) = \alpha''_n(t), \quad t \in \mathbb{R},
\]

and hence Lemmas 3.1, 3.2, and 3.3 imply that the functions \(\beta_n \) satisfy assumptions (3.6), (3.3), (3.4), and (3.7) of Lemma 3.9. Hence the theorem follows from Lemmas 3.6 and 3.9. \(\square \)

Proof of Theorem 2.5. Let \((P_n) \) be an ultraflat sequence of polynomials \(P_n \in \mathcal{K}_n \). Theorem 2.2 gives that

\[
\sum_{k=0}^{n} |a_{k,n} - \bar{a}_{n-k,n}|^2 \sim 2n,
\]

which is equivalent to

\[
2\text{Re} \left(\sum_{k=0}^{n} a_{k,n} a_{n-k,n} \right) = o(n).
\]

Now let \(c \in \mathbb{C}, |c| = 1 \), and let \(Q_n \) be defined by \(Q_n(z) = P_n(cz) \). Observe that \((Q_n) \) is an ultraflat sequence of polynomials \(Q_n \in \mathcal{K}_n \) and hence

\[
\text{Re} \left(\sum_{k=0}^{n} c^n a_{k,n} a_{n-k,n} \right) = o(n),
\]

and hence

\[
\sum_{k=0}^{n} a_{k,n} a_{n-k,n} = o(n).
\]

\(\square \)
Proof of Theorem 2.6. Let \((P_n)\) be an ultraflat sequence of polynomials \(P_n \in \mathcal{K}_n\). Theorem 2.3 gives that
\[
\sum_{k=0}^{n} k^2 |a_{k,n} - \overline{a}_{n-k,n}|^2 \sim \frac{2n^3}{3},
\]
which is equivalent to
\[
2\text{Re} \left(\sum_{k=0}^{n} k^2 a_{k,n} \alpha_{n-k,n} \right) = o(n^3).
\]
Now let \(c \in \mathbb{C}, |c| = 1\), and let \(Q_n\) be defined by \(Q_n(z) = P_n(cz)\). Observe that \((Q_n)\) is an ultraflat sequence of polynomials \(Q_n \in \mathcal{K}_n\) and hence
\[
\text{Re} \left(\sum_{k=0}^{n} c^n k^2 a_{k,n} \alpha_{n-k,n} \right) = o(n^3),
\]
and hence
\[
\left| \sum_{k=0}^{n} k^2 a_{k,n} \alpha_{n-k,n} \right| = o(n^3).
\]
□

Proof of Theorem 2.7. Using Lemma 3.5* and then applying Lemma 3.8 with \(\beta_{2n}\) defined by \(\beta_{2n}(t) := \alpha_n(t) + \pi/2\) we obtain the first asymptotic formula of the theorem. Using Lemma 3.6* and then applying Lemma 3.9 with \(\beta_{2n}\) defined by \(\beta_{2n}(t) := \alpha_n(t) + \pi/2\) we obtain the second asymptotic formula of the theorem. □

References

[Li1] J.E. Littlewood, *On polynomials \(\sum \pm z^m, \sum \exp(\alpha m)z^m, z = e^{i\theta} \)*, J. London Math. Soc. 41, 367–376, yr 1966.

Department of Mathematics, Texas A&M University, College Station, Texas 77843, College Station, Texas 77843

E-mail address: terdelyi@math.tamu.edu