Name:	Tamás Erdélyi
Birth date:	September 13, 1961
Citizenship:	Hungarian and American
Address:	Department of Mathematics
	Texas A\&M University
	College Station, Texas 77843
E-mail:	terdelyi@tamu.edu
homepage:	https://people.tamu.edu/ terdelyi/

Education and Employment:

1980-1985	M.Sc. (Mathematics) Supervisor: J. Szabados	Eötvös L. University, Budapest
1985-1987	Research Assistant	Mathematics Institute, Hungarian Academy of Sciences
1987-1989	Ph.D. (Mathematics) Supervisor: P. Nevai	University of South Carolina
$1989-1992$	Instructor	The Ohio State University
$1992-1993$	NSERC International Posdoctoral Fellow	Dalhousie University
Supervisor: P. Borwein	NSERC International	Simon Fraser University Costdoctoral Fellow
	Supervisor: P. Borwein For Experimental and Constructive Mathematics	
$1993-1995$	Visiting Assistant Professor	The Ohio State University

Grants:

1991-1994 National Science Foundation, No. DMS-9024901
1996-2000 National Science Foundation, No. DMS-9623156
2000-2003 National Science Foundation, No. DMS-0070826

Synergistic Activities:

Editor of Journal of Approximation Theory (1997-).
Editor of Mathematical Inequalities and Applications (1998-).
Editor of Analysis Mathematica (2016-)
Helping Editor of the Problem Session of the Amer. Math. Monthly (2002-2014).

PUBLICATIONS Tamás Erdélyi
August, 2023

References

Books:

1. P. Borwein \& T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, Graduate Texts in Mathematics, Volume 161, 486 p., New York, NY, 1995.

Book Reviews, etc.:

1. T. Erdélyi, J. Prolla, Stone-Weierstrass, the Theorem, Springer-Verlag, J. Approx. Theory 78 (1994), 466.
2. T. Erdélyi \& P. Nevai, Books by George G. Lorentz, in: Mathematics from Leningrad to Austin, Volume 2, George G. Lorentz' selected works in real, functional, and numerical analysis. With contributions by Tamás Erdélyi, Paul Nevai, Colin Bennett and Hubert Berens. Edited by Rudolph A. Lorentz. Contemporary Mathematicians. Birkhäuser, Boston, Inc., Boston, MA, 1997.
3. T. Erdélyi, G.V. Milovanovic, D.S. Mitrinovic, \& Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, J. Approx. Theory $8 \mathbf{8}$ (1995), 471-472.
4. T. Erdélyi, J. Michael Steele, The Cauchy-Schwarz Master Class, Cambridge University Press, Cambridge, J. Approx. Theory 134 (2005), 287-289.
5. T. Erdélyi, Vladimir I. Gurariy \& Wolfgang Lusky, Geometry of Müntz Spaces and Related Questions, Springer, Berlin, 2005, Math. Reviews (2007 g).
6. T. Erdélyi, P. Komjáth \& V. Totik, Problems and Theorems in Classical Set Theory, Springer, 2006 Springer, Berlin, J. Approx. Theory (2008).

Refereed Conference Proceedings:

1. T. Erdélyi, Pointwise estimates for derivatives of polynomials with restricted zeros, in: Haar Memorial Conference, J. Szabados \& K. Tandori, Eds., North-Holland, Amsterdam, 1987, pp. 329-343.
2. T. Erdélyi, The Remez inequality on the size of polynomials, in: Approximation Theory VI, C.K. Chui, L.L. Schumaker, \& J.D. Ward, Eds., Academic Press, Boston, 1989, pp. 243-246.
3. T. Erdélyi, J. Geronimo, P. Nevai, \& J. Zhang, A simple proof of "Favard Theorem" on the unit circle, in: Proc. Int'l Conf. on Functional Analysis and Approximation Theory, Atti Sem. Mat. Fis. Univ. Modena, XXXIX, 1991, pp. 551-556.
4. P. Borwein \& T. Erdélyi, Müntz's Theorem on compact subsets of positive measure, in Approximation Theory, Govil et al. (Eds.), Marcel Dekker, Inc. (1998), 115-131.
5. T. Erdélyi, Polynomials with Littlewood-type coefficient constraints, Approximation Theory X: Abstract and Classical Analysis, Charles K. Chui, Larry L. Schumaker, and Joachim Stöckler (Eds.), Vanderbilt University Press, Nashville, TN (2002), 153-196.
6. T. Erdélyi, Markov-Bernstein type inequalities for polynomials under Erdős-type constraints, Paul Erdős and his Mathematics I, Bolyai Society Mathematical Studies, 11, Gábor Halász, László Lovász, Dezső Miklós, and Vera T. Sós (Eds.), Springer Verlag, New York (2002), 219-239.
7. T. Erdélyi, A panorama ot Hungarian mathematics in the XXth century: extremal problems for polynomials, for the volume "A Panorama of Hungarian Mathematics in the XXth Century", János Horváth (Ed.), Springer Verlag, New York (2005), 119-156.
8. T. Erdélyi, Inequalities for exponential sums via interpolation and Turán-type reverse Markov inequalities, Frontiers in Interpolation and Approximation, dedicated to the memory of Ambikeshvar Sharma, Chapman \& Hall/CRC, Taylor \& Francis, New York, N.K. Govil, H.N. Mhaskar, Ram Mohapatra, Zuhair Nashed, J. Szabados (Eds.) (2006), 119-144.
9. T. Erdélyi, Newman's inequality for increasing exponential sums, Number Theory and Polynomials, Series: London Mathematical Society Lecture Note Series (No. 352), J. McKee and Ch. Smyth (Eds.) (2008).

Published Papers (Refereed Journals):

10. T. Erdélyi, Pointwise estimates for the derivatives of a polynomial with real zeros, Acta Math. Hungar. 49 (1987), 219-235.
11. T. Erdélyi, Markov-type estimates for derivatives of polynomials of special type, Acta Math. Hungar. 51 (1988), 421-436.
12. T. Erdélyi \& J. Szabados, On polynomials with positive coefficients, J. Approx. Theory 54 (1988), 107-122.
13. T. Erdélyi, Markov-type estimates for the derivatives of constrained polynomials, Approx. Theory Appl. 4 (1988), 23-33.
14. T. Erdélyi \& J. Szabados, Bernstein-type inequalities for a class of polynomials, Acta Math. Hungar. 52 (1989), 237-251.
15. T. Erdélyi \& J. Szabados, On trigonometric polynomials with positive coefficients, Studia Sci. Math. Hungar. 24 (1989), 71-91.
16. T. Erdélyi, Markov-type estimates for certain classes of constrained polynomials, Constr. Approx. 5 (1989), 347-356.
17. T. Erdélyi, Weighted Markov-type estimates for the derivatives of constrained polynomials on $[0, \infty)$, J. Approx. Theory 58 (1989), 213-231.
18. T. Erdélyi, A Markov-type inequality for the derivatives of constrained polynomials, J. Approx. Theory 63 (1990), 321-334.
19. T. Erdélyi, Markov and Bernstein type inequalities for certain classes of constrained trigonometric polynomials on an interval shorter than the period, Studia Sci. Math.

Hungar. 25 (1990), 3-25.
20. T. Erdélyi, A sharp Remez inequality on the size of constrained polynomials, J. Approx. Theory 63 (1990), 335-337.
21. T. Erdélyi, Nikolskii-type inequalities for generalized polynomials and zeros of orthogonal polynomials, J. Approx. Theory 67 (1991), 80-92.
22. T. Erdélyi, Bernstein and Markov type theorems for generalized nonnegative polynomials, Canad. J. Math. 43 (1991), 1-11.
23. P. Borwein \& T. Erdélyi, Notes on lacunary Müntz polynomials, Israel J. Math. 76 (1991), 183-192.
24. T. Erdélyi, Bernstein-type inequality for the derivative of constrained polynomials, Proc. Amer. Math. Soc. 112 (1991), 829-838.
25. T. Erdélyi, Estimates for the Lorentz degree of polynomials, J. Approx. Theory 67 (1991), 187-198.
26. T. Erdélyi, Remez-type inequalities on the size of generalized polynomials, J. London Math. Soc. 45 (1992), 255-264.
27. T. Erdélyi, A. Máté, \& P. Nevai, Inequalities for generalized nonnegative polynomials, Constr. Approx. 8 (1992), 241-255.
28. T. Erdélyi, Weighted Markov and Bernstein type inequalities for generalized nonnegative polynomials, J. Approx. Theory 68 (1992), 283-305.
29. T. Erdélyi \& P. Nevai, Generalized Jacobi weights, Christoffel functions and zeros of orthogonal polynomials, J. Approx. Theory 68 (1992), 111-132.
30. P. Borwein \& T. Erdélyi, Remez, Nikolskii, and Markov type inequalities for generalized nonnegative polynomials with restricted zeros, Constr. Approx. 8 (1992), 343-362.
31. T. Erdélyi, Remez-type inequalities and their applications, J. Comput. Appl. Math. 47 (1993), 167-210.
32. P. Borwein \& T. Erdélyi, Lacunary Müntz systems, J. Edinburgh Math. Soc. 47 (1993), 361-374.
33. T. Erdélyi, X. Li, \& E. Saff, Remez and Nikolskii type inequalities for logarithmic potentials, SIAM J. Math. Anal. 25 (1994), 365-383.
34. T. Erdélyi, A. Magnus, \& P. Nevai, Generalized Jacobi weights, Christoffel functions and Jacobi polynomials, SIAM J. Math. Anal. 25 (1994), 602-614.
35. P. Borwein, T. Erdélyi, \& J. Zhang, Müntz systems and orthogonal Müntz-Legendre polynomials, Trans. Amer. Math. Soc. 342 (1994), 523-542.
36. P. Borwein \& T. Erdélyi, Markov and Bernstein type inequalities on subsets of $[-1,1]$ and $[-\pi, \pi]$, Acta Math. Hungar., 65 (1994), 189-194.
37. P. Borwein \& T. Erdélyi, Markov-Bernstein type inequalities for classes of polynomials with restricted zeros, Constr. Approx. 10 (1994), 411-425.
38. P. Borwein, T. Erdélyi, \& J. Zhang, Chebyshev polynomials and Bernstein-Markov type inequalities for rational spaces, J. London Math. Soc. 50 (1994), 501-519.
39. P. Borwein \& T. Erdélyi, Markov and Bernstein type inequalities in L_{p} for classes of polynomials with constraints, J. London Math. Soc. 51 (1995), 573-588.
40. P. Borwein \& T. Erdélyi, Müntz spaces and Remez inequalities, Bull. Amer. Math. Soc. 32 (1995), 38-42.
41. P. Borwein \& T. Erdélyi, Dense Markov spaces and unbounded Bernstein inequalities, J. Approx. Theory 81 (1995), 66-77.
42. P. Borwein \& T. Erdélyi, Upper bounds for the derivative of exponential sums, Proc. Amer. Math. Soc. 123 (1995), 1481-1486.
43. P. Borwein \& T. Erdélyi, The L_{p} version of Newman's inequality for Müntz polynomials, Proc. Amer. Math. Soc. 124 (1996), 101-109.
44. P. Borwein \& T. Erdélyi, The integer Chebyshev problem, Math. Comp. 65 (1996), 661-681.
45. P. Borwein \& T. Erdélyi, The full Müntz Theorem in $C[0,1]$ and $L_{1}[0,1]$, J. London Math. Soc. 54 (1996), 102-110.
46. P. Borwein \& T. Erdélyi, A sharp Bernstein-type inequality for exponential sums, J. Reine Angew. Math. 476 (1996), 127-141.
47. P. Borwein \& T. Erdélyi, Questions about polynomials with $\{-1,0,1\}$ coefficients, Constr. Approx. 12 (1996), 439-442.
48. P. Borwein \& T. Erdélyi, Newman's inequality for Müntz polynomials on positive intervals, J. Approx. Theory 85 (1996), 132-139.
49. T. Erdélyi \& P. Nevai, Lower bounds for the derivatives of polynomials and Remez-type inequalities, Trans. Amer. Math. Soc. 349 (1997), 4953-4972.
50. P. Borwein \& T. Erdélyi, Sharp extensions of Bernstein's inequality to rational spaces, Mathematika 43 (1996), 413-423.
51. P. Borwein \& T. Erdélyi, Generalizations of Müntz's Theorem via a Remez-type inequality for Müntz spaces, J. Amer. Math. Soc. 10 (1997), 327-349.
52. P. Borwein \& T. Erdélyi, Markov- and Bernstein-type inequalities for polynomials with restricted coefficients, Ramanujan J. 1 (1997), 309-323.
53. P. Borwein \& T. Erdélyi, On the zeros of polynomials with restricted coefficients, Illinois J. Math. 41 (1997), 667-675.
54. P. Borwein \& T. Erdélyi, Remez-type inequalities for non-dense Müntz spaces with explicit bounds, J. Approx. Theory. 93 (1998), 450-457.
55. P. Borwein \& T. Erdélyi, Littlewood-type problems on subarcs of the unit circle, Indiana Univ. Math. J. 46 (1997), 1323-1346.
56. T. Erdélyi, Markov-Bernstein type inequalities for constrained polynomials with real versus complex coefficients, Journal d'Analyse Math. 74 (1998), 165-181.
57. T. Erdélyi \& P. Vértesi, IN MEMORIAM Paul Erdős (1913-1996), J. Approx. Theory 94 (1998), 1-41.
58. T. Erdélyi, Markov-type inequalities for constrained polynomials with complex coefficients, Illinois J. Math. 42 (1998), 544-563.
59. P. Borwein, T. Erdélyi, \& G. Kós, Littlewood-type problems on $[0,1]$, Proc. London Math. Soc. (3) 79 (1999), 22-46.
60. T. Erdélyi, Notes on inequalities with doubling weights, J. Approx. Theory 100 (1999), 60-72.
61. T. Erdélyi, On the equation $a(a+d)(a+2 d)(a+3 d)=x^{2}$, Amer. Math. Monthly 107 (2000), 166-169.
62. P. Borwein \& T. Erdélyi, Pointwise Remez- and Nikolskii-type inequalities for expo-
nential sums, Math. Ann. 316 (2000), 39-60.
63. T. Erdélyi, A. Kroó, \& J. Szabados, Markov-Bernstein type inequalities on compact subsets of \mathbb{R}, Anal. Math. 26 (2000), 17-34.
64. T. Erdélyi, Markov- and Bernstein-type inequalities for Müntz polynomials and exponential sums in L_{p}, J. Approx. Theory 104 (2000), 142-152.
65. P. Borwein \& T. Erdélyi, Markov-Bernstein type inequalities under Littlewood-type coefficient constraints, Indag. Mathem. N.S. 11(2) (2000), 159-172.
66. T. Erdélyi, The resolution of Saffari's Phase Problem, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 803-808.
67. P. Borwein \& T. Erdélyi, Trigonometric polynomials with many real zeros and a Littlewood-type problem, Proc. Amer. Math. Soc. 129 (2001), 725-730.
68. T. Erdélyi, On the zeros of polynomials with Littlewood-type coefficient constraints, Michigan Math. J. 49 (2001), 97-111.
69. T. Erdélyi \& W. Johnson, The "Full Müntz Theorem" in $L_{p}[0,1]$ for $0<p<\infty$, Journal d'Analyse Math. 84 (2001), 145-172.
70. T. Erdélyi, How far is an ultraflat sequence of unimodular polynomials from being conjugate reciprocal?, Michigan Math. J. 49 (2001), 259-264.
71. T. Erdélyi, Markov-type inequalities for products of Müntz polynomials, J. Approx. Theory, 112 (2001), 171-188.
72. T. Erdélyi, A proof of Saffari's "near-orthogonality" conjecture for ultraflat sequences of unimodular polynomials, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 623-628.
73. T. Erdélyi, The phase problem of ultraflat unimodular polynomials: The resolution of the conjecture of Saffari, Math. Ann. 321 (2001), 905-924.
74. T. Erdélyi, The norm of the polynomial truncation operator on the unit disk and on [-1, 1], Colloquium Math. 90 (2001), 287-293.
75. T. Erdélyi \& J. Szabados, On a generalization of the Bernstein-Markov inequality, Algebra i Analyz 14 (2002), 36-53.
75. T. Erdélyi \& J. Szabados, On a generalization of the Bernstein-Markov inequality, St. Petersburg Math. J. 4 (2003), 563-576.
76. T. Erdélyi \& J. Szabados, Bernstein-type inequalities for polynomials with constrained roots, Acta Sci. Math. (Szeged) 68 (2002), 937-952.
77. T. Erdélyi, The full Clarkson-Erdős-Schwartz Theorem on the uniform closure of nondense Müntz spaces, Studia Math. 155 (2003), 145-152.
78. T. Erdélyi, On the real part of ultraflat sequences of unimodular polynomials: consequences implied by the resolution of the Phase Problem, Math. Ann. 326 (2003), 489-498.
79. D. Benko, T. Erdélyi \& J. Szabados, The full Markov-Newman inequality for Müntz polynomials on positive intervals, Proc. Amer. Math. Soc. 131 (2003), 2385-2391.
80. T. Erdélyi, Extremal properties of the derivatives of the Newman polynomials, Proc. Amer. Math. Soc. 131 (2003), 3129-3134.
81. T. Erdélyi, Markov-Bernstein type inequality for trigonometric polynomials with respect to doubling weights on $[-\omega, \omega]$, Constr. Approx. 19 (2003), 329-338.
82. D. Benko \& T. Erdélyi, Markov inequality for polynomials of degree n with m distinct
zeros, J. Approx. Theory 122 (2003), 241-248.
83. P. Borwein \& T. Erdélyi, Lower bounds for the merit factors of trigonometric polynomials, J. Approx Theory 125 (2003), 190-197.
84. T. Erdélyi \& A. Kroó, Markov-type inequalities on certain irrational arcs and domains, J. Approx. Theory 130 (2004), 113-124.
85. T. Erdélyi, The uniform closure of non-dense rational spaces on the unit interval, J. Approx. Theory 131 (2004), 149-156.
86. T. Erdélyi \& H. Friedman, The number of certain integral polynomials and nonrecursive sets of integers, Part 1, Trans. Amer. Math. Soc. 357 (2005), 999-101.
87. T. Erdélyi, The full Müntz Theorem revisited, Constr. Approx. 21 (2005), 319-335.
88. T. Erdélyi, Bernstein-type inequalities for linear combinations of shifted Gaussians, Bull. London Math. Soc. 38 (2006), 124-138.
89. T. Erdélyi,, On the denseness of certain function spaces spanned by products, J. Func. Anal. 238 (2006), 463-470.
90. P. Borwein \& T. Erdélyi, Nikolskii-type inequalities for shift invariant function spaces, Proc. Amer. Math. Soc. 134 (2006), 3243-3246.
91. T. Erdélyi, Markov-Nikolskii-type inequalities for exponential sums on a finite interval, Adv. Math. 208 (2007), 135-146.
92. T. Erdélyi \& D. Lubinsky, Large sieve inequalities via subharmonic methods and the Mahler measure of Fekete polynomials, Canad. J. Math. 59 (2007), 730-741.
93. P. Borwein \& T. Erdélyi, Lower bounds for the number of zeros of cosine polynomials: a problem of Littlewood, Acta Arith. 128 (2007), 377-384.
94. T. Erdélyi, An improvement of the Erdös-Turán theorem on the zero distribution of polynomials, C. R. Acad. Sci. Paris Sér. I Math. 346 (2008), 267-270.
95. P. Borwein T. Erdélyi, \& F. Littmann, Zeros of polynomials with finitely many different coefficients, Trans. Amer. Math. Soc. 360 (2008), 5145-5154.
96. P. Borwein, T. Erdélyi, R. Ferguson, \& R. Lockhart, On the zeros of cosine polynomial: an old problem of Littlewood, Ann. of Math. (2) 167 (2008), 1109-1117.
97. T. Erdélyi, Extensions of the Bloch-Pólya theorem on the number of distinct real zeros of polynomials, Journal de théorie des nombres de Bordeaux 20 (2008), 281-287.
98. T. Erdélyi, The Remez inequality for linear combinations of shifted Gaussians, Math. Proc. Cambridge Phil. Soc. 146 (2009), 523-530.
99. T. Erdélyi, George Lorentz and inequalities in approximation, Algebra i Analiz (St. Petersburg Math. J.) 21 (2009), 1-57.
100. T. Erdélyi, Markov-Nikolskii type inequality for absolutely monotone polynomials of order k, Journal d'Analyse Math. 112 (2010), 369-381.
101. T. Erdélyi, Orthogonality and the maximum of Littlewood cosine polynomials, Acta Arith. 146 (2011), 215-231.
102. T. Erdélyi, Sieve-type lower bounds for the Mahler measure of polynomials on subarcs,, Comput. Methods Funct. Theory 11, 213-228.
103. T. Erdélyi, K. Khodjasteh, \& L. Viola, Limits on preserving quantum coherence using multipulse control, Phys. Rev. A 83, 020305(R) (2011).
104. T. Erdélyi, On the L_{q} norm of cyclotomic Littlewood polynomials on the unit circle, Math. Proc. Cambridge Phil. Soc. 152 (2011), 373-384.
105. T. Erdélyi, Upper bounds for the L_{q} norm of Fekete polynomials on subarcs, Acta Arith. 153(2) (2012), 387-395.
106. T. Erdélyi, K. Khodjasteh, \& L. Viola, The size of exponential sums on intervals of the real line, Constr. Approx. 35 (2012), 123-136.
107. P. Borwein \& T. Erdélyi, A note on Barker polynomials, Int. J. Number Theory (2013), 759-767.
108. T. Erdélyi \& E.B. Saff, Riesz polarization inequalities in higher dimensions, J. Approx. Theory 171 (2013), 128-147.
109. G. Ambrus, K. Ball, \& T. Erdélyi, Chebyshev constants for the unit circle, Bull. London Math. Soc. 45 (2013), 236-248.
110. P. Borwein, T. Erdélyi, \& G. Kós, The multiplicity of the zero at 1 of polynomials with constrained coefficients, Acta Arith. 159 (2013), 387-395.
111. T. Erdélyi, Basic polynomial inequalities on intervals and circular arcs,, Constr. Approx. 39 (2014), 367-384.
112. K.-K. S. Choi \& T. Erdélyi, On the average Mahler measures of Littlewood polynomials,, Proc. Amer. Math. Soc. Ser. B 1 (2014), 105-120.
113. T. Erdélyi, Pseudo-Boolean functions and the multiplicity of the zeros of polynomials,, J. d'Analyse Math. 127 (2015), no. 1, 91-108.
114. T. Erdélyi, D. Hardin, \& E. Saff,, Inverse Bernstein inequalities and min-max-min problems on the unit circle,, Mathematika 61 (2015), no. 3, 581-590.
115. K.-K. S. Choi \& T. Erdélyi, Sums of monomials with large Mahler measure,, J. Approx. Theory 197 (2015), 49-61.
116. K.-K. S. Choi \& T. Erdélyi, On a problem of Bourgain concerning the L_{p} norms of exponential sums,, Mathematische Zeitschrift 279 (2015), no. 1-2, 577-584.
117. T. Erdélyi, Inequalities for Lorentz polynomials,, J. Approx. Theory 192 (2015), 297305.
118. T. Erdélyi, M. Ganzburg, \& P. Nevai, M. Riesz-Schur-type inequality for entire functions of exponential type. (Russian), Mat. Sb. 206 (2015), no. 1, 29-38.
118. T. Erdélyi, M. Ganzburg, \& P. Nevai, M. Riesz-Schur-type inequality for entire functions of exponential type, Sb. Math. 206 (2015), no. 1-2, 24-32.
119. T. Erdélyi paper On the flatness of conjugate reciprocal unimodular polynomials,, J. Math. Anal. Appl. 432 (2015), no. 2, 699-714.
120. T. Erdélyi, The Mahler measure of the Rudin-Shapiro polynomials, Constr. Approx. 43 (2016), no. 3, 357-369.
121. T. Erdélyi, Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1, Acta Arith. 172 (2016), no. 3, 271-284.
122. T. Erdélyi \& P. Nevai, On the derivatives of unimodular polynomials. (Russian), Mat. Sb. 207 (2016,), no. 4, 132-142.
122. T. Erdélyi \& P. Nevai, On the derivatives of unimodular polynomials, Sb. Math. 207 (2016), no. 3-4, 590-609.
123. T. Erdélyi, The number of unimodular zeros of self-reciprocal polynomials with coeffi-
cients in a finite set, Acta Arith. 176 (2016), no. 2, 177-200.
124. T. Erdélyi, Inequalities for exponential sums, (Russian) Mat. Sbornik 208 (2017), no. 3, 132-164.
125. T. Erdélyi, Markov-type inequalities for products of Müntz polynomials revisited, In: Progress in Approximation Theory and Applicable Complex Analysis, in the memory of Q.I. Rahman, Springer Optim. Appl., 117, Springer, Cham, N.K. Govil, R. Mohapatra, R., M. Qazi, G. Schmeisser (Eds.) (2017), 19-39.
126. T. Erdélyi, Improved lower bounds for the Mahler measure of the Fekete polynomials, Constr. Approx. 48 (2019), no. 2, 283-299.
127. T. Erdélyi, The sharp Remez-type inequality for even trigonometric polynomials on the period, Topics in Classic and Modern Analysis. In memory of Yingkang Hu, Applied and Numerical Harmonic Analysis, Birkhäuser, Basel (2019), 135-145.
128. J.-P. Allouche, K.-K. S. Choi, A. Denise, T. Erdélyi, \& B. Saffari, Bounds on autocorrelation coefficients of Rudin-Shapiro polynomials, Anal. Math. 45 (2019), 705-726.
129. T. Erdélyi, Arestov's theorems on Bernstein's inequality, J. Approx. Theory 250 (2020), 105323, 9 pp.
130. T. Erdélyi, Reverse Markov- and Bernstein-type inequalities for incomplete polynomials, J. Approx. Theory 251 (2020), 105341, 10 pp.
131. T. Erdélyi, Improved lower bound for the number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set, Acta Arith. 192 (2020), 189-210.
132. T. Erdélyi, On the oscillation of the modulus of Rudin-Shapiro polynomials on the unit circle, Mathematika 66 (2020), 144-160.
133. T. Erdélyi, Recent progress in the study of polynomials with constrained coefficients, In: Trigonometric Sums and their Applications, A. Raigorodskii and M. Th. Rassias (Eds.), Springer, Cham (2020), 29-69.
134. T. Erdélyi, Turán-type reverse Markov inequalities for polynomials with restricted zeros, Constr. Approx. 54 (2021), no. 1, 35-48.
135. T. Erdélyi, Functions with identical L_{p} norms, J. Approx. Theory 257 (2020), 105454, 5 pp..
136. T. Erdélyi, On the multiplicity of the zeros of polynomials with constrained coefficients, In: Approximation Theory and Analytic Inequalities, Th. Rassias (Ed.), Springer, Cham (2020).
137. T. Erdélyi, The asymptotic value of the Mahler measure of the Rudin-Shapiro polynomials s, J. d'Analyse. Math. 142 (2020), no. 2, 521-537.
138. T. Erdélyi, The asymptotic distance between an ultraflat unimodular polynomial and its conjugate reciprocal, Trans. Amer. Math. Soc. 374 (2021), no. 5, 3077-3091.
139. T. Erdélyi, On the multiplicity of the zeros of polynomials with constrained coefficients, In: Approximation Theory and Analytic Inequalities, Th. Rassias (Ed.), Springer, Cham (2020.).
140. T. Erdélyi., C. Musco, \& Ch. Musco,, Fourier Sparse Leverage Scores and Approximate Kernel Learning, In: NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems, December 2020 Article No.: 10, 109-122.
141. T. Erdélyi, Do flat skew-reciprocal Littlewood polynomials exist?, Constr. Approx. 56 (2022), no. 3, 537-554.
142. T. Erdélyi, Improved results on the oscillation of the modulus of Rudin-Shapiro polynomials on the unit circle, Proc. Amer. Math. Soc. 151 (2023), 2733-2740.

Accepted Papers:

Submitted

143. T. Erdélyi, On the oscillation of the modulus of the Rudin-Shapiro polynomials around the middle of their ranges.
144. T. Erdélyi, J. Rosenblatt, \& R. Rosenblatt, The zero set of an electric field from a finite number of point charges: one, two, and three dimension.
145. T. Erdélyi, The L_{q} norm of the Rudin-Shapiro polynomials on subarcs of the unit circle.

Never Published in a Journal:

146. P. Borwein, W. Dykshoorn, T. Erdélyi, \& J. Zhang, Orthogonality and irrationality, This paper has been incorporated in Appendix 2 of my book with P. Borwein.
