Course Notes for
Functional Analysis I,
Math 655-601, Fall 2011

Th. Schlumprecht

October 25, 2018
Contents

1 Some Basic Background .. 5
 1.1 Normed Linear Spaces, Banach Spaces 5
 1.2 Operators on Banach Spaces, Dual Spaces 11
 1.3 Baire Category Theorem and its Consequences 14
 1.4 The Hahn Banach Theorem .. 18
 1.5 Finite Dimensional Banach Spaces 23

2 Weak Topologies, Reflexivity, Adjoint Operators 27
 2.1 Topological and Locally convex Vector Spaces 27
 2.2 Annihilators, Complemented Subspaces 36
 2.3 The Theorem of Eberlein Smulian 43
 2.4 The Principle of Local Reflexivity 46

3 Bases in Banach Spaces .. 53
 3.1 Schauder Bases .. 53
 3.2 Bases of $C[0, 1]$ and $L_p[0, 1]$ 61
 3.3 Shrinking, Boundedly Complete Bases 65
 3.4 Unconditional Bases ... 77
 3.5 James’ Space .. 85

4 Convexity and Smoothness ... 95
 4.1 Strict Convexity, Smoothness, and Gateaux Differentiability 95
 4.2 Uniform Convexity and Uniform Smoothness 100

5 L_p-spaces .. 107
 5.1 Reduction to the Case ℓ_p and L_p 107
 5.2 Uniform Convexity and Smoothness of L_p 111
 5.3 On “Small Subspaces” of L_p ... 116
 5.4 The Spaces $\ell_p, 1 \leq p < \infty$, and c_0 are Prime Spaces 123
 5.5 The Haar basis is Unconditional in $L_p[0, 1], 1 < p < \infty$ 127
Chapter 1

Some Basic Background

In this chapter we want to recall some important basic results from Functional Analysis most of which were already covered in the Real Analysis course Math607,608 and can be found in the textbooks [Fol] and [Roy].

1.1 Normed Linear Spaces, Banach Spaces

All our vectors spaces will be vector spaces over the real field \mathbb{R} or the complex field \mathbb{C}. In the case that the field is undetermined we denote it by K.

Definition 1.1.1. [Normed linear spaces]
Let X be a vector space over K, with $K = \mathbb{R}$ or $K = \mathbb{C}$. A *semi norm* on X is a function $\| \cdot \| : X \to [0, \infty)$ satisfying the following properties for all $x, y \in X$ and $\lambda \in K$

1. $\| x + y \| \leq \| x \| + \| y \|$ (triangle inequality) and
2. $\| \lambda x \| = |\lambda| \cdot \| x \|$ (homogeneity),

and we call a semi norm $\| \cdot \|$ a *norm* if it also satisfies

3. $\| x \| = 0 \iff x = 0$, for all $x \in X$.

In that case we call $(X, \| \cdot \|)$, or simply X, a *normed space*. Sometimes we might denote the norm on X by $\| \cdot \|_X$ to distinguish it from some other norm $\| \cdot \|_Y$ defined on some other space Y.

For a normed space $(X, \| \cdot \|)$ the sets

$$B_X = \{ x \in X : \| x \| \leq 1 \} \text{ and } S_X = \{ x \in X : \| x \| = 1 \}$$

are called the *unit ball* and the *unit sphere* of X, respectively.
Note that a norm \(\| \cdot \| \) on a vector space defines a metric \(d(\cdot, \cdot) \) by
\[
d(x, y) = \|x - y\|, \quad x, y \in X,
\]
and this metric defines a topology on \(X \), also called the \textit{strong topology}.

Definition 1.1.2. [Banach Spaces]
A normed space which is \textit{complete}, i.e. in which every Cauchy sequence converges, is called a \textit{Banach space}.

To verify that a certain norm defines a complete space it is enough, and sometimes easier to verify that absolutely converging series are converging:

Proposition 1.1.3. Assume that \(X \) is a normed linear space so that for all sequences \((x_n) \subset X \) for which \(\sum \|x_n\| < \infty \), the series \(\sum x_n \) converges (i.e. \(\lim_{n \to \infty} \sum_{j=1}^{n} x_j \) exists in \(X \)).

Then \(X \) is complete.

Proposition 1.1.4. [Completion of normed spaces]
If \(X \) is a normed space, then there is a Banach space \(\tilde{X} \) so that:

There is an isometric embedding \(I \) from \(X \) into \(\tilde{X} \), meaning that \(I : X \to \tilde{X} \) is linear and \(\|I(x)\| = \|x\| \), for \(x \in X \), so that the image of \(X \) under \(I \) is dense in \(\tilde{X} \).

Moreover \(\tilde{X} \) is unique up to isometries, meaning that whenever \(Y \) is a Banach space for which there is an isometric embedding \(J : X \to Y \), with dense image, then there is an isometry \(\tilde{J} : \tilde{X} \to Y \) (i.e. a linear bijection between \(\tilde{X} \) and \(Y \) for which \(\|\tilde{J}(\tilde{x})\| = \|\tilde{x}\| \) for all \(\tilde{x} \in \tilde{X} \)), so that \(\tilde{J} \circ I(x) = J(x) \) for all \(x \in X \).

The space \(\tilde{X} \) is called a completion of \(X \).

Let us recall some examples of Banach spaces.

Examples 1.1.5. Let \((\Omega, \Sigma, \mu)\) be a measure space, and let \(1 \leq p < \infty \), then put
\[
\mathcal{L}_p(\mu) := \left\{ f : \Omega \to \mathbb{K} \text{ mble} : \int_{\Omega} |f|^p d\mu(x) < \infty \right\}.
\]
For \(p = \infty \) we put
\[
\mathcal{L}_\infty(\mu) := \left\{ f : \Omega \to \mathbb{K} \text{ mble} : \exists C, \mu(\{\omega \in \Omega : |f(\omega)| > C\}) = 0 \right\}.
\]
Then \(\mathcal{L}_p(\mu) \) is a vector space, and the map
\[
\| \cdot \|_p : \mathcal{L}_p(\mu) \to \mathbb{R}, \quad f \mapsto \left(\int_{\Omega} |f(\omega)|^p d\mu(\omega) \right)^{1/p},
\]
if $1 \leq p < \infty$, and
\[\| \cdot \|_\infty : L_\infty(\mu) \to \mathbb{R}, \quad f \mapsto \inf \{ C > 0 : \mu(\{ \omega \in \Omega : |f(\omega)| > C \}) = 0 \}, \]
if $p = \infty$, is a seminorm on $L_p(\mu)$.

For $f, g \in L_p(\mu)$ define the equivalence relation by
\[f \sim g : \iff f(\omega) = g(\omega) \text{ for } \mu\text{-almost all } \omega \in \Omega. \]

Define $L_p(\mu)$ to be the quotient space $L_p(\mu) / \sim$. Then $\| \cdot \|_p$ is well defined and a norm on $L_p(\mu)$, and turns $L_p(\mu)$ into a Banach space. Although, strictly speaking, elements of $L_p(\mu)$ are not functions but equivalence classes of functions, we treat the elements of $L_p(\mu)$ as functions, by picking a representative out of each equivalence class.

If $A \subset \mathbb{R}$, or $A \subset \mathbb{R}^d$, $d \in \mathbb{N}$, and μ is the Lebesgue measure on A we write $L_p(A)$ instead of $L_p(\mu)$. If Γ is a set and μ is the counting measure on Γ we write $\ell_p(\Gamma)$ instead of $L_p(\mu)$. Thus
\[\ell_p(\Gamma) = \{ x(\cdot) : \Gamma \to \mathbb{K} : \|x\|_p = \left(\sum_{\gamma \in \Gamma} |x_{\gamma}|^p \right)^{1/p} < \infty \}, \text{ if } 1 \leq p < \infty, \]
and
\[\ell_\infty(\Gamma) = \{ x(\cdot) : \Gamma \to \mathbb{K} : \|x\|_\infty = \sup_{\gamma \in \Gamma} |x_{\gamma}| < \infty \}. \]

If $\Gamma = \mathbb{N}$ we write ℓ_p instead of $\ell_p(\mathbb{N})$ and if $\Gamma = \{1, 2 \ldots n\}$, for some $n \in \mathbb{N}$ we write ℓ_p^n instead of $\ell_p(\{1, 2 \ldots n\})$.

The set
\[c_0 = \{ (x_n : n \in \mathbb{N}) \subset \mathbb{K} : \lim_{n \to \infty} x_n = 0 \} \]
is a linear closed subspace of ℓ_∞, and, thus, it is also a Banach space (with $\| \cdot \|_\infty$).

More generally, let S be a (topological) Hausdorff space, then
\[C_b(S) = \{ f : S \to \mathbb{K} \text{ continuous and bounded } \} \]
is a closed subspace of $\ell_\infty(S)$, and, thus, $C_b(S)$ is a Banach space. If K is a compact space we will write $C(K)$ instead of $C_b(K)$. If S is locally compact then
\[C_0(S) = \{ f : S \to \mathbb{K} \text{ continuous and } \{|f| \geq c\} \text{ is compact for all } c > 0 \} \]
is a closed subspace of $C_b(S)$, and, thus, it is a Banach space.

Let (Ω, Σ) be a measurable space and assume first that $\mathbb{K} = \mathbb{R}$. Recall that a finite signed measure on (Ω, Σ) is a map $\mu : \Sigma \to \mathbb{R}$ so that $\mu(\emptyset) = 0$, and so that

$$\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n),$$

whenever $(E_n) \subset \Sigma$ is pairwise disjoint.

The Jordan Decomposition Theorem says that such a signed measure can be uniquely written as the difference of two positive finite measure μ^+ and $\mu^−$.

If we let $\|\cdot\|_v = \mu^+(\Omega) + \mu^−(\Omega) = \sup_{A,B \subset \Sigma, \text{disjoint}} \mu(A) - \mu(B)$,

then $\|\cdot\|_v$ is a norm, the variation norm, on

$$M(\Sigma) = M_\mathbb{R}(\Sigma) := \{\mu : \Sigma \to \mathbb{R} : \text{signed measure}\},$$

which turns $M(\Sigma)$ into a real Banach space.

If $\mathbb{K} = \mathbb{C}$, we define

$$M(\Sigma) = M_\mathbb{C}(\Sigma) = \{\mu + i\nu : \mu, \nu \in M_\mathbb{R}(\Sigma)\},$$

and define for $\mu + i\nu \in M_\mathbb{C}(\Sigma)$

$$\|\mu + i\nu\|_v = \sqrt{\|\mu\|_v^2 + \|\nu\|_v^2}.$$

Then $M_\mathbb{C}(\Sigma)$ is a complex Banach space.

Assume S is a topological space and \mathcal{B}_S is the sigma-algebra of Borel sets, i.e. the σ-algebra generated by the open subsets of S. We call a (positive) measure on \mathcal{B}_S a Radon measure if

1) $\mu(A) = \inf\{\mu(U) : U \subset S \text{ open and } A \subset U\}$ for all $A \in \mathcal{B}_S$, (outer regularity)

2) $\mu(A) = \sup\{\mu(C) : C \subset S \text{ compact and } C \subset A\}$ for all $A \in \mathcal{B}_S$, (inner regularity), and

3) it is finite on all compact subsets of S.

A signed Radon measure is then a difference of two finite positive Radon measure. We denote the set of all signed Radon measures by $M(S)$. Then $M(S)$ is a closed linear subspace of $M(\mathcal{B}_S)$.

1.1. NORMED LINEAR SPACES, BANACH SPACES

Remark. $M(\mathcal{B}_\mathbb{R}) = M(\mathbb{R})$.

There are many ways to combine Banach spaces to new spaces.

Proposition 1.1.6. [Complemented sums of Banach spaces]

If X_i is a Banach space for all $i \in I$, I some index set, and $1 \leq p \leq \infty$, we let

$$
(\oplus_{i \in I} X_i)_{\ell_p} := \left\{ (x_i)_{i \in I} : x_i \in X_i, \text{ for } i \in I, \text{ and } (\|x_i\| : i \in I) \in \ell_p(I) \right\}.
$$

We put for $x \in (\oplus_{i \in I} X_i)_{\ell_p}$

$$
\|x\|_p := \left\| (\|x_i\| : i \in I) \right\|_p = \begin{cases}
\left(\sum_{i \in I} \|x_i\|_{X_i}^p \right)^{1/p} & \text{if } 1 \leq p < \infty, \\
\sup_{i \in I} \|x_i\|_{X_i} & \text{if } p = \infty.
\end{cases}
$$

Then $\| \cdot \|_p$ is a norm on $(\oplus_{i \in I} X_i)_{\ell_p}$ and $(\oplus_{i \in I} X_i)_{\ell_p}$ is a Banach space.

We call $(\oplus_{i \in I} X_i)_{\ell_p}$ the ℓ_p sum of the X_i, $i \in I$.

Moreover,

$$(\oplus_{i \in I} X_i)_{c_0} := \left\{ (x_i)_{i \in I} \in (\oplus_{i \in I} X_i)_{\ell_\infty} : \forall c > 0 \ {\{i \in I : \|x_i\| \geq c\} \text{ is finite}} \right\}$$

is a closed linear subspace of $(\oplus_{i \in I} X_i)_{\ell_\infty}$, and, thus also a Banach space.

If all the spaces X_i are the same spaces in Proposition 1.1.6, say $X_i = X$, for $i \in I$ we write $\ell_p(I,X)$, and $c_0(I,X)$, instead of $(\oplus_{i \in I} X_i)_{\ell_p}$ or $(\oplus_{i \in I} X_i)_{c_0}$, respectively. We write $\ell_p(X)$, and $c_0(X)$ instead of $\ell_p(\mathbb{N},X)$ and $c_0(\mathbb{N},X)$, respectively, and $\ell_p^n(X)$, instead of $\ell_p(\{1,2\ldots n\},X)$, for $n \in \mathbb{N}$.

Note that if I is finite then for any norm $\| \cdot \|$ on \mathbb{R}^I, the norm topology on $(\oplus X_i)_{\| \cdot \|_{\ell_\infty}}$ does not depend on $\| \cdot \|$. By $\oplus_{i \in I} X_i$ we mean therefore the norm product space, which is, up to isomorphy unique, for example in this case $(\oplus X_i)_{\ell_\infty} \sim (\oplus X_i)_{\ell_1}$.

If X and Y are Banach space we often call the product space $X \times Y$ also $X \oplus Y$. Note that for any norm $\| \cdot \|$ on \mathbb{R}^2.

Exercises:

1. Prove Proposition 1.1.4.

2. Let $1 \leq p \leq \infty$, and let X_i be a Banach space for each $i \in I$, where I is some index set. Show that the norm $\| \cdot \|_p$ introduced in Proposition 1.1.6 on $(\oplus_{i \in I} X_i)_{\ell_p}$ turns this space into a complete normed space (only show completeness).
3.* Let $f \in L_p[0, 1]$ for some $p > 1$. Show that

$$\lim_{r \to 1^+} \|f\|_r = \|f\|_1.$$
1.2 Operators on Banach Spaces, Dual Spaces

If X and Y are two normed linear spaces, then for a linear map (we also say linear operator) $T : X \to Y$ the following are equivalent:

a) T is continuous,

b) T is continuous at 0,

c) T is bounded, i.e. $\|T\| = \sup_{x \in B_X} \|T(x)\| < \infty$.

In this case $\|\cdot\|$ is a norm on $L(X, Y) = \{T : X \to Y \text{ linear and bounded}\}$ which turns $L(X, Y)$ into a Banach space if Y is a Banach space, and we observe that

$$\|T(x)\| \leq \|T\| \cdot \|x\| \text{ for all } T \in L(X, Y) \text{ and } x \in X.$$

We call a bounded linear operator $T : X \to Y$ an isomorphic embedding if there is a number $c > 0$, so that $c\|x\| \leq \|T(x)\|$. This is equivalent to saying that the image $T(X)$ of T is a closed subspace of Y and T has an inverse $T^{-1} : T(X) \to Y$ which is also bounded.

An isomorphic embedding which is onto (we say also surjective) is called an isomorphly between X and Y. If $\|T(x)\| = \|x\|$ for all $x \in X$ we call T an isometric embedding, and call it an isometry between X and Y if T is surjective.

If there is an isometry between two spaces X and Y we write $X \simeq Y$. In that case X and Y can be identified for our purposes. If there is an isomorphism $T : X \to Y$ with $\|T\| \cdot \|T^{-1}\| \leq c$, for some number $c \geq 1$ we write $X \sim_c Y$ and we write $X \sim Y$ if there is a $c \geq 1$ so that $X \sim_c Y$.

If X and Y are two Banach spaces which are isomorphic (for example if both spaces are finite dimensional and have the same dimension), we define

$$d_{BM}(X, Y) = \inf\{\|T\| \cdot \|T^{-1}\| : T : X \to Y, T \text{ isomorphism}\},$$

and call it the Banach Mazur distance between X and Y. Note that always $d_{BM}(X, Y) \geq 1$.

Remark. If $(X, \|\cdot\|_X)$ is a finite dimensional Banach space over \mathbb{K}, $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, and its dimension is $n \in \mathbb{N}$ we can after passing to an isometric
image, assume that $X = \mathbb{K}^n$. Indeed, let $x_1, x_2, \ldots x_n$ be a basis of X, and consider on \mathbb{K}^n the norm given by:

$$
\|(a_1, a_2, \ldots, a_n)\| = \left\| \sum_{j=1}^{n} a_j x_j \right\|_X, \text{ for } (a_1, a_2, \ldots a_n) \in \mathbb{K}^n.
$$

Then

$$
I : \mathbb{K}^n \to X, \ (a_1, a_2, \ldots, a_n) \mapsto \sum_{j=1}^{n} a_j x_j,
$$

is an isometry. Therefore we can always assume that $X = (\mathbb{K}^n, \|\cdot\|_X)$. This means B_X is a closed and bounded subset of \mathbb{K}^n, which by the Theorem of Bolzano-Weierstraß, means that B_X is compact. In Theorem 1.5.4 we will deduce the converse and prove that a Banach space X, for which B_X is compact, must be finite dimensional.

Definition 1.2.1. [Dual space of X]

If $Y = \mathbb{K}$ and X is normed linear space over \mathbb{K}, then we call $L(X, \mathbb{K})$ the dual space of X and denote it by X^*.

If $x^* \in X^*$ we often use $\langle \cdot, \cdot \rangle$ to denote the action of x^* on X, i.e. we write $\langle x^*, x \rangle$ instead of $x^*(x)$.

Theorem 1.2.2. [Representation of some Dual spaces]

1. Assume that $1 \leq p < \infty$ and $1 < q \leq \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$, and assume that (Ω, Σ, μ) is a measure space without atoms of infinite measure. Then the following map is a well defined isometry between $L_p^*(\mu)$ and $L_q(\mu)$.

$$
\Psi : L_q(\mu) \to L_p^*(\mu), \quad \Psi(g)(f) := \int_{\Omega} f(\xi) g(\xi) \, d\mu(\xi),
$$

for $g \in L_q(\mu)$, and $f \in L_p(\mu)$.

2. Assume that S is a locally compact Hausdorff space, then the map

$$
\Psi : M(S) \to C_0(S), \quad \Psi(\mu)(f) := \int_{S} f(\xi) \, d\mu(\xi)
$$

for $\mu \in M(S)$ and $f \in C_0(S)$,

is an isometry between $M(S)$ and $C_0^*(S)$.

Remark. If $p = \infty$ and $q = 1$ then the map Ψ in Theorem 1.2.2 part (1) is still an isometric embedding, but in general (i.e. if $L_p(\mu)$ is infinite dimensional) not onto.
1.2. OPERATORS ON BANACH SPACES, DUAL SPACES

Example 1.2.3. \(c_0^* \simeq \ell_1 \) (by Theorem 1.2.2 part (2)) and \(\ell_1^* \simeq \ell_\infty \) (by Theorem 1.2.2 part (1)) .

Exercises

1. Let \(X \) and \(Y \) be normed linear spaces, and \(\tilde{X} \) and \(\tilde{Y} \) be completions of \(X \) and \(Y \), respectively (recall Proposition 1.1.4). Then every \(T \in L(X, Y) \) can be extended in a unique way to an element \(\tilde{T} \) in \(L(\tilde{X}, \tilde{Y}) \), and \(\| \tilde{T} \| = \| T \| \).

2. A Banach space \(X \) is called strictly convex if for any \(x, y \in S_X \), \(x \neq y \) \(\| x + y \| < 2 \).

 Prove that \(c_0 \) and \(\ell_1 \) are not strictly convex, but that they can be given equivalent norms with which they are strictly convex.

 Recall that two norms \(\| \cdot \| \) and \(\| \cdot \| \) on the some linear space \(X \) are equivalent if the identity \(I : (X, \| \cdot \|) \to (X, \| \cdot \|) \) is an isomorphism.

3. A Banach space \(X \) is called uniform convex if for every \(\varepsilon > 0 \) there is a \(\delta \) so that:

 \[
 \text{If } x, y \in S_X \text{ with } \| x - y \| > \varepsilon \text{ then } \| x + y \| < 2 - \delta.
 \]

 Prove that \(\ell_p \), \(1 < p < \infty \) are uniform convex but \(\ell_1 \) and \(c_0 \) do not have this property.
1.3 Baire Category Theorem and its Consequences

The following result is a fundamental Theorem in Topology and leads to several useful properties of Banach spaces.

Theorem 1.3.1. [The Baire Category Theorem]

Assume that \((S,d)\) is a complete metric space. If \((U_n)\) is a sequence of open and dense subsets of \(S\) then \(\bigcap_{n=1}^{\infty} U_n\) is also dense in \(S\).

Often we will use the Baire Category Theorem in the following equivalent restatement.

Corollary 1.3.2. If \((C_n)\) is a sequence of closed subsets of a complete metric space \((S,d)\) whose union is all of \(S\), then there must be an \(n \in \mathbb{N}\) so that \(C^o_n\), the open interior of \(C_n\), is not empty, and thus there is an \(x \in C_n\) and an \(\varepsilon > 0\) so that \(B(x,\varepsilon) = \{z \in S : d(z,x) < \varepsilon\} \subset C_n\).

Proof. Assume our conclusion were not true. Let \(U_n = S \setminus C_n\), for \(n \in \mathbb{N}\). Then \(U_n\) is open and dense in \(S\). Thus \(\bigcap_{n \in \mathbb{N}} U_n\) is also dense, in particular not empty. But this is in contradiction to the assumption that \(\bigcup_{n \in \mathbb{N}} C_n = S\). \(\square\)

The following results are important applications of the Baire Category Theorem to Banach spaces.

Theorem 1.3.3. [The Open Mapping Theorem]

Let \(X\) and \(Y\) be Banach spaces and let \(T \in L(X,Y)\) be surjective. Then \(T\) is also open (the image of every open set in \(X\) under \(T\) is open in \(Y\)).

Corollary 1.3.4. Let \(X\) and \(Y\) be Banach spaces and \(T \in L(X,Y)\) be a bijection. Then its inverse \(T^{-1}\) is also bounded, and thus \(T\) is an isomorphism.

Theorem 1.3.5. [Closed Graph Theorem]

Let \(X\) and \(Y\) be Banach spaces and \(T : X \to Y\) be linear. If \(T\) has a closed graph (i.e \(\Gamma(T) = \{(x,T(x)) : x \in X\}\) is closed with respect to the product topology in \(X \times Y\)), then \(T\) is bounded.

Often the Closed Graph Theorem is used in the following way

Corollary 1.3.6. Assume that \(T : X \to Y\) is a bounded, linear and bijective operator between two Banach spaces \(X\) and \(Y\). Then \(T\) is an isomorphism.
1.3. Baire Category Theorem and Its Consequences

Theorem 1.3.7. [Uniform Boundedness Principle]
Let X and Y be Banach spaces and let $A \subset L(X,Y)$. If for all $x \in X$
\[\sup_{T \in A} \|T(x)\| < \infty \]
then A is bounded in $L(X,Y)$, i.e.
\[\sup_{T \in A} \|T\| = \sup_{x \in B_X} \sup_{T \in A} \|T(x)\| < \infty. \]

Proposition 1.3.8. [Quotient spaces]
Assume that X is a Banach space and that $Y \subset X$ is a closed subspace.
Consider the quotient space $X/Y = \{x + Y : x \in X\}$ (with usual addition and multiplication by scalars). For $x \in X$ put $\overline{x} = x + Y \in X/Y$ and define
\[\|\overline{x}\|_{X/Y} = \inf_{z \in \overline{x}} \|z\|_X = \inf_{y \in Y} \|x + y\|_X = \text{dist}(x,Y). \]
Then $\| \cdot \|_{X/Y}$ is norm on X/Y which turns X/Y into a Banach space.

Proof. For x_1, x_2 in X and $\lambda \in \mathbb{K}$ we compute
\[\|\overline{x}_1 + \overline{x}_2\|_{X/Y} = \inf_{y \in Y} \|x_1 + x_2 + y\| \
= \inf_{y_1, y_2 \in Y} \|x_1 + y_1 + x_2 + y_2\| \
\leq \inf_{y_1, y_2 \in Y} \|x_1 + y_1\| + \|x_2 + y_2\| = \|\overline{x}_1\|_{X/Y} + \|\overline{x}_2\|_{X/Y} \]
and
\[\|\lambda \overline{x}_1\|_{X/Y} = \inf_{y \in Y} \|\lambda x_1 + y\| \]
\[= \inf_{y \in Y} |\lambda| \inf_{y \in Y} \|x_1 + y\| = |\lambda| \cdot \|\overline{x}_1\|_{X/Y}. \]

Moreover if $\|\overline{x}\|_{X/Y} = 0$ it follows that there is a sequence (y_n) in Y, for
which $\lim_{n \to \infty} \|x - y_n\| = 0$, which implies, since Y is closed that $x = \lim_{n \to \infty} y_n \in Y$ and thus $\overline{x} = \overline{0}$ (the zero element in X/Y). This proves that $(X/Y, \| \cdot \|_{X/Y})$ is a normed linear space. In order to show that X/Y is complete let $x_n \in X$ with $\sum_{n \in \mathbb{N}} \|\overline{x}_n\|_{X/Y} < \infty$. It follows that there are $y_n \in Y$, $n \in \mathbb{N}$, so that
\[\sum_{n=1}^{\infty} \|x_n + y_n\|_X < \infty, \]
and thus, since X is a Banach space

$$x = \sum_{n=1}^{\infty} (x_n + y_n),$$

exists in X and we observe that

$$\|x - \sum_{j=1}^{n} x_j\| \leq \|x - \sum_{j=1}^{n} (x_j + y_j)\| \leq \sum_{j=n+1}^{\infty} \|x_j + y_j\| \to_{n \to \infty} 0,$$

which verifies that X/Y is complete. \qed

From Corollary 1.3.4 we deduce

Corollary 1.3.9. If X and Y are two Banach spaces and $T : X \to Y$ is a linear, bounded and surjective operator, it follows that $X/N(T)$ and Y are isomorphic, where $N(T)$ is the null space of T.

Proof. Since T is continuous $N(T)$ is a closed subspace of X. We put

$$\overline{T} : X/N(T) \to Y, \quad x + N(T) \mapsto T(x).$$

Then \overline{T} is well defined, linear, and bijective (linear Algebra), moreover, for $x \in X$

$$\|\overline{T}(x+N(T))\| = \inf_{z \in N(T)} \|T(x+z)\| \leq \|T\| \inf_{z \in N(T)} \|x+z\| = \|T\| \cdot \|x+N(T)\|_{X/N(T)}.$$

Thus, \overline{T} is bounded and our claim follows from Corollary 1.3.4. \qed

Proposition 1.3.10. For a bounded linear operator $T : X \to Y$ between two Banach spaces X and Y the following statements are equivalent:

1. The range $T(X)$ is closed.

2. The operator $\overline{T} : X/N(T) \to Y, \overline{x} \mapsto T(x)$ is an isomorphic embedding,

3. There is a number $C > 0$ so that $\text{dist}(x, N(T)) = \inf_{y \in N} \|x - y\| \leq C \|T(x)\|$.

Exercises:

1. Prove Proposition 1.3.10.

2. Assume X and Y are Banach spaces and that $(T_n) \subset L(X,Y)$ is a sequence, so that $T(x) = \lim_{n \to \infty} T_n(x)$ exists for every $x \in X$. Show that $T \in L(X,Y)$.

3. Let X be a Banach space and Y be a closed subspace. Prove that X is separable if and only if Y and X/Y are separable.
1.4 The Hahn Banach Theorem

Definition 1.4.1. Suppose that V is a vector space over \mathbb{K}. A real-valued function p on V, satisfying
\begin{itemize}
 \item $p(0) = 0$,
 \item $p(x + y) \leq p(x) + p(y)$, and
 \item $p(\lambda x) = \lambda p(x)$ for $\lambda > 0$,
\end{itemize}
is called a sublinear functional on V.

Note that $0 = p(0) \leq p(x) + p(-x)$, so that $p(-x) \geq -p(x)$.

Theorem 1.4.2. [The analytic Hahn-Banach Theorem, real version]
Suppose that p is a sublinear functional on a real vector space V, that W is a linear subspace of V and that f is a linear functional on W satisfying $f(y) \leq p(y)$ for all $y \in W$. Then there exists a linear functional g on V such that $g(x) = f(x)$ for all $x \in W$ (g extends f) and such that $g(y) \leq p(y)$ for all $y \in V$ (control is maintained).

Theorem 1.4.3. [The analytic Hahn-Banach Theorem, general version]
Suppose that p is a seminorm on a real or complex vector space V, that W is a linear subspace of V and that f is a linear functional on W satisfying $|f(x)| \leq p(x)$ for all $x \in W$. Then there exists a linear functional g on V such that $g(x) = f(x)$ for all $x \in W$ (g extends f) and such that $|g(y)| \leq p(y)$ for all $y \in V$ (control is maintained).

Corollary 1.4.4. Let X be a normed space Y a subspace and $y^* \in Y^*$. Then there exists an extension x^* of y^* to an element in X^* with $\|x^*\| = \|y^*\|$.

Proof. Put $p(x) = \|y^*\||\|x||$.

Corollary 1.4.5. Let X be a normed space Y a subspace and $x \in X$ with $h = \text{dist}(x,Y) > 0$. Then there exists an $x^* \in X^*$, with $x^*|_Y \equiv 0$ and $x^*(x) = 1$.

Proof. Consider $Z = \{y + ax : y \in Y \text{ and } a \in \mathbb{K}\}$. Note that every $z \in Z$ has a unique representation $z = y + ax$, with $y \in Y$ and $a \in \mathbb{K}$. Indeed, if $y_1 + a_1 x = y_2 + a_2 x$, with $y_1, y_2 \in Y$ and $a_1, a_2 \in \mathbb{K}$, then we observe that $a_1 = a_2$, because otherwise $x = (y_1 - y_2)/(a_1 - a_2) \in Y$, and thus, $y_1 = y_2$.

We define $f : Z \to \mathbb{K}$, $y + ax \mapsto a$. The unique representation of each $z \in Z$ implies that f is linear. The functional f is also continuous. Indeed,
assume \(z_n = y_n + a_n x \to 0 \), if \(n \to \infty \), but \(\inf_{n \in \mathbb{N}} |a_n| \geq \varepsilon \) for some \(\varepsilon > 0 \), then

\[
\text{dist}(x, Y) = \text{dist}\left(\frac{z_n}{a_n} - \frac{y_n}{a_n}, Y\right) \leq \text{dist}\left(\frac{z_n}{a_n}, Y\right) \to 0 \quad \text{if} \quad n \to \infty,
\]

which contradicts our assumption.

We can therefore apply the Hahn-Banach Theorem 1.4.2 to the linear functional \(f \) on \(Z \) and the norm \(p(x) = \|f\|_{Z^*} \|x\| \).

Corollary 1.4.6. Let \(X \) be a normed space and \(x \in X \). Then there is an \(x^* \in X^* \), \(\|x^*\| = 1 \), so that \(\langle x^*, x \rangle = \|x\| \).

Proof. Let \(p(x) = \|x\| \) and \(f(\alpha x) = \alpha \|x\| \), for \(\alpha x \in \text{span}(x) = \{ax : a \in \mathbb{K}\} \).

Definition 1.4.7. [The Canonical Embedding, Reflexive spaces]

For a Banach space we put \(X^{**} = (X^*)^* \) (the dual space of the dual space of \(X \)).

Consider the map

\[\chi : X \to X^{**}, \quad \text{with} \quad \chi(x) : X^* \to \mathbb{K}, \quad \langle \chi(x), x^* \rangle = \langle x^*, x \rangle, \quad \text{for} \quad x \in X. \]

The map \(\chi \) is well defined (i.e. \(\chi(x) \in X^{**} \) for \(x \in X \)), and since for \(x \in X \)

\[\|\chi(x)\|_{X^{**}} = \sup_{x^* \in B_{X^*}} |\langle x^*, x \rangle| \leq \|x\|, \]

it follows that \(\|\chi\|_{L(X,X^{**})} \leq 1 \). By Corollary 1.4.6 we can find for each \(x \in X \) an element \(x^* \in B_{X^*} \) with \(\langle x^*, x \rangle = \|x\| \), and thus \(\|\chi(x)\|_{X^{**}} = \|x\|_X \).

It follows therefore that \(\chi \) is an isometric embedding of \(X \) into \(X^{**} \). We call \(\chi \) the **canonical embedding of \(X \) into \(X^{**} \).**

We say that \(X \) is **reflexive** if \(\chi \) is onto.

Remark. There are Banach spaces \(X \) for which \(X \) and \(X^{**} \) are isometrically isomorphic, but not via the canonical embedding. An Example by R. C. James will be covered in Chapter 3.

Definition 1.4.8. [The adjoint of an operator]

Assume that \(X \) and \(Y \) are Banach spaces and \(T : X \to Y \) a linear and bounded operator. Then the operator

\[T^* : Y^* \to X^*, \quad y^* \mapsto y^* \circ T, \]

(i.e. \(\langle T^*(y^*), x \rangle = \langle y^* \circ T, x \rangle = \langle y^*, T(x) \rangle \) for \(y^* \in Y^* \) and \(x \in X \)
CHAPTER 1. SOME BASIC BACKGROUND

Proposition 1.4.9. Assume X and Y are Banach spaces and $T : X \to Y$ a linear and bounded operator. Then T^* is a bounded linear operator from Y^* to X^*, and $\|T^*\| = \|T\|$.

Moreover if T is surjective T^* is an isomorphic embedding, and if T is an isomorphic embedding T^* is surjective.

We want to formulate a geometric version of the Hahn-Banach Theorem.

Definition 1.4.10. A subset A of a vector space V is called **convex** if for all $a, b \in A$ and all $\lambda \in [0, 1]$ also $\lambda a + (1 - \lambda)b \in A$.

If $A \subset V$ we define the **convex hull of A** by

$$\text{conv}(A) = \bigcap \{ C : A \subset C \subset V, C \text{ convex} \}$$

$$= \left\{ \sum_{j=1}^{n} \lambda_j a_j : n \in \mathbb{N}, \lambda_j \in [0, 1], a_i \in A, \text{ for } i = 1, \ldots n, \text{ and } \sum_{j=1}^{n} \lambda_j = 1 \right\}.$$

A subset $A \subset V$ is called **absorbing** if for all $x \in V$ there is an $0 < r < \infty$ so that $x/r \in A$. For an absorbing set A we define the **Minkowski functional** by

$$\mu_A : V \to [0, \infty), x \mapsto \inf \{ \lambda > 0 : x/\lambda \in A \}.$$

Lemma 1.4.11. Assume C is a convex and absorbing subset of a vector space V. Then μ_C is a sublinear functional on V, and

$$(1.1) \quad \{ v \in V : \mu_C(v) < 1 \} \subset C \subset \{ v \in V : \mu_C(v) < 1 \}.$$

If V is a normed linear space and if there is an $\varepsilon > 0$ so that $\varepsilon B_V \subset C$, then μ_A is uniformly continuous (and thus bounded on B_V).

Proof. Since C is absorbing $0 \in C$ and $\mu_C(0) = 0$. If $u, v \in V$ and $\varepsilon > 0$ is arbitrary, we find $0 < \lambda_u < \mu_C(u) + \varepsilon$ and $0 < \lambda_v < \mu_C(v) + \varepsilon$, so that $u/\lambda_u \in C$ and $v/\lambda_v \in C$ and thus

$$\frac{u + v}{\lambda_u + \lambda_v} = \frac{\lambda_u}{\lambda_u + \lambda_v} \frac{u}{\lambda_u} + \frac{\lambda_v}{\lambda_u + \lambda_v} \frac{v}{\lambda_v} \in C,$$

which implies that $\mu_C(u + v) \leq \lambda_u + \lambda_v \leq \mu_C(u) + \mu_C(v) + 2\varepsilon$, and, since, $\varepsilon > 0$ is arbitrary, $\mu_C(u + v) \leq \mu_C(u) + \mu_C(v)$.

Finally for $\lambda > 0$ and $u \in V$

$$\mu_C(\lambda v) = \inf \{ r > 0 : \lambda v/r \in C \} = \lambda \inf \left\{ \frac{r}{\lambda} : \frac{\lambda u}{r} \in C \right\} = \lambda \mu_C(u).$$
To show the first inclusion in (1.1) assume \(v \in V \) with \(\mu_C(v) < 1 \), there is a \(0 < \lambda < 1 \) so that \(v/\lambda \in C \), and, thus,
\[
v = \frac{\lambda v}{\lambda} + (1 - \lambda)0 \in C.
\]
The second inclusion is clear since for \(v \in C \) it follows that \(v = \frac{v}{1} \in C \).

If \(V \) is a normed linear space and \(\mathbb{E}B_V \subset C \), it follows from the sublinearity of \(\mu_C \), for \(u,v \in V \), that
\[
\mu_C(u) - \mu_C(v) \leq \mu_C(u-v) \leq \frac{\|u - v\|}{\varepsilon},
\]
and similarly \(\mu_C(v) - \mu_C(u) \leq \frac{\|u - v\|}{\varepsilon} \).

Theorem 1.4.12. [The Geometric Hahn-Banach Theorem, general version]

Let \(C \) be a non empty, closed convex subset of a Banach space \(X \) and let \(x_0 \in X \setminus C \).

Then there is an \(x^* \in X^* \) so that
\[
\sup_{x \in C} \Re(\langle x^*, x \rangle) < \Re(\langle x^*, x_0 \rangle).
\]

Proof. We first assume that \(\mathbb{K} = \mathbb{R} \) and we also assume w.l.o.g. that \(0 \in C \) (otherwise pass to \(C - x \) and \(x_0 - x \) for some \(x \in C \)). Put \(\varepsilon := \text{dist}(x_0, C) > 0 \) and put \(D = \{x \in X : \text{dist}(x, C) \leq \varepsilon/2\} \). From Lemma 1.4.11 it follows that \(\mu_D \) is a bounded sublinear functional on \(X \), and \(\text{dist}(x_0, D) \geq \varepsilon/2 \).

On the one dimensional space \(Y = \text{span}(x_0) \) define
\[
f : Y \to \mathbb{R}, \quad \alpha x_0 \mapsto \alpha \mu_C(x_0).
\]
Then \(f(y) \leq \mu_C(y) \) for all \(y \in Y \) (if \(y = \alpha x_0 \), with \(\alpha > 0 \) this follows from the positive homogeneity of \(\mu_C \), and if \(\alpha < 0 \) this is clear). By Theorem 1.4.2 we can extend \(f \) to a linear function \(x^* \), defined on all of \(X \), with \(x^*(x) \leq \mu_C(x) \) for all \(x \in X \). Since \(\mu_C \) is bounded on \(B_X \) it follows that \(x^* \in X^* \).

Moreover, since \(x_0[1 - \frac{\varepsilon}{\|x_0\|}] \notin D \) (otherwise \(\text{dist}(x_0, D) \leq \varepsilon/4 \) and thus \(\text{dist}(x_0, C) \leq \frac{\varepsilon}{2} + \text{dist}(x_0, D) < \varepsilon \), it follows that \(f(x_0) = \mu_D(x_0) > 1 \). This proves our claim in the case that \(\mathbb{K} = \mathbb{R} \).

If \(\mathbb{K} = \mathbb{C} \) we first choose \(g \), by considering \(X \) to be a real Banach space, and then put \(f(x) = g(x) - ig(ix) \). It is then easily checked that \(f \) is a complex linear bounded functional on \(X \). \(\Box \)
Corollary 1.4.13. Assume that A and B are two convex closed subsets of a real Banach space X with
\[
\text{dist}(A, B) = \inf \{ \| x - y \| : x \in A, y \in B \} > 0.
\]
Then there is an $x^* \in X^*$ and $\alpha \in \mathbb{R}$ so that
\[
\Re(\langle x^*, x \rangle) \leq \alpha \leq \Re(\langle x^*, y \rangle), \text{ for all } x \in A \text{ and } y \in B.
\]

Proof. Consider
\[
C = A - B = \{ x - y : x \in A \text{ and } y \in B \}.
\]
we note that C is convex and that
\[
\delta_0 = \text{dist}(0, C) = \inf \{ \| x - y \| : x \in A, y \in B \} > 0.
\]
Applying Theorem 1.4.12 we obtain an $x^* \in X^*$ so that
\[
\sup_{x \in C} \Re(\langle x^*, x \rangle) < \Re(\langle x^*, 0 \rangle) = 0.
\]
But this means that for all $x \in A$ and all $y \in B \Re(\langle x^*, x - y \rangle) < 0$ and thus
\[
\Re(\langle x^*, x \rangle) < \Re(\langle x^*, y \rangle)
\]
Exercises
1. Prove Proposition 1.4.9.
2. Let X be a Banach space with norm $\| \cdot \|$. Show that $\mu_{B_X} = \| \cdot \|$.
3.* Show that there is an $x^* \in l^*_\infty$ so that
 a) $\| x^* \| = 1,$
 b) $\langle x^*, x \rangle = \lim_{i \to \infty} x_i,$ for $x = (x_i) \in c = \{ (\xi_i) : \lim_{i \to \infty} \xi_i \text{ exists} \}$
 c) If $x = (\xi_i) \in l_\infty,$ and $\xi_i \geq 0,$ for $i \in \mathbb{N},$ then $\langle x^*, x \rangle \geq 0,$ and
 d) If $x = (\xi_i) \in l_\infty$ and $x' = (\xi_2, \xi_3, \ldots)$ then $\langle x^*, x' \rangle = \langle x^*, x \rangle$
4. Show that l_1 is not isomorphic to a subspace of $c_0.$
1.5 Finite Dimensional Banach Spaces

Theorem 1.5.1. [Auerbach bases]

If $X = (\mathbb{K}^n, \| \cdot \|)$ is an n-dimensional Banach space, then X has a basis x_1, x_2, \ldots, x_n for which there are functionals $x_1^*, x_2^*, \ldots, x_n^* \in X^*$, so that

a) $\| x_j \| = \| x_j^* \| = 1$ for all $j = 1, 2 \ldots n$,

b) for all $i, j = 1, 2 \ldots n$

$$\langle x_i^*, x_j \rangle = \delta_{(i,j)} = \begin{cases} \text{if } i = j, \\ \text{if } i \neq j. \end{cases}$$

We call in this case (x_j, x_j^*) an Auerbach basis of X.

Proof. We consider the function

$${\text{Det}}: X^n = X \times X \times X \to \mathbb{K},$$

$$(u_1, u_2, \ldots u_n) \mapsto \text{det}(u_1, u_2, \ldots u_n).$$

Thus, we consider $u_i \in \mathbb{K}^n$, to be column vectors and take for $u_1, u_2, \ldots u_n \in \mathbb{K}^n$ the determinant of the matrix which is formed by vectors u_i, for $i = 1, 2, \ldots n$. Since $(B_X)^n$ is a compact subset of X^n with respect to the product topology, and since Det is a continuous function on X^n we can choose $x_1, x_2, \ldots x_n$ in B_X so that

$$|\text{Det}(x_1, x_2, \ldots x_n)| = \max_{u_1, u_2, \ldots u_n \in B_X} |\text{Det}(u_1, u_2, \ldots u_n)|.$$

By multiplying x_1 by the appropriate number $\alpha \in \mathbb{K}$, with $|\alpha| = 1$, we can assume that

$${\text{Det}}(x_1, x_2, \ldots x_n) \in \mathbb{R} \text{ and } {\text{Det}}(x_1, x_2, \ldots x_n) > 0.$$

Define for $i = 1, \ldots n$

$$x_i^*: X \to \mathbb{K}, \quad x \mapsto \frac{\text{Det}(x_1, \ldots x_{i-1}, x, x_{i+1}, \ldots, x_n)}{\text{Det}(x_1, x_2, \ldots x_n)},$$

It follows that x_i^* is a linear functional on X (taking determinants is linear in each column), and

$$\langle x_i^*, x_i \rangle = 1,$$
CHAPTER 1. SOME BASIC BACKGROUND

∥x^*_i∥ = \sup_{x \in B_X} |\langle x^*_i, x \rangle| = \sup_{x \in B_X} \left| \frac{\text{Det}(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n)}{\text{Det}(x_1, x_2, \ldots, x_n)} \right| = 1

(by the maximality of \text{Det}(x_1, x_2, \ldots, x_n) on (B_X)^n),

\langle x^*_i, x_j \rangle = \frac{\text{Det}(x_1, \ldots, x_{i-1}, x_j, x_{i+1}, \ldots, x_n)}{\text{Det}(x_1, x_2, \ldots, x_n)} = 0 \text{ if } i \neq j, i, j \in \{1, 2 \ldots n\}

(by linear dependence of columns)

which finishes our proof. \square

Corollary 1.5.2. For any two n-dimensional Banach spaces X and Y it follows that

\[d_{BM}(X, Y) \leq n^2.\]

Remark. Corollary 1.5.2 is not the best result one can get. Indeed from the following Theorem of John (1948) it is possible to deduce that for any two n-dimensional Banach spaces X and Y it follows that

\[d_{BM}(X, Y) \leq n.\]

Theorem 1.5.3. [John’s theorem]

Let \(X = (\mathbb{K}^n, \|\cdot\|)\) be an n-dimensional Banach space. Then there is an invertible matrix \(T\) so that

\[B_{\ell_2} \subset T(B_X) \subset \sqrt{n}B_{\ell_2}.\]

Theorem 1.5.4. For any Banach space X

\(X\) is finite dimensional \(\iff B_X\) is compact.

Proof. The implication “\(\Rightarrow\)” was already noted in the remark in Section 1.2 the implication “\(\Leftarrow\)” will follow from the following Proposition. \square

Proposition 1.5.5. The unit ball of every infinite dimensional Banach space \(X\) contains a 1-separated sequence.

Proof. By induction we choose for each \(n \in \mathbb{N}\) an element \(x_n \in B_x\), so that \(\|x_j - x_n\| \geq 1\), for \(j = 1, 2 \ldots n - 1\). Choose an arbitrary \(x_1 \in S_X\). Assuming \(x_1, x_2, \ldots x_{n-1}\) has been chosen, let \(F = \text{span}(x_1, \ldots, x_{n-1})\), (the space generated by \(x_j, j = 1, 2 \ldots, n - 1\)). \(X/F\) is infinite dimensional, thus there is a \(z \in X\) so that

\[1 = \|z\|_{X/F} = \inf_{y \in F} \|z + y\| = \inf_{y \in F, \|y\| \leq 1 + \|z\|} \|z + y\| = \min_{y \in F, \|y\| \leq 1 + \|z\|} \|z + y\|.\]
We can therefore choose $x_n = z + y$ so that $y \in F$ and
$$\|z + y\| = \min_{\tilde{y} \in F, \|\tilde{y}\| \leq 1 + \|z\|} \|z + \tilde{y}\| = 1,$$
it follows that
$$1 = \|x_n\|_{X/F} \leq \|x_n - x_j\|$$ for all $j = 1, 2 \ldots n - 1$.

Remark. With little bit more work (see Exercise 3) one can find in the unit ball of each infinite dimensional Banach space X a sequence (x_n) with $\|x_m - x_n\| > 1$, for all $m \neq n$ in \mathbb{N}.

A much deeper result by J. Elton and E. Odell (see [EO]) says that for each Banach space X there is a $\varepsilon > 0$ and a sequence $(x_n) \subset B_X$ with $\|x_m - x_n\| \geq 1 + \varepsilon$, for all $m \neq n$ in \mathbb{N}.

Definition 1.5.6. An operator $T : X \to Y$ is called a finite rank operator if $T(X)$ is finite dimensional. In this case we call $\dim(T(X))$ the rank of T and denote it by $\text{rk}(T)$.

For $y \in Y$ and $x^* \in X^*$ we denote the operator
$$X \to Y, \quad x \mapsto y \langle x^*, x \rangle$$
by $y \otimes x^*$. Clearly, $y \otimes x^*$ is of rank one.

Proposition 1.5.7. Assume that X and Y are Banach spaces and that $T : X \to Y$ is a linear bounded operator of finite rank n. Then there are $x_1^*, x_2^*, \ldots, x_n^* \in X$ and y_1, y_2, \ldots, y_n in Y so that
$$T = \sum_{j=1}^n y_j \otimes x_j^*.$$

Exercises:

1. Prove Corollary 1.5.2 using the existence of Auerbach bases. Prove the claim in the following remark, by using John’s Theorem.

2. Find two spaces X and Y which are not isometric to each other, but for which $d_{BM}(X, Y) = 1$.

3. Prove that in the unit ball of each infinite dimensional Banach space X there is a sequence (x_n) with $\|x_m - x_n\| > 1$, for all $m \neq n$ in \mathbb{N}.

4. Prove Proposition 1.5.7.

5. For $n \in \mathbb{N}$ prove that $d_{BM}(\ell_2^n, \ell_1^n) = d_{BM}(\ell_2^n, \ell_\infty^n) = \sqrt{n}$.
Chapter 2
Weak Topologies, Reflexivity, Adjoint Operators

2.1 Topological Vector Spaces and Locally Convex Spaces

Definition 2.1.1. [Topological Vector Spaces and Locally convex Spaces]
Let E be a vector space over K, with $K = \mathbb{R}$ or $K = \mathbb{C}$ and let T be a topology on E. We call (E, T) (or simply E, if there cannot be a confusion), a *topological vector space*, if the addition:

$$+ : E \times E \rightarrow E, \quad (x, y) \mapsto x + y,$$

and the multiplication by scalars

$$\cdot : K \times E \rightarrow E, \quad (\lambda, x) \mapsto \lambda x,$$

are continuous functions. A topological vector space is called *locally convex* if 0 (and thus any point $x \in E$) has a neighbourhood basis consisting of convex sets.

Remark. Topological vector spaces are in general not metrizable. Thus, continuity, closedness, and compactness etc, cannot be described by sequences. We will need *nets*. Assume that (I, \leq) is a *directed set*. This means

- (reflexivity) $i \leq i$, for all $i \in I$,
- (transitivity) if for $i, j, k \in I$ we have $i \leq j$ and $j \leq k$, then $i \leq k$, and
• (existence of upper bound) for any \(i, j \in I \) there is a \(k \in I \), so that \(i \leq k \) and \(j \leq k \).

A net is a family \((x_i : i \in I)\) indexed over a directed set \((I, \leq)\).

A subnet of a net \((x_i : i \in I)\) is a net \((y_j : j \in J)\), together with a map \(j \mapsto i_j \) from \(J \) to \(I \), so that \(x_{i_j} = y_j \), for all \(j \in J \), and for all \(i_0 \in I \) there is a \(j_0 \in J \), so that \(i_j \geq i_0 \) for all \(j \geq j_0 \).

Note: A subnet of a sequence is not necessarily a subsequence.

In a topological space \((T, \mathcal{T})\), we say that a net \((x_i : i \in I)\) converges to \(x \), if for all open sets \(U \) with \(x \in U \) there is an \(i_0 \in I \), so that \(x_i \in U \) for all \(i \geq i_0 \). If \((T, \mathcal{T})\) is Hausdorff \(x \) is unique and we denote it by \(\lim_{i \in I} x_i \).

Using nets we can describe continuity, closedness, and compactness in arbitrary topological spaces:

a) A map between two topological spaces is continuous if and only if the image of converging nets are converging.

b) A subset \(A \) of a topological space \(S \) is closed if and only if the limit point of every converging net in \(A \) is in \(A \).

c) A topological space \(S \) is compact if and only if every net has a convergent subnet.

In order to define a topology on a vector space \(E \) which turns \(E \) into a topological vector space we need (only) to define an appropriate neighborhood basis of 0.

Proposition 2.1.2. Assume that \((E, \mathcal{T})\) is a topological vector space. And let
\[
\mathcal{U}_0 = \{ U \in \mathcal{T}, 0 \in U \}.
\]

Then

a) For all \(x \in X \), \(x + \mathcal{U}_0 = \{ x + U : U \in \mathcal{U}_0 \} \) is a neighborhood basis of \(x \),

b) for all \(U \in \mathcal{U}_0 \) there is a \(V \in \mathcal{U}_0 \) so that \(V + V \subset U \),

c) for all \(U \in \mathcal{U}_0 \) and all \(R > 0 \) there is a \(V \in \mathcal{U}_0 \), so that
\[
\{ \lambda \in \mathbb{K} : |\lambda| < R \} \cdot V \subset U,
\]

d) for all \(U \in \mathcal{U}_0 \) and \(x \in E \) there is an \(\varepsilon > 0 \), so that \(\lambda x \in U \), for all \(\lambda \in \mathbb{K} \) with \(|\lambda| < \varepsilon \),
2.1. TOPOLOGICAL AND LOCALLY CONVEX VECTOR SPACES

- If \((E, T)\) is Hausdorff, then for every \(x \in E, x \neq 0\), there is a \(U \in \mathcal{U}_0\) with \(x \notin U\),

- If \(E\) is locally convex, then for all \(U \in \mathcal{U}_0\) there is a convex \(V \in \mathcal{U}_0\), with \(V \subset U\), i.e. 0 has a neighborhood basis consisting of convex sets.

Conversely, if \(E\) is a vector space over \(\mathbb{K}\), \(\mathbb{K} = \mathbb{R}\) or \(\mathbb{K} = \mathbb{C}\) and

\[
\mathcal{U}_0 \subset \{ U \in \mathcal{P}(E) : 0 \in U \}
\]

is non empty and is downwards directed, i.e. if for any \(U, V \in \mathcal{U}_0\), there is a \(W \in \mathcal{U}_0\), with \(W \subset U \cap V\) and satisfies \((b)\) \((c)\) and \((d)\), then

\[
\mathcal{T} = \{ V \subset E : \forall x \in V \exists U \in \mathcal{U} : x + U \subset V \},
\]

defines a topological vector space for which \(\mathcal{U}_0\) is the neighborhood basis of 0. \((E, \mathcal{T})\) is Hausdorff if \(\mathcal{U}\) also satisfies \((e)\) and locally convex if it satisfies \((f)\).

Proof. Assume \((E, T)\) is a topological vector space and \(\mathcal{U}_0\) is defined as above.

We observe that for all \(x \in E\) the linear operator \(T_x : E \to E, z \mapsto z + x\) is continuous. Since also \(T_x \circ T_{-x} = T_{-x} \circ T_x = Id\), it follows that \(T_x\) is an homeomorphism, which implies \((a)\). Property \((b)\) follows from the continuity at 0 of addition and \((c)\) and \((d)\) follow from the continuity of scalar multiplication at 0. If \(E\) is Hausdorff then \(\mathcal{U}_0\) clearly satisfies \((e)\) and, by definition, \(\mathcal{U}_0\) satisfies \((f)\) if we assume that \(E\) is locally convex.

Now assume that \(\mathcal{U}_0 \subset \{ U \in \mathcal{P}(E) : 0 \in U \}\) is non empty and downwards directed, that for any \(U, V \in \mathcal{U}_0\), there is a \(W \in \mathcal{U}_0\), with \(W \subset U \cap V\) and satisfies \((b)\), \((c)\) and \((d)\). Then

\[
\mathcal{T} = \{ V \subset E : \forall x \in V \exists U \in \mathcal{U} : x + U \subset V \},
\]

is finitely intersection stable and stable by taking (arbitrary) unions. Also \(\emptyset, X \in \mathcal{T}\). Thus \(\mathcal{T}\) is a topology. Also note that for \(x \in E\),

\[
\mathcal{U}_x = \{ x + U : U \in \mathcal{U}_0 \}
\]

is a neighborhood basis of \(x\).

We need to show that addition and multiplication by scalars is continuous. Assume \((x_i : i \in I)\) and \((y_i : i \in I)\) converge in \(E\) to \(x \in E\) and \(y \in E\), respectively, and let \(U \in \mathcal{U}_0\). By \((b)\) there is a \(V \in \mathcal{U}_0\) with \(V + V \subset U\). We can therefore choose \(i_0\) so that \(x_i \in x + V\) and \(y_i \in x + V\), for \(i \geq i_0\), and,
Thus, $x_i + y_i \in x + y + V + V \subset x + y + U$, for $i \geq i_0$. This proves the continuity of the addition in E.

Assume $(x_i : i \in I)$ converges in E to x, $(\lambda_i : i \in I)$ converges in \mathbb{K} to λ and let $U \in \mathcal{U}_0$. Then choose first (using property (b)) $V \in \mathcal{U}_0$ so that $V + V \subset U$. Then, by property (c) choose $W \in \mathcal{U}_0$, so that for all $\rho \in \mathbb{K}$, $|\rho| \leq R := \sup_{i \in I} |\lambda_i| + 1$ it follows that $\rho W \subset V$ and, using (c) choose $\varepsilon > 0$ so that $\rho x \in W$, for all $\rho \in \mathbb{K}$, with $|\rho| \leq \varepsilon$. Finally choose $i_0 \in I$ so that $x_i \in x + W$ and $|\lambda - \lambda_i| < \varepsilon$, for all $i \geq i_0$ in I_0.

$$\lambda_i x_i = \lambda_i(x_i - x) + (\lambda_i - \lambda)x + \lambda x + \lambda_i W + V \subset \lambda x + V + V \subset \lambda x + U.$$

If \mathcal{U}_0 satisfies (e) and if $x \neq y$ are in E, then we can choose $U \in \mathcal{U}_0$ so that $y - x \not\in U$ and then, using the already proven fact that addition and multiplication by scalars is continuous, there is V so that $V - V \subset U$. It follows that $x + V$ and $y + V$ are disjoint. Indeed, if $x + v_1 = y + v_2$, for some $v_1, v_2 \in V$ it would follow that $y - x = v_2 - v_1 \in U$, which is a contradiction.

If (f) is satisfied then E is locally convex since we observed before that $\mathcal{U}_x = \{x + U : U \in \mathcal{U}_0\}$ is a neighborhood basis of x, for each $x \in E$. \qedsymbol

Let E be a vector space over \mathbb{K}, $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, and let F be a subspace of $E^\# = \{f : E \to \mathbb{K} \text{ linear}\}$.

Assume that for each $x \in E$ there is an $x^* \in F$ so that $x^*(x) \neq 0$, we say in that case that F is separating the elements of E from 0. Consider

$$\mathcal{U}_0 = \{\cap_{j=1}^n \{x \in E : |x_i^*(x)| < \varepsilon_i\} : n \in \mathbb{N}, x_i^* \in F, \text{ and } \varepsilon_i > 0, i = 1, \ldots, n\}.$$

\mathcal{U}_0 is finitely intersection stable and it is easily checked that \mathcal{U}_0 satisfies that for assumptions (b)-(f). It follows therefore that \mathcal{U}_0 is the neighborhood basis of a topology which turns E into locally convex Hausdorff space.

Definition 2.1.3. [The Topology $\sigma(E, F)$]

Let E be a vector space and let F be a separating subspace of $E^\#$.

Then we denote the locally convex Hausdorff topology generated by

$$\mathcal{U}_0 = \{\cap_{j=1}^n \{x \in E : |x_i^*(x)| < \varepsilon_i\} : n \in \mathbb{N}, x_i^* \in F, \text{ and } \varepsilon_i > 0, i = 1, \ldots, n\},$$

by $\sigma(E, F)$.

If E is a Banach space X and $F = X^*$ we call $\sigma(X, X^*)$ the **Weak Topology** on X and denote it also by w. If E is the dualspace X^* of a Banach space X and we consider X (via the canonical map $\chi : X \to X^{**}$) a subspace of X^{**} we call $\sigma(X^*, X)$ the **Weak* Topology** on X^*, which is also denoted by w^*.

30CHAPTER 2. WEAK TOPOLOGIES, REFLEXIVITY, ADJOINT OPERATORS
2.1. **TOPOLOGICAL AND LOCALLY CONVEX VECTOR SPACES**

Proposition 2.1.4. Let E be a vector space and let F be a separating subspace of $E^\#$.

For a net $(x_i)_{i \in I} \subseteq E$ and $x \in E$

\[
\lim_{i \in I} x_i = x \text{ in } \sigma(E, F) \iff \forall x^* \in F \quad \lim_{i \in I} \langle x^*, x_i \rangle = \langle x^*, x \rangle.
\]

An easy consequence of the geometrical version of the Hahn-Banach Theorem 1.4.12 is the following two observation.

Proposition 2.1.5. If A is a convex subset of a Banach space X then

\[A^w = \overline{A} = \overline{A}^{\|\cdot\|}.
\]

If a representation of the dual space of a Banach space X is not known, it might be hard to verify weak convergence of a sequence directly. The following Corollary of Proposition 2.1.5 states an equivalent criterium condition a sequence to be weakly null without using the dual space of X.

Corollary 2.1.6. For a bounded sequence (x_n) in Banach space X it follows that (x_n) is weakly null if and only if for all subsequences (z_n), all $\varepsilon > 0$ there is a convex combination $z = \sum_{j=1}^k \lambda_j z_j$ of (z_j) (i.e. $\lambda_i \geq 0$, for $i = 1, 2, \ldots, k$, and $\sum_{j=1}^k \lambda_j = 1$) so that $\|z\| \leq \varepsilon$.

Proposition 2.1.7. If X is a Banach space and Y is a closed subspace of X, the $\sigma(Y, Y^\ast) = \sigma(X, X^\ast) \cap Y$, i.e. the weak topology on Y is the weak topology on X restricted to Y.

Theorem 2.1.8. [Theorem of Alaoglu]

B_X^\ast is w^\ast compact for any Banach space X.

Sketch of a proof. Consider the map

\[\Phi: B_X^\ast \to \prod_{x \in X} \{\lambda \in \mathbb{K} : |\lambda| \leq \|x\|\}, \quad x^* \mapsto (x^*(x) : x \in X).
\]

Then we check that Φ is continuous with respect to w^\ast topology on B_X^\ast and the product topology on $\prod_{x \in X} \{\lambda \in \mathbb{K} : |\lambda| \leq \|x\|\}$, has a closed image, and is a homeomorphism from B_X^\ast onto its image.

Since by the Theorem of Tychanoff $\prod_{x \in X} \{\lambda \in \mathbb{K} : |\lambda| \leq \|x\|\}$ is compact, $\Phi(B_X^\ast)$ is a compact subset, which yields (via the homeomorphism Φ^{-1}) that B_X^\ast is compact in the w^\ast topology.

Theorem 2.1.9. [Theorem of Goldstein]

B_X is (via the canonical embedding) w^\ast dense in B_X^{**}.
CHAPTER 2. WEAK TOPOLOGIES, REFLEXIVITY, ADJOINT OPERATORS

The proof follows immediately from the following Lemma.

Lemma 2.1.10. Let X be a Banach space and let $x^{**} \in X^{**}$ and $x_1^*, x_2^*, \ldots, x_n^* \in X^*$ Then

$$
\inf_{\|x\| \leq 1} \sum_{i=1}^{n} |\langle x^{**}, x_i^* \rangle - \langle x_i^*, x \rangle|^2 = 0.
$$

Proof. For $x \in X$ put $\phi(x) = \sum_{i=1}^{n} |\langle x^{**}, x_i^* \rangle - \langle x_i^*, x \rangle|^2$ and $\beta = \inf_{x \in B_X} \phi(x)$, and choose a sequence $(x_j) \subset B_X$ so that $\phi(x_j) \searrow \beta$, if $j \not\to \infty$. W.l.o.g we can also assume that $\xi_i = \lim_{k \to \infty} \langle x_i^*, x_k \rangle$ exists for all $i = 1, 2, \ldots, n$.

For any $t \in [0, 1]$ and any $x \in B_X$ we note for $k \in \mathbb{N}$

$$
\phi((1-t)x_k + tx) = \sum_{i=1}^{n} |\langle x^{**}, x_i^* \rangle - (1-t)\langle x_i^*, x_k \rangle - t\langle x_i^*, x \rangle|^2
$$

$$
= \sum_{i=1}^{n} |\langle x^{**}, x_i^* \rangle - \langle x_i^*, x_k \rangle + t\langle x_i^*, x_k - x \rangle|^2
$$

$$
= \sum_{i=1}^{n} |\langle x^{**}, x_i^* \rangle - \langle x_i^*, x_k \rangle|^2
$$

$$
+ 2t\Re\left(\sum_{i=1}^{n} (\langle x^{**}, x_i^* \rangle - \langle x_i^*, x_k \rangle \langle x_i^*, x_k - x \rangle) \right) + t^2 \sum_{i=1}^{n} |\langle x_i^*, x_k \rangle - \langle x_i^*, x \rangle|^2
$$

$$
\to_{k \to \infty} \beta + 2t\Re\left(\sum_{i=1}^{n} \frac{(\langle x^{**}, x_i^* \rangle - \langle x_i^*, x_k \rangle - \xi_i) - (\langle x_i^*, x \rangle)}{\lambda_i} \right) + t^2 \sum_{i=1}^{n} |\xi_i - \langle x_i^*, x \rangle|^2.
$$

From the minimality of β it follows that for all $x \in B_X$

$$
\Re\left(\sum_{i=1}^{n} \lambda_i \xi_i \right) \geq \Re(\langle x^*, x \rangle) \text{ with } x^* := \sum_{i=1}^{n} \lambda_i x_i^*.
$$

and thus

$$
\|x^*\| \leq \Re\left(\sum_{i=1}^{n} \lambda_i \xi_i \right).
$$

Indeed, write $\langle x^*, x \rangle = re^{ia}$, then

$$
|\langle x^*, x \rangle| = e^{-ia} \langle x^*, x \rangle = \langle x^*, e^{-ia} x \rangle \leq \Re\left(\sum_{i=1}^{n} \lambda_i \xi_i \right).
$$
On the other hand, \(\lim_{k \to \infty} \langle x^*, x_k \rangle = \sum_{i=1}^{n} \lambda_i \xi_i \) and thus

\[
\|x^*\| \geq \left| \sum_{i=1}^{n} \lambda_i \xi_i \right| \geq \Re \left(\sum_{i=1}^{n} \lambda_i \xi_i \right),
\]

which implies that

\[
\|x^*\| = \Re \left(\sum_{i=1}^{n} \lambda_i \xi_i \right).
\]

So

\[
\beta = \lim_{k \to \infty} \phi(x_k)
=
\sum_{i=1}^{n} |\lambda_i|^2
=
\sum_{i=1}^{n} \lambda_i \overline{\lambda_i}
=
\sum_{i=1}^{n} \lambda_i (\langle x^{**}, x_i^* \rangle - \xi_i)
= \Re \left(\sum_{i=1}^{n} \lambda_i (\langle x^{**}, x_i^* \rangle - \xi_i) \right) \quad \text{(since } \beta \in \mathbb{R})
= \Re \langle x^{**}, x^* \rangle - \Re \left(\sum_{i=1}^{n} \lambda_i \xi_i \right)
\leq \|x^{**}\| \cdot \|x^*\| - \|x^*\| \leq \|x^*\| - \|x^*\| = 0.
\]

Thus \(\beta = 0 \) which proves our claim.

\(\square \)

Theorem 2.1.11. Let \(X \) be a Banach space. Then \(X \) is reflexive if and only if \(B_X \) is compact in the weak topology.

Proof. Let \(\chi : X \hookrightarrow X^{**} \) be the canonical embedding.

“\(\Rightarrow \)” If \(X \) is reflexive and thus \(\chi \) is onto it follows that \(\chi \) is an homeomorphism between \((B_X, \sigma(X, X^*)) \) and \((B_{X^{**}}, \sigma(X^{**}, X^*)) \). But by the Theorem of Alaoglu 2.1.8 \((B_{X^{**}}, \sigma(X^{**}, X^*)) \) is compact.

“\(\Leftarrow \)” Assume that \((B_X, \sigma(X, X^*)) \) is compact, and assume that \(x^{**} \in B_{X^{**}} \) we need to show that there is an \(x \in B_X \) so that \(\chi(x) = x^{**} \), or equivalently that \(\langle x^*, x \rangle = \langle x^{**}, x^* \rangle \) for all \(x^* \in X^* \).
For any finite set \(A = \{x_1^*, \ldots, x_n^*\} \subset X^* \) and for any \(\varepsilon > 0 \) we can, according to Lemma 2.1.10, choose an \(x_{(A, \varepsilon)} \in B_X \) so that
\[
\sum_{i=1}^{n} |\langle x^{**} - x_{(A, \varepsilon)}, x_i^* \rangle|^2 \leq \varepsilon.
\]
The set
\[
I = \{(A, \varepsilon) : A \subset X^* \text{ finite and } \varepsilon > 0\},
\]
is directed via \((A, \varepsilon) \leq (A', \varepsilon') : \iff A \subset A' \text{ and } \varepsilon' \leq \varepsilon\). Thus, by compactness, the net \((x_{(A, \varepsilon)} : (A, \varepsilon) \in I)\) must have a subnet \((z_j : j \in J)\) which converges weakly to some element \(x \in B_X \).

We claim that \(\langle x^*, x \rangle = \langle x^{**}, x^* \rangle \), for all \(x^* \in X^* \). Indeed, let \(j \mapsto i_j \) be the map from \(J \) to \(I \), so that \(z_j = x_{i_j} \), for all \(j \in J \), and so that, for any \(j_0 \) there is a \(i_0 \) with \(j_i \geq j_0 \), for \(i \geq i_0 \). Let \(x^* \in X^* \) and \(\varepsilon > 0 \). Put \(i_0 = (\{x^*\}, \varepsilon) \in I \), choose \(j_0 \), so that \(j_i \geq i_0 \), for all \(j \geq j_0 \), and choose \(j_1 \in J \), \(j_1 \geq j_0 \), so that \(|\langle x - z_{j_1}, x^* \rangle| < \varepsilon \), for all \(j \geq j_1 \). It follows therefore that (note that for \(i_{j_1} = (A, \varepsilon') \) it follows that \(x^* \in A \) and \(\varepsilon' \leq \varepsilon \))
\[
|\langle x^{**} - x, x^* \rangle| \leq |\langle x^{**} - x_{i_{j_1}}, x^* \rangle| + |\langle z_{j_1} - x, x^* \rangle| \leq \varepsilon + \varepsilon = 2\varepsilon.
\]
Since \(\varepsilon > 0 \) and \(x^* \in X^* \) were arbitrary we deduce our claim.

Theorem 2.1.12. For a Banach space \(X \) the following are equivalent.

(a) \(X \) is reflexive,

(b) \(X^* \) is reflexive,

(c) every closed subspace of \(X \) is reflexive.

Proof. “(a)⇒(c)” Assume \(Y \subset X \) is a closed subspace. Proposition 2.1.5 yields that \(B_Y = B_X \cap Y \) is a \(\sigma(X, X^*) \)-closed and, thus, \(\sigma(X, X^*) \)-compact subset of \(B_X \). Since, by the Theorem of Hahn-Banach (Corollary 1.4.4), every \(y^* \in Y^* \) can be extended to an element in \(X^* \), it follows that \(\sigma(Y, Y^*) \) is the restriction of \(\sigma(X, X^*) \) to the subspace \(Y \). Thus, \(B_Y \) is \(\sigma(Y, Y^*) \)-compact, which implies, by Theorem 2.1.11 that \(Y \) is reflexive.

“(a)⇒(b)” If \(X \) is reflexive then \(\sigma(X^*, X^{**}) = \sigma(X^*, X) \). Since by the Theorem of Alaoglu 2.1.8 \(B_{X^*} \) is \(\sigma(X^*, X) \)-compact the claim follows from Theorem 2.1.11.

“(c)⇒(a)” clear.

“(b)⇒(a)” If \(X^* \) is reflexive, then, “(a)⇒(b)” \(X^{**} \) is also reflexive and thus, the implication “(a)⇒(c)” yields that \(X \) is reflexive. \(\square \)
2.1. **TOPOLOGICAL AND LOCALLY CONVEX VECTOR SPACES**

An important consequence of the Uniform Boundedness Principle is the following

Theorem 2.1.13. [Theorem of Banach-Steinhaus]

(a) If \(A \subset X \), and \(\sup_{x \in A} |\langle x^*, x \rangle| < \infty \), for all \(x^* \in X^* \), then \(A \) is (norm) bounded.

(b) If \(A \subset X^* \), and \(\sup_{x^* \in A} |\langle x^*, x \rangle| < \infty \), for all \(x \in X \), then \(A \) is (norm) bounded.

In particular weak compact subsets of \(X \) and weak\(^*\) compact subsets of \(X^* \) are norm bounded.

Exercises

1. Show Theorem 2.1.9 using Lemma 2.1.10.

2. Prove Proposition 2.1.7 and Corollary 2.1.6.

3. Show that \(B_{\ell_1}^\infty \) is not sequentially compact in the \(w^*\)-topology.
 Hint: Consider the unit vector basis of \(\ell_1 \) seen as subsequence of \(B_{\ell_1} \).

4. Prove that for a Banach space \(X \) every \(w^*\)-converging sequence in \(X^* \) is bounded, but that if \(X \) is infinite dimensional, \(X^* \) contains nets \((x_i^* : i \in I)\) which converge to 0, but so that for every \(c > 0 \) and all \(i \in I \) there is a \(j_0 \geq i \), with \(\|x_j\| \geq c \), whenever \(j \geq j_0 \).

5. Show that for a Banach space \(X \), \((X^*, \sigma(X^*, X))^* = X\).

6. Show that in each infinite dimensional Banach space \(X \) there is a weakly null net in \(S_X \).

7.* Prove that every weakly null sequence in \(\ell_1 \) is norm null.
 Hint: Assume that \((x_n) \subset S_{\ell_1}\) is weakly null. Then there is a subsequence \(x_{n_k} \) and a block sequence \((z_k)\) so that \(\lim_{k \to \infty} \|x_{n_k} - z_k\| = 0 \).
2.2 Annihilators, Complemented Subspaces

Definition 2.2.1. [Annihilators, Pre-Annihilators]
Assume X is a Banach space. Let $M \subset X$ and $N \subset X^*$. We call
$$M^\perp = \{ x^* \in X^* : \forall x \in M \langle x^*, x \rangle = 0 \} \subset X^*, $$
the annihilator of M and
$$N_\perp = \{ x \in X : \forall x^* \in N \langle x^*, x \rangle = 0 \} \subset X,$$
the pre-annihilator of N.

Proposition 2.2.2. Let X be a Banach space, and assume $M \subset X$ and $N \subset X^*$.

a) M^\perp is a closed subspace of X^*, $M^\perp = (\text{span}(M))^\perp$, and $(M^\perp)_\perp = \text{span}(M)$.

b) N_\perp is a closed subspace of X, $N_\perp = (\text{span}(N))_\perp$, and $\text{span}(N) \subset (N_\perp)^\perp$.

c) $\text{span}(M) = X \iff M^\perp = \{0\}$

Proposition 2.2.3. If X is Banach space and $Y \subset X$ is a closed subspace then $(X/Y)^*$ is isometrically isomorphic to Y^\perp via the operator
$$\Phi : (X/Y)^* \to Y^\perp, \text{ with } \Phi(z^*)(x) = z^*(x).$$
(recall $x = x + Y \in X/Y$ for $x \in X$).

Proof. Let $Q : X \to X/Y$ be the quotient map.

For $z^* \in (X/Y)^*$, $\Phi(z^*)$, as defined above, can be written as $\Phi(z^*) = z^* \circ Q$. Thus $\Phi(z^*) \in X^*$. Since $Q(Y) = \{0\}$ it follows that $\Phi(z^*) \in Y^\perp$.

For $z^* \in (X/Y)^*$ we have
$$\|\Phi(z^*)\| = \sup_{x \in B_X} \langle z^*, Q(x) \rangle = \sup_{x \in B_{X/Y}} \langle z^*, x \rangle = \|z^*\|_{(X/Y)^*},$$
where the second equality follows on the one hand from the fact that $\|Q(x)\| \leq \|x\|$, for $x \in X$, and on the other hand, from the fact that for any $x = x + Y \in X/Y$ there is a sequence $(y_n) \subset Y$ so that $\limsup_{n \to \infty} \|x + y_n\| \leq 1$.

Thus Φ is an isometric embedding. If $x^* \in Y^\perp \subset X^*$, we define
$$z^* : X/Y \to \mathbb{K}, \quad x + Y \mapsto \langle x^*, x \rangle.$$
First note that this map is well defined (since $\langle x^*, x + y_1 \rangle = \langle x^*, x + y_2 \rangle$ for $y_1, y_2 \in Y$). Since x^* is linear, z^* is also linear, and $|\langle z^*, x \rangle| = |\langle x^*, x \rangle|$, for all $x \in X$, and thus $\|z^*\|_{(X/Y)^*} = \|x^*\|$. Finally, since $\langle \Phi(z^*), x \rangle = \langle z^*, Q(x) \rangle = \langle x^*, x \rangle$, it follows that $\Phi(z^*) = x^*$, and thus that Φ is surjective. \qed

Proposition 2.2.4. Assume X and Y are Banach spaces and $T \in L(X,Y)$. Then

\begin{align}
(2.1) & \quad T(X) \perp = \mathcal{N}(T^*) \quad \text{and} \quad T^*(Y^*) \subset \mathcal{N}(T)^\perp \\
(2.2) & \quad \overline{T(X)} = \mathcal{N}(T^*)_{\perp} \quad \text{and} \quad T^*(Y^*)_{\perp} = \mathcal{N}(T).
\end{align}

Proof. We only prove (2.1). The verification of (2.2) is similar. For $y^* \in Y^*$

\[
y^* \in T(X) \perp \iff \forall x \in X \quad \langle y^*, T(x) \rangle = 0
\]

\[
\iff \forall x \in X \quad \langle T^*(y^*), x \rangle = 0
\]

\[
\iff T^*(y^*) = 0 \iff y^* \in \mathcal{N}(T^*),
\]

which proves the first part of (2.1), and for $y^* \in Y^*$ and all $x \in \mathcal{N}(T)$, it follows that $\langle T^*(y^*), x \rangle = \langle y^*, T(x) \rangle = 0$, which implies that $T^*(Y^*) \subset \mathcal{N}(T)^\perp$, and, thus, $\overline{T^*(X^*)} \subset \mathcal{N}(T)$. \qed

Definition 2.2.5. Let X be a Banach space and let U and V be two closed subspaces of X. We say that X is the *complemented sum of U and V* and we write $X = U \oplus V$, if for every $x \in X$ there are $u \in U$ and $v \in V$, so that $x = u + v$ and so that this representation of x as sum of an element of U and an element of V is unique.

We say that a closed subspace Y of X is *complemented in X* if there is a closed subspace Z of X so that $X = Y \oplus Z$.

Remark. Assume that the Banach space X is the complemented sum of the two closed subspaces U and V. We note that this implies that $U \cap V = \{0\}$.

We can define two maps

\[P : X \to U \quad \text{and} \quad Q : X \to V \]

where we define $P(x) \in U$ and $Q(x) \in V$ by the equation $x = P(x) + Q(y)$, with $P(x) \in U$ and $Q(x) \in V$ (which, by assumption, has a unique solution).

Note that P and Q are linear. Indeed if $P(x_1) = u_1$, $P(x_2) = u_2$, $Q(x_1) = v_1$, $Q(x_2) = v_2$, then for $\lambda, \mu \in \mathbb{K}$ we have $\lambda x_1 + \mu x_2 = \lambda u_1 + \mu u_2 + \lambda v_1 + \mu v_2$, and thus, by uniqueness $P(\lambda x_1 + \mu x_2) = \lambda u_1 + \mu u_2$, and $Q(\lambda x_1 + \mu x_2) = \lambda v_1 + \mu v_2$.

Secondly it follows that $P \circ P = P$, and $Q \circ Q = Q$. Indeed, for any $x \in X$ we write $P(x) = P(x) + 0 \in U + V$, and since this representation
of \(P(x) \) is unique it follows that \(P(P(x)) = P(x) \). The argument for \(Q \) is the same.

Finally it follows that, again using the uniqueness argument, that \(P \) is the identity on \(U \) and \(Q \) is the identity on \(V \).

We therefore proved that

a) \(P \) is linear,

b) the image of \(P \) is \(U \)

c) \(P \) is idempotent, i.e. \(P^2 = P \)

We say in that case that \(P \) is a linear projection onto \(U \). Similarly \(Q \) is a linear projection onto \(V \), and \(P \) and \(Q \) are complementary to each other, meaning that \(P(X) \cap Q(X) = \{0\} \) and \(P + Q = \text{Id} \). A linear map \(P : X \to X \) with the properties (a) and (c) is called projection.

The next Proposition will show that \(P \) and \(Q \) as defined in above remark are actually bounded.

Lemma 2.2.6. Assume that \(X \) is the complemented sum of two closed subspaces \(U \) and \(V \). Then the projections \(P \) and \(Q \) as defined in above remark are bounded.

Proof. Consider the norm \(\| \cdot \| \) on \(X \) defined by

\[
\|x\| = \|P(x)\| + \|Q(x)\|, \text{ for } x \in X.
\]

We claim that \((X, \| \cdot \|)\) is also a Banach space. Indeed if \((x_n) \subset X \) with

\[
\sum_{n=1}^{\infty} \|x_n\| = \sum_{n=1}^{\infty} \|P(x_n)\| + \sum_{n=1}^{\infty} \|Q(x_n)\| < \infty.
\]

Then \(u = \sum_{n=1}^{\infty} P(x_n) \in U \), \(v = \sum_{n=1}^{\infty} Q(x_n) \in V \) (\(U \) and \(V \) are assumed to be closed) converge in \(U \) and \(V \), respectively, and since \(\| \cdot \| \leq \| \cdot \| \) also \(x = \sum_{n=1}^{\infty} x_n \) converges and

\[
x = \sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} \sum_{j=1}^{n} P(x_j) + Q(x_j) = \lim_{n \to \infty} \sum_{j=1}^{n} P(x_j) + \lim_{n \to \infty} \sum_{j=1}^{n} Q(x_j) = u + v,
\]

and

\[
\|x - \sum_{j=1}^{n} x_n\| = \|u - \sum_{j=1}^{n} P(x_n) + v - \sum_{j=1}^{n} Q(x_n)\|.
\]
\[u - \sum_{j=1}^{n} P(x_n) \| + v - \sum_{j=1}^{n} Q(x_n) \| \rightarrow n \to \infty 0, \]

which proves that \((X, \| \cdot \|)\) is complete.

Since the identity is a bijective linear bounded operator from \((X, \| \cdot \|)\) to \((X, \| \cdot \|)\) it has by Corollary 1.3.6 of the Closed Graph Theorem a continuous inverse and is thus an isomorphy. Since \(\|P(x)\| \leq \|x\|\) and \(\|Q(x)\| \leq \|x\|\) we deduce our claim.

Proposition 2.2.7. Assume that \(X\) is a Banach space and that \(P : X \to X\), is a bounded projection onto a closed subspace of \(X\).

Then \(X = P(X) \oplus N(P)\).

Theorem 2.2.8. There is no linear bounded operator \(T : \ell_\infty \to \ell_\infty\) so that the kernel of \(T\) equals to \(c_0\).

Corollary 2.2.9. \(c_0\) is not complemented in \(\ell_\infty\).

Proof of Theorem 2.2.8. For \(n \in \mathbb{N}\) we let \(e_n^*\) be the \(n\)-th coordinate functional on \(\ell_\infty\), i.e.

\[e_n^* : \ell_\infty \to \mathbb{K}, \quad x = (x_j) \mapsto x_n. \]

Step 1. If \(T : \ell_\infty \to \ell_\infty\) is bounded and linear, then

\[\mathcal{N}(T) = \bigcap_{n=1}^{\infty} \mathcal{N}(e_n^* \circ T). \]

Indeed, note that

\[x \in \mathcal{N}(T) \iff \forall n \in \mathbb{N} \quad e_n^*(T(x)) = \langle e_n^*, T(x) \rangle = 0. \]

In order to prove our claim we will show that \(c_0\) cannot be the intersection of the kernel of countably many functionals in \(\ell_\infty^*\).

Step 2. There is an uncountable family \((N_\alpha : \alpha \in I)\) of infinite subsets of \(\mathbb{N}\) for which \(N_\alpha \cap N_\beta\) is finite whenever \(\alpha \neq \beta\) are in \(I\).

Write the rational numbers \(\mathbb{Q}\) as a sequence \((q_j : j \in \mathbb{N})\), and choose for each \(r \in \mathbb{R}\) a sequence \((n_k(r) : k \in \mathbb{N})\), so that \((q_{n_k(r)} : k \in \mathbb{N})\) converges to \(r\). Then, for \(r \in \mathbb{R}\) let \(N_r = \{n_k(r) : k \in \mathbb{N}\}\).

For \(i \in I\), put \(x_\alpha = 1_{N_\alpha} \in \ell_\infty\), i.e.

\[x_\alpha = (\xi_k^{(\alpha)} : k \in \mathbb{N}) \text{ with } \xi_k^{(\alpha)} = \begin{cases} 1 & \text{if } k \in N_\alpha \\ 0 & \text{if } k \notin N_\alpha. \end{cases} \]
Step 3. If \(f \in \ell^*_\infty \) and \(c_0 \subset \mathcal{N}(f) \) then \(\{ \alpha \in I : f(x_\alpha) \neq 0 \} \) is countable.

In order to verify Step 3 let \(A_n = \{ \alpha : |f(x_\alpha)| \geq 1/n \} \), for \(n \in \mathbb{N} \). It is enough to show that for \(n \in \mathbb{N} \) the set \(A_n \) is finite. To do so, let \(\alpha_1, \alpha_2, \ldots, \alpha_k \) be distinct elements of \(A_n \) and put \(x = \sum_{j=1}^k \text{sign}(f(x_{\alpha_j}))x_{\alpha_j} \) (for \(a \in \mathbb{C} \) we put \(\text{sign}(a) = a/|a| \)) and deduce that \(f(x) \geq k/n \). Now consider \(M_j = N_{\alpha_j} \setminus \bigcup_{i \neq j} N_{\alpha_i} \). Then \(N_{\alpha_j} \setminus M_j \) is finite, and thus it follows for

\[
\tilde{x} = \sum_{j=1}^k \text{sign}(f(x_{\alpha_j}))1_{M_j}
\]

that \(f(x) = f(\tilde{x}) \) (since \(x - \tilde{x} \in c_0 \)). Since the \(M_j, j = 1, 2 \ldots k \) are pairwise disjoint, it follows that \(\|\tilde{x}\|_\infty = 1 \), and thus

\[
\frac{k}{n} \leq f(x) = f(\tilde{x}) \leq \|f\|.
\]

Which implies that that \(A_n \) can have at most \(n\|f\| \) elements.

Step 4. If \(c_0 \subset \bigcap_{n=1}^\infty \mathcal{N}(f_n) \), for a sequence \((f_n) \subset \ell^*_\infty \), then there is an \(\alpha \in I \) so that \(x_\alpha \in \bigcap_{n=1}^\infty \mathcal{N}(f_n) \). In particular this implies that \(c_0 \neq \bigcap_{n \in \mathbb{N}} \mathcal{N}(f_n) \).

Indeed, Step 3 yields that

\[
C = \{ \alpha \in I : f_n(x_\alpha) \neq 0 \text{ for some } n \in \mathbb{N} \} = \bigcup_{n \in \mathbb{N}} \{ \alpha \in I : f_n(x_\alpha) \neq 0 \},
\]

is countable, and thus \(I \setminus C \) is not empty.

Remark. Assume that \(Z \) is any subspace of \(\ell^\infty \) which is isomorphic to \(c_0 \), then \(Z \) is not complemented. The proof of that is a bit harder.

Theorem 2.2.10. [So] Assume \(Y \) is a subspace of a separable Banach space \(X \) and \(T : Y \rightarrow c_0 \) is linear and bounded. Then \(T \) can be extended to a linear and bounded operator \(\tilde{T} : X \rightarrow c_0 \). Moreover, \(\tilde{T} \) can be chosen so that \(\|\tilde{T}\| \leq 2\|T\| \).

Corollary 2.2.11. Assume that \(X \) is a separable Banach space which contains a subspace \(Y \) which is isomorphic to \(c_0 \). Then \(Y \) is complemented in \(X \).

Proof. Let \(T : Y \rightarrow c_0 \) be an isomorphism. Then extend \(T \) to \(\tilde{T} : X \rightarrow c_0 \) and put \(P = \tilde{T} \circ T^{-1} \).

\(\square \)
2.2. ANNIHILATORS, COMPLEMENTED SUBSPACES

Proof of Theorem 2.2.10. Note that an operator $T : Y \to c_0$ is defined by a $\sigma(Y^*, Y)$ null sequence $(y^*_n) \subset Y^*$, i.e.

$$T : Y \to c_0, \quad y \mapsto (\langle y^*_n, y \rangle : n \in \mathbb{N}).$$

We would like to use the Hahn Banach theorem and extend each y^*_n to an element $x^*_n \in X^*$, with $\|y^*_n\| = \|x^*_n\|$, and define

$$\tilde{T}(x) := (\langle x^*_n, x \rangle : n \in \mathbb{N}), \quad x \in X.$$

But the problem is that (x^*_n) might not be $\sigma(X^*, X)$ convergent to 0, and thus we can only say that $(\langle x^*_n, x \rangle : n \in \mathbb{N}) \in \ell_\infty$, but not necessarily in c_0. Thus we will need to change the x^*_n somehow so that they are still extensions of the y^*_n but also $\sigma(X^*, X)$ null.

Let $B = \|T\| B_{X^*}$. B is $\sigma(X^*, X)$-compact and metrizable (since X is separable). Denote the metric which generates the $\sigma(X^*, X)$-topology by $d(\cdot, \cdot)$. Put $K = B \cap Y^\perp$. Since $Y^\perp \subset X^*$ is $\sigma(X^*, X)$-closed, K is compact and every $\sigma(X^*, X)$-accumulation point of (x^*_n) lies in K. Indeed, this follows from the fact that $x^*_n(y) = y^*_n(y) \to_{n \to \infty} 0$. This implies that $\lim_{n \to \infty} d(x^*_n, K) = 0$, thus we can choose $(z^*_n) \subset K$ so that $\lim_{n \to \infty} d(x^*_n, z^*_n) = 0$, and thus $(x^*_n - z^*_n)$ is $\sigma(X^*, X)$-null and for $y \in Y$ it follows that $(x^*_n - z^*_n, y) = (x^*_n, y), n \in \mathbb{N}$. Choosing therefore

$$\tilde{T} \to c_0, \quad x \mapsto ((x^*_n - z^*_n, x) : n \in \mathbb{N}),$$

yields our claim. \qed

Remark. Zippin [Zi] proved the converse of Theorem: if Z is an infinite-dimensional separable Banach space admitting a projection from any separable Banach space X containing it, then Z is isomorphic to c_0.

Exercises

1. Prove Proposition 2.2.2.

2. a) Assume that ℓ_∞ isomorphic to a subspace Y of some Banach space X, then Y is complemented in X.

b) Assume Z is a closed subspace of a Banach space X, and $T : Z \to \ell_\infty$ is linear and bounded. Then T can be extended to a linear and bounded operator $\tilde{T} : X \to \ell_\infty$, with $\|\tilde{T}\| = \|T\|$.

3. Show that for a Banach space X, the dual space X^* is isometrically isomorphic to complemented subspace of X^{***}, via the canonical embedding.
42 CHAPTER 2. WEAK TOPOLOGIES, REFLEXIVITY, ADJOINT OPERATORS

4. Prove Proposition 2.2.7.

5. Prove (2.2) in Proposition 2.2.4.
2.3 The Theorem of Eberlein Smulian

For infinite dimensional Banach spaces the weak topology is not metrizable (see Exercise 1). Nevertheless compactness in the weak topology can be characterized by sequences.

Theorem 2.3.1. [The Theorem of Eberlein- Smulian]
Let X be a Banach space. For subset K the following are equivalent.

a) K is relatively $\sigma(X, X^*)$ compact, i.e. $\overline{K}^{\sigma(X, X^*)}$ is compact.

b) Every sequence in K contains a $\sigma(X, X^*)$-convergent subsequence.

c) Every sequence in K has a $\sigma(X, X^*)$-accumulation point.

We will need the following Lemma.

Lemma 2.3.2. Let X be a Banach space and assume that there is a countable set $C = \{x_n^* : n \in \mathbb{N}\} \subset B_{X^*}$, so that $C_{\perp} = \{0\}$. We say that C is total for X.

Consider for x, y

$$d(x, y) = \sum_{n=1}^{\infty} 2^{-n} |\langle x_n^*, x - y \rangle|.$$

Then d is a metric on X, and for any $\sigma(X, X^*)$-compact set K, $\sigma(X, X^*)$ coincides on K with the metric generated by d.

Proof. It is clear that d is a metric on X. Assume that $K \subset X$ is weak compact. By the Theorem of Banach Steinhaus 2.1.12 K is therefore norm bounded and we consider the identity I as map from the space $(K, \sigma(X, X^*) \cap K)$ to $(K, T_d \cap K)$ (T_d being the topology generated by d). Then I is continuous: Indeed, if $(x_i : i \in I)$ is a net which is converging in $\sigma(X, X^*)$ to some $x \in K$ and if $\varepsilon > 0$ is arbitrary, we first use the boundedness of K to find $n \in \mathbb{N}$ so that

$$\sum_{j=n+1}^{\infty} 2^{j-1} |\langle x_j^*, x_i - x \rangle| \leq 2^{-n+1} \sup_{x \in K} \|x\| < \varepsilon/2,$$

and then we choose $i_0 \in I$ so that $\sum_{j=1}^{n} 2^{j-1} |\langle x_j^*, x_i - x \rangle| < \varepsilon/2$ for all $i \in I$, with $i \geq i_0$. It follows that $d(x_i, x) < \varepsilon$.

Since images of compact sets under continuous functions are compact, and thus (by bijectivity of I) images of $\sigma(X, X^*)$-open sets in K under I are open in (K, T) it follows that I is a homeomorphism. \Box
Lemma 2.3.3. Assume that X is separable. Then there is a countable total set $C \subset X^*$.

Proof. Let $D \subset X$ be dense, and choose by the Corollary 1.4.6 of the Theorem of Hahn Banach for each element $x \in D$, an element $y^*_x \in S_{X^*}$ so that $\langle y^*_x, x \rangle = \|x\|$. Put $C = \{y^*_x : x \in D\}$. If $x \in X$, $x \neq 0$, is arbitrary then there is a sequence $(x_k) \subset D$, so that $\lim_{k \to \infty} x_k = x$, and thus $\lim_{k \to \infty} \langle y^*_x, x \rangle = \|x\| > 0$. Thus there is a $x^* \in C$ so that $\langle x^*, x \rangle \neq 0$, which implies that C is total.

Proof of Theorem 2.3.1.

="(a)⇒(b)" Assume that K is $\sigma(X, X^*)$-compact (if necessary, pass to the closure) and let $(x_n) \subset K$ be a sequence, and put $X_0 = \text{span}(x_n : n \in \mathbb{N})$. X_0 is a separable Banach space. By Proposition 2.1.5 the topology $\sigma(X_0, X_0^*)$ coincides with the restriction of $\sigma(X, X^*)$ to X_0. It follows therefore that $K_0 = K \cap X_0$ is $\sigma(X_0, X_0^*)$-compact. Since X_0 is separable, by Lemma 2.3.3 there exists a countable set $C \subset B_{X_0^*}$, so that $C_\perp = \{0\}$.

It follows therefore from Lemma 2.3.2 that $(K_0, \sigma(X_0, X_0^*) \cap K_0)$ is metrizable and thus (x_n) has a convergent subsequence in K_0. Again, using the fact that on X_0 the weak topology coincides with the weak topology on X, we deduce our claim.

="(b)⇒(c)" clear.

"(c)⇒(a)" Assume $K \subset X$ satisfies (c). We first observe that K is (norm) bounded. Indeed, for $x^* \in X^*$, the set $A_{x^*} = \{\langle x^*, x \rangle : x \in K\} \subset \mathbb{K}$ is the continuous image of A (under x^*) and thus has the property that every sequence has an accumulation point in \mathbb{K}. This implies that A_{x^*} is bounded in \mathbb{K} for all $x^* \in X^*$, but this implies by the Banach Steinhaus Theorem 2.1.13 that $A \subset X$ must be bounded.

Let $\chi : X \hookrightarrow X^{**}$ be the canonical embedding. By the Theorem of Alaoglu 2.1.8, it follows that $\chi(K)^{\sigma(X^{**}, X^*)}$ is $\sigma(X^{**}, X^*)$-compact. Therefore it will be enough to show that $\chi(K)^{\sigma(X^{**}, X^*)} \subset \chi(x)$ (because this would imply that every net $(\chi(x_i) : i \in I) \subset \chi(K)$ has a subnet which $\sigma(\chi(X), X^*)$) converges to some element $\chi(x) \in \chi(X)$).

So fix $x^*_0 \in \chi(K)^{\sigma(X^{**}, X^*)}$. Recursively we will choose for each $k \in \mathbb{N}$, $x_k \in K$, finite sets $A^*_k \subset S_{X^*}$, if $k \in \mathbb{N}_0$, so that

\begin{equation}
(2.3) \quad \left| \langle x^*_0 - \chi(x_k), x^* \rangle \right| < \frac{1}{k} \quad \text{for all} \quad x^* \in \bigcup_{0 \leq j < k} A^*_j,
\end{equation}
\(\forall x^{**} \in \text{span}(x_0^{**}, \chi(x_j), 1 \leq j \leq k) \quad \|x^{**}\| \geq \max_{x^* \in A_k^*} |\langle x^{**}, x^* \rangle| \geq \frac{\|x^{**}\|}{2}. \)

For \(k = 0 \) choose \(A_0^* = \{x^*\} \), \(x^* \in S_{X^*} \), with \(|x^*(x_0^{**})| \geq \|x_0^{**}\|/2 \), then condition (2.4) is satisfied, while condition (2.3) is vacuous.

Assuming that \(x_1, x_2, \ldots x_{k-1} \) and \(A_0^*, A_1^*, \ldots, A_{k-1}^* \) have been chosen for some \(k > 1 \), we can first choose \(x_k \in K \) so that (2.3) is satisfied (since \(A_j^* \) is finite for \(j = 1, 2, \ldots k - 1 \)), and then, since \(\text{span}(x_0^{**}, \chi(x_j), j \leq k) \) is a finite dimensional space we can choose \(A_k^* \subset S_{X^*} \) so that (2.4) holds.

By our assumption \((c)\) the sequence \((x_k)\) has an \(\sigma(X, X^*) \)-accumulation point \(x_0 \). By Proposition 2.1.7 it follows that \(x_0 \in Y = \text{span}(x_k : k \in \mathbb{N})\|\cdot\| = \text{span}(x_k : k \in \mathbb{N})^{\sigma(X, X^*)} \).

We will show that \(x_0^{**} = \chi(x_0) \) (which will finish the proof). First note that for any \(x^* \in \bigcup_{j \in \mathbb{N}} A_j^* \)
\[
|\langle x_0^{**} - \chi(x_0), x^* \rangle| \leq \liminf_{k \to \infty} (|\langle x_0^{**} - \chi(x_k), x^* \rangle| + |\langle x^*, x_k - x_0 \rangle|) = 0.
\]

Secondly consider the space \(Z = \text{span}(x_0^{**}, \chi(x_k), k \in \mathbb{N})\|\cdot\| \subset X^{**} \) it follows from (2.4) that the set of restrictions of elements of \(\bigcup_{k=1}^{\infty} A_k^* \) to \(Y \) is total in \(Z \) and thus that
\[
x_0^{**} - \chi(x_0) \in Z \cap \left(\bigcup_{k=1}^{\infty} A_k^* \right)_{\perp} = \{0\},
\]
which implies our claim.

Exercises

1. Prove that if \(X \) is a separable Banach space \((B_{X^*}, \sigma(X^*, X))\) is metrizable.

2. For an infinite dimensional Banach space prove that \((X, \sigma(X, X^*))\) is not metrizable.

 Hint: Exercise 4 in Section 2.1

3. Prove that for two Banach spaces \(X \) and \(Y \), the adjoint of a linear bounded operator \(T : X \to Y \) is \(w^* \) continuous (i.e \(\sigma(Y^*, Y) - \sigma(X^*, X) \) continuous).

4. Show that \(\ell_1 \) isometric to a subspace of \(C[0,1] \).

5. Show that \(\ell_1 \) is not complemented in \(C[0,1] \).
2.4 The Principle of Local Reflexivity

In this section we prove a result of J. Lindenstrauss and H. Rosenthal [LR] which states that for a Banach space X the finite dimensional subspaces of the bidual X^{**} are *in a certain similar* to the finite dimensional subspaces of X.

Theorem 2.4.1. [LR] [The Principle of Local Reflexivity]

Let X be a Banach space and let $F \subset X^{**}$ and $G \subset X^*$ be finite dimensional subspaces of X^{**} and X^* respectively.

Then, given $\varepsilon > 0$, there is a subspace E of X containing $F \cap X$ (we identify X with its image under the canonical embedding) with $\dim E = \dim F$ and an isomorphism $T : F \to E$ with $\|T\| \cdot \|T^{-1}\| \leq 1 + \varepsilon$ such that

\begin{align}
T(x) &= x \text{ if } x \in F \cap X \text{ and } \\
\langle x^*, T(x^{**}) \rangle &= \langle x^{**}, x^* \rangle \text{ if } x^* \in G, x^{**} \in F.
\end{align}

We need several Lemmas before we can prove Theorem 2.4.1. The first one is a corollary the Geometric Hahn-Banach Theorem

Proposition 2.4.2. [Variation of Geometrical Version of the Theorem of Hahn Banach]

Assume that X is a Banach space and $C \subset X$ is convex with $C^0 \neq \emptyset$ and let $x \in X \setminus C$ (so x could be in the boundary of C). Then there exists an $x^* \in X^*$ so that

$$\Re \langle x^*, z \rangle < 1 = \langle x^*, x \rangle$$

for all $z \in C^0$,

and, if moreover C is absolutely convex (i.e. if $\rho x \in C$ for all $x \in C$ and $\rho \in \mathbb{K}$, with $|\rho| \leq 1$), then

$$|\langle x^*, z \rangle| < 1 = \langle x^*, x \rangle$$

for all $z \in C^0$.

Lemma 2.4.3. Assume $T : X \to Y$ is a bounded linear operator between the Banach spaces X and Y and assume that $T(X)$ is closed.

Suppose that for some $y \in Y$ there is an $x^{**} \in X^{**}$ with $\|x^{**}\| < 1$, so that $T^{**}(x^{**}) = y$. Then there is an $x \in X$, with $\|x\| < 1$ so that $T(x) = y$.

Proof. We first show that there is an $x \in X$ so that $T(x) = y$. Assume this where not true, then we could find by the Hahn-Banach Theorem (Corollary 1.4.5) an element $y^* \in Y^*$ so that $y^*(z) = 0$ for all $z \in T(X)$ and $\langle y^*, y \rangle = 1$.
(T(X) is closed). But this yields \(\langle T^*(y^*), x \rangle = \langle y^*, T(x) \rangle = 0 \), for all \(x \in X \), and, thus, \(T^*(y^*) = 0 \). Thus

\[
0 = \langle x^{**}, T^*(y^*) \rangle = \langle T^{**}(x^{**}), y^* \rangle = \langle y, y^* \rangle = 1,
\]

which is a contradiction.

Secondly assume that \(y \in T(X) \setminus T(B_X^c) \). Since \(T \) is surjective onto its (closed) image \(Z = T(X) \) it follows from the Open Mapping Theorem that \(T(B_X^c) \) is open in \(Z \), and we can use the geometric version of the Hahn-Banach Theorem 1.4.12, to find \(z^* \in Z^* \) so that \(\langle z^*, T(x) \rangle < 1 = \langle z^*, y \rangle \) for all \(x \in B_X^c \). Again by the Theorem of Hahn-Banach (Corollary 1.4.4) we can extend \(z^* \) to an element \(y^* \) in \(Y^* \). It follows that

\[
\|T^*(y^*)\| = \sup_{x \in B_X^c} \langle T^*(y^*), x \rangle = \sup_{x \in B_X^c} \langle z^*, T(x) \rangle \leq 1,
\]

and thus, since \(\|x^{**}\| < 1 \), it follows that

\[
|\langle y^*, y \rangle| = |\langle y^*, T^{**}(x^{**}) \rangle| = |\langle x^{**}, T^*(y^*) \rangle| < 1,
\]

which is a contradiction. \(\square \)

Lemma 2.4.4. Let \(T : X \to Y \) be a bounded linear operator between two Banach spaces \(X \) and \(Y \) with closed range, and assume that \(F : X \to Y \) has finite rank.

Then \(T + F \) also has closed range.

Proof. Assume the claim is not true. Then, by Proposition 1.3.10, we can choose a sequence \((x_n)\) so that

\[
\lim_{n \to \infty} (T + F)(x_n) = 0 \text{ and } \text{dist}(x_n, \mathcal{N}(T + F)) \geq 1.
\]

Since the sequence \((F(x_n) : n \in \mathbb{N})\) is a bounded sequence in a finite dimensional space, we can, after passing to a subsequence, assume that \((F(x_n) : n \in \mathbb{N})\) converges to some \(y \in Y \) and, hence,

\[
\lim_{n \to \infty} T(x_n) = -y.
\]

Since \(T \) has closed range there is an \(x \in X \), so that \(T(x) = -y \). Using again the equivalences in Proposition 1.3.10 and the fact that \(T(x_n) \to -y = T(x) \), if \(n \searrow \infty \), it follows for some constant \(C > 0 \) that

\[
\lim_{n \to \infty} \text{dist}(x - x_n, \mathcal{N}(T)) \leq \lim_{n \to \infty} C\|T(x - x_n)\| = 0,
\]
and, thus,
\[y - F(x) = \lim_{n \to \infty} F(x_n) - F(x) \in F(N(T)), \]
so we can write \(y - F(x) \) as
\[y - F(x) = F(u), \text{ where } u \in N(T). \]
Thus
\[\lim_{n \to \infty} \text{dist}(x_n - x - u, N(T)) = 0 \]
and
\[\lim_{n \to \infty} \|F(x_n) - F(x) - F(u)\| = 0. \]
\(F|_{N(T)} \) has also closed range, Proposition 1.3.10 yields (\(C \) being some positive constant)
\[\limsup_{n \to \infty} \text{dist}(x_n - x - u, N(F) \cap N(T)) \leq \limsup_{n \to \infty} C \|F(x_n) - F(x) - F(u)\| = 0. \]
Since \(T(x+u) = -y = -F(x+u) \) (by choice of \(u \)), and thus \((T+F)(x+u) = 0 \) which means that \(x + u \in N(T+F) \). Therefore
\[\limsup_{n \to \infty} \text{dist}(x_n, N(T+F)) = \limsup_{n \to \infty} \text{dist}(x_n - x - u, N(T+F)) \]
\[\leq \limsup_{n \to \infty} \text{dist}(x_n - x - u, N(T) \cap N(F)) = 0. \]
But this contradicts our assumption on the sequence \((x_n) \).

Lemma 2.4.5. Let \(X \) be a Banach space, \(A = (a_{i,j})_{i \leq m, j \leq n} \) an \(m \) by \(n \) matrix and \(B = (b_{i,j})_{i \leq p, j \leq n} \) a \(p \) by \(n \) matrix, and that \(B \) has only real entries (even if \(K = \mathbb{C} \)).

Suppose that \(y_1, \ldots, y_m \in X \), \(y_1^*, \ldots, y_p^* \in X^* \), \(\xi_1, \ldots, \xi_p \in \mathbb{R} \), and \(x_1^*, \ldots, x_n^* \in B_{X^{**}}^\circ \) satisfy the following equations:

\[\sum_{j=1}^{n} a_{i,j} x_j^* = y_i, \text{ for all } i = 1, 2 \ldots m, \text{ and } \]
\[
\langle y_i^*, \sum_{j=1}^{n} b_{i,j} x_j^* \rangle = \xi_i, \text{ for all } i = 1, 2 \ldots p.
\]

Then there are vectors \(x_1, \ldots, x_n \in B_X^\circ \) satisfying:

\[\sum_{j=1}^{n} a_{i,j} x_j = y_i, \text{ for all } i = 1, 2 \ldots m, \text{ and } \]
\[
\langle y_i^*, \sum_{j=1}^{n} b_{i,j} x_j \rangle = \xi_i, \text{ for all } i = 1, 2 \ldots p.
\]
Proof. Recall from Linear Algebra that we can write the matrix A as a product $A = U \circ P \circ V$, where U and V are invertible and P is of the form

$$P = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

where r is the rank of A and I_r the identity on \mathbb{K}^r.

For a general s by t matrix $C = (c_{i,j})_{i \leq s, j \leq t}$ consider the operator $T_C : \ell^n_\infty(X) \to \ell^m_\infty(X)$,

$$T_C : \ell^n_\infty(X) \to \ell^m_\infty(X), \quad (x_1, x_2, \ldots x_t) \mapsto \left(\sum_{j=1}^t c_{i,j} x_j : i = 1, 2\ldots m \right).$$

If $s = t$ and if C is invertible then T_C is an isomorphism. Also if $C^{(1)}$ and $C^{(2)}$ are two matrices so that the number of columns of $C^{(1)}$ is equal to the number of rows of $C^{(2)}$ one easily computes that $T_{C^{(1)} \circ C^{(2)}} = T_{C^{(1)}} \circ T_{C^{(2)}}$. Secondly it is clear that T_P is a closed operator (P defined as above), since T_P is simply the projection onto the first r coordinates in $\ell^n_\infty(X)$.

It follows therefore that $T_A = T_U \circ T_P \circ T_V$ is an operator with closed range. Secondly define the operator

$$S_A : \ell^n_\infty(X) \to \ell^m_\infty(X) \oplus \ell^p_\infty,$$

$$(x_1, \ldots x_n) \mapsto \left(T_A(x_1, \ldots x_n), \left(\left(y_i^*, \sum_{j=1}^n b_{i,j} x_j \right)_{i=1}^p \right) \right).$$

S_A can be written as the sum of S_A and a finite rank operator and has therefore also closed range by Lemma 2.4.4.

Since the second adjoint of S_A^{**} is the operator

$$S_A^{**} : \ell^m_\infty(X^{**}) \to \ell^n_\infty(X^{**}) \oplus \ell^p_\infty,$$

$$(x_1^{**}, \ldots x_n^{**}) \mapsto \left(T_A^{**}(x_1^{**}, \ldots x_n^{**}), \left(\left(y_i^*, \sum_{j=1}^n b_{i,j} x_j^{**} \right)_{i=1}^p \right) \right)$$

with

$$T_A^{**} : \ell^n_\infty(X^{**}) \to \ell^m_\infty(X^{**}), \quad (x_1^{**}, x_2^{**}, \ldots, x_n^{**}) \mapsto \left(\sum_{j=1}^t a_{i,j} x_j^{**} : i = 1, 2\ldots m \right),$$

our claim follows from Lemma 2.4.3. □
Lemma 2.4.6. Let E be a finite dimensional space and $(x_i)_{i=1}^N$ is an ε-net of S_E for some $0 < \varepsilon < \frac{1}{3}$. If $T : E \to E$ is a linear map so that

$$(1 - \varepsilon) \leq \|T(x_j)\| \leq (1 + \varepsilon), \text{ for all } j = 1, 2, \ldots N.$$

Then

$$\frac{1 - 3\varepsilon}{1 - \varepsilon} \|x\| \leq \|T(x)\| \leq \frac{1 + \varepsilon}{1 - \varepsilon} \|x\|, \text{ for all } x \in E,$$

and thus

$$\|T\| \cdot \|T^{-1}\| \leq \frac{(1 + \varepsilon)^2}{(1 - \varepsilon)(1 - 3\varepsilon)}.$$

Proof. Let $x \in X$. W.l.o.g. we can assume that $\|x\| = 1$. Pick $j \leq N$ so that $\|x - x_j\| \leq \varepsilon$. Then

$$\|T(x)\| \leq \|T(x) - T(x_j)\| + \|T(x_j)\| \leq \varepsilon \|T\| + 1 + \varepsilon,$$

and thus

$$\|T\| \leq \frac{1 + \varepsilon}{1 - \varepsilon},$$

which implies the second inequality of our claim. We also have

$$\|T(x)\| \geq \|T(x_j)\| - \|T(x - x_j)\| \geq 1 - \varepsilon - \varepsilon \frac{1 + \varepsilon}{1 - \varepsilon} = \frac{1 - 2\varepsilon + \varepsilon^2 - \varepsilon^2}{1 - \varepsilon} = \frac{1 - 3\varepsilon}{1 - 2\varepsilon},$$

which proves our claim. \qed

We are now ready to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. Let $F \subset X^*$ and $G \subset X^*$ be finite dimensional subspaces, and let $0 < \varepsilon < 1$. Choose $\delta > 0$, so that $\frac{(1 + \delta)^2}{(1 - \delta)(1 - 3\delta)} < \varepsilon$, and a δ-net $(x^{**}_j)_{j=1}^N$ of S_F. It can be shown that $(x^{**}_j)_{j=1}^N$ generates all of F, but we can also simply assume that without loss of generality, since we can add a basis of F.

Let

$$S : \mathbb{R}^N \to F, \quad (\xi_1, \xi_2 \ldots \xi_N) \mapsto \sum_{j=1}^N \xi_j x^{**}_j,$$

and note that S is surjective.

Put $H = S^{-1}(F \cap X)$, and let $(a^{(i)} : i = 1, 2 \ldots m)$ be a basis of H, write $a^{(i)}$ as $a^{(i)} = (a_{i,1}, a_{i,2} \ldots a_{i,N})$, and define A to be the m by N matrix $A = (a_{i,j})_{i \leq m, j \leq N}$. For $i = 1, 2 \ldots m$ put

$$y_i = S(a^{(i)}) = \sum_{j=1}^N a_{i,j} x^{**}_j \in F \cap X,$$
choose \(x_1^*, x_2^*, \ldots, x_N^* \in S_{X^*} \) so that \(\langle x_j^{**}, x_j^* \rangle > 1 - \delta \), and pick basis \(\{ g_1^*, g_2^*, \ldots, g_{\ell}^* \} \) of \(G \).

Consider the following system of equations in \(N \) unknowns \(z_1^{**}, z_2^{**}, \ldots, z_N^{**} \) in \(X^{**} \):

\[
\sum_{j=1}^{N} a_{i,j} z_j^{**} = y_i \quad \text{for} \quad i = 1, 2 \ldots m
\]

\[
\langle z_j^{**}, x_j^* \rangle = \langle x_j^{**}, x_j^* \rangle \quad \text{for} \quad j = 1, 2 \ldots N \text{ and}
\]

\[
\langle z_j^{**}, g_k \rangle = \langle x_j^{**}, g_k \rangle \quad \text{for} \quad j = 1, 2 \ldots N \text{ and} \quad k = 1, 2 \ldots \ell.
\]

By construction \(z_j^{**} = x_j^{**}, j = 1, 2 \ldots N \), is a solution to these equations. Since \(\|x_j^{**}\| = 1 < 1 + \delta \), for \(j = 1, 2 \ldots N \), we can use Lemma 2.4.5 and find \(x_1, x_2, \ldots, x_N \in X \), with \(\|x_j\| = 1 < 1 + \delta \), for \(j = 1, 2 \ldots N \), which solve above equations.

Define

\[
S_1 : \mathbb{R}^N \to X, \quad (\xi_1, \xi_2, \ldots, \xi_N) \mapsto \sum_{j=1}^{N} \xi_j x_j.
\]

We claim that the null space of \(S \) is contained in the null space of \(S_1 \). Indeed if we assumed that \(\xi \in \mathbb{R}^N \), and \(\sum_{j=1}^{N} \xi_j x_j \), but \(\sum_{j=1}^{N} x_j^{**} \neq 0 \), then there is an \(i \in \{1, 2, \ldots N\} \) so that

\[
\langle x_i^*, \sum_{j=1}^{N} x_j^{**} \rangle \neq 0,
\]

but since \(\langle x_j^{**}, x_j^* \rangle = \langle x_j, x_j^* \rangle \) this is a contradiction.

It follows therefore that we can find a linear map \(T : F \to X \) so that \(S_1 = TS \). Denoting the standard basis of \(\mathbb{R}^N \) by \((e_i)_{i \leq N} \) we deduce that \(x_i = S_1(e_i) = T \circ S(e_i) = T(x_j^{**}) \), and thus

\[
1 + \delta > \|x_j\| = \|T(x_j^{**})\| \geq |\langle x_j^{**}, x_j^* \rangle| = \langle x_j^{**}, x_j^* \rangle > 1 - \delta.
\]

By Lemma 2.4.6 and the choice of \(\delta \) it follows therefore that \(\|T\| \cdot \|T^{-1}\| \leq 1 + \varepsilon \).

Note that for \(\xi \in H = S^{-1}(F \cap X) \), say \(\xi = \sum_{i=1}^{m} \beta_i a^{(i)} \), we compute

\[
S_1(\xi) = \sum_{i=1}^{m} \beta_i S(a^{(i)}) = \sum_{i=1}^{m} \beta_i \sum_{j=1}^{N} a_{i,j} x_j = \sum_{i=1}^{m} \beta_i \sum_{j=1}^{N} a_{i,j} x_j^{**} = \sum_{i=1}^{m} \beta_i S(a^{(i)}) = S(\xi).
\]

We deduce therefore for \(x \in F \cap X \), that \(T(x) = x \).
Finally from the third part of the system of equations it follows, that
\[\langle x^*, T(x^{**}) \rangle = \langle x^*, x_j \rangle = \langle x^*, x_j \rangle, \ 	ext{for all } j = 1, 2 \ldots N \text{ and } x^* \in G, \]
and, thus (since the \(x_j^{**} \) generate all of \(F \)), that
\[\langle x^*, T(x^{**}) \rangle = \langle x^{**}, x^* \rangle, \ 	ext{for all } x^{**} \in F \text{ and } x^* \in G. \]

\[\square \]

Exercises

1. Prove Proposition 2.4.2.

2. Prove the following version of the Hahn Banach Theorem:

Let \(V \) be a locally convex space and \(B \subset V \) closed and \(v \in V \setminus B \).

Then there exists a continuous functional \(f : V \to \mathbb{K} \), so that
\[\sup_{w \in B} v^*(w) < f(v). \]
Chapter 3

Bases in Banach Spaces

Like every vector space a Banach space X admits an algebraic or Hamel basis, i.e. a subset $B \subset X$, so that every $x \in X$ is in a unique way the (finite) linear combination of elements in B. This definition does not take into account that we can take infinite sums in Banach spaces and that we might want to represent elements $x \in X$ as converging series. Hamel bases are also not very useful for Banach spaces, since (see Exercise 1), the coordinate functionals might not be continuous.

3.1 Schauder Bases

Definition 3.1.1. [Schauder bases of Banach Spaces]

Let X be an infinite dimensional Banach space. A sequence $(e_n) \subset X$ is called Schauder basis of X, or simply a basis of X, if for every $x \in X$, there is a unique sequence of scalars $(a_n) \subset \mathbb{K}$ so that

$$x = \sum_{n=1}^{\infty} a_n e_n.$$

Examples 3.1.2. For $n \in \mathbb{N}$ let

$$e_n = (\underbrace{0,\ldots,0}_n,1,0,\ldots) \in \mathbb{K}^\mathbb{N}$$

Then (e_n) is a basis of ℓ_p, $1 \leq p < \infty$ and c_0. We call (e_n) the unit vector of ℓ_p and c_0, respectively.

Remarks. Assume that X is a Banach space and (e_n) a basis of X.

53
a) \((e_n)\) is linear independent.

b) \(\text{span}(e_n : n \in \mathbb{N})\) is dense in \(X\), in particular \(X\) is separable.

c) Every element \(x\) is uniquely determined by the sequence \((a_n)\) so that
\[x = \sum_{j=1}^{\infty} a_n e_n. \]
So we can identify \(X\) with a space of sequences in \(\mathbb{K}^\mathbb{N}\).

Proposition 3.1.3. Let \(X\) be a normed linear space and assume that \((e_n) \subset X\) has the property that each \(x \in X\) can be uniquely represented as a series
\[x = \sum_{n=1}^{\infty} a_n e_n, \text{ with } (a_n) \subset \mathbb{K} \]
(we could call \((e_n)\) Schauder basis of \(X\) but we want to reserve this term only for Banach spaces).

For \(n \in \mathbb{N}\) and \(x \in X\) define \(e^*_n(x) \in \mathbb{K}\) to be the unique element in \(\mathbb{K}\), so that
\[x = \sum_{n=1}^{\infty} e^*_n(x) e_n. \]
Then \(e^*_n : X \to \mathbb{K}\) is linear.

For \(n \in \mathbb{N}\) let
\[P_n : X \to \text{span}(e_j : j \leq n), x \mapsto \sum_{j=1}^{n} e^*_j(x) e_n. \]
Then \(P_n : X \to X\) are linear projections onto \(\text{span}(e_j : j \leq n)\) and the following properties hold:

a) \(\dim(P_n(X)) = n\),

b) \(P_n \circ P_m = P_m \circ P_n = P_{\min(m,n)}\), for \(m, n \in \mathbb{N}\),

c) \(\lim_{n \to \infty} P_n(x) = x\), for every \(x \in X\).

Conversely if \((P_n : n \in \mathbb{N})\) is a sequence of linear projections satisfying (a), (b), and (c), and moreover are bounded, and if \(e_1 \in P_1(X) \setminus \{0\}\) and
\(e_n \in P_n(X) \cap \mathcal{N}(P_{n-1})\), with \(e_n \neq 0\), if \(n > 1\), then each \(x \in X\) can be uniquely represented as a series
\[x = \sum_{n=1}^{\infty} a_n e_n, \text{ with } (a_n) \subset \mathbb{K}, \]
so in particular \((e_n)\) is a Schauder basis of \(X\) in case \(X\) is a Banach space.
3.1. SCHAUDER BASES

Proof. The linearity of e^*_n follows from the unique representation of every $x \in X$ as $x = \sum_{j=1}^{\infty} e^*_n(x)e_n$, which implies that for x and y in X and $\alpha, \beta \in \mathbb{K}$,

$$
\alpha x + \beta y = \lim_{n \to \infty} \alpha \sum_{j=1}^{n} e^*_j(x)e_j + \beta \sum_{j=1}^{n} e^*_j(y)e_j
= \lim_{n \to \infty} \sum_{j=1}^{n} (\alpha e^*_j(x) + \beta e^*_j(y))e_j = \sum_{j=1}^{\infty} (\alpha e^*_j(x) + \beta e^*_j(y))e_j,
$$

and, on the other hand

$$
\alpha x + \beta y = \sum_{j=1}^{\infty} e^*_j(\alpha x + \beta y)e_j,
$$

thus, by uniqueness, $e^*_j(\alpha x + \beta y) = \alpha e^*_j(x) + \beta e^*_j(y)$, for all $j \in \mathbb{N}$. The conditions (a), (b) and (c) are clear.

Conversely assume that (P_n) is a sequence of bounded and linear projections satisfying (a), (b), and (c), and if $e_1 \in P_1(X) \setminus \{0\}$ and $e_n \in P_n(X) \cap \mathcal{N}(P_{n-1})$, if $n > 1$, then for $x \in X$, by (b)

$$
P_{n-1}(P_n(x) - P_{n-1}(x)) = P_{n-1}(x) - P_{n-1}(x) = 0,
and thus $P_n(x) - P_{n-1}(x) \in \mathcal{N}(P_{n-1})$ and

$$
P_n(x) - P_{n-1}(x) = P_n(P_n(x) - P_{n-1}(x)) \in P_n(X),
$$

and therefore $P_n(x) - P_{n-1}(x) \in P_n(X) \cap \mathcal{N}(P_{n-1})$. Thus we can write $P_n(x) - P_{n-1}(x) = a_n e_n$, for $n \in \mathbb{N}$, and it follows from (c) that (letting $P_0 = 0$)

$$
x = \lim_{n \to \infty} P_n(x) = \lim_{n \to \infty} \sum_{j=1}^{n} P_j(x) - P_{j-1}(x) = \lim_{n \to \infty} \sum_{j=1}^{n} a_j e_j = \sum_{j=1}^{\infty} a_j e_j.
$$

In order to show uniqueness of this representation of x assume $x = \sum_{j=1}^{\infty} b_j e_j$. From the continuity of $P_m - P_{m-1}$, for $m \in \mathbb{N}$ it follows that

$$
a_m e_m = (P_m - P_{m-1})(x) = \lim_{n \to \infty} (P_m - P_{m-1}) \left(\sum_{j=1}^{n} b_j e_j \right) = b_m e_m,
$$

and thus $a_m = b_m$. \qed
Definition 3.1.4. [Canonical Projections and Coordinate functionals]
Let X be a normed space and assume that (e_i) satisfies the assumptions of Proposition 3.1.3. The linear functionals (e_n^*) as defined in Proposition 3.1.3 are called the Coordinate Functionals for (e_n) and the projections P_n, $n \in \mathbb{N}$, are called the Canonical Projections for (e_n).

Proposition 3.1.5. Suppose X is a normed linear space and assume that $(e_n) \subset X$ has the property that each $x \in X$ can be uniquely represented as a series
$$x = \sum_{n=1}^{\infty} a_n e_n, \text{ with } (a_n) \subset \mathbb{K}.$$
If the canonical projections are bounded, and, moreover, $\sup_{n \in \mathbb{N}} \|P_n\| < \infty$ (i.e. uniformly the P_n are bounded), then (e_i) is a Schauder basis of its completion \tilde{X}.

Proof. Let $\tilde{P}_n : \tilde{X} \to \tilde{X}$, $n \in \mathbb{N}$, be the (by Proposition 1.1.4 and Exercise 1 in Section 1.2 uniquely existing) extensions of P_n. Since P_n has finite dimensional range it follows that $\tilde{P}_n(\tilde{X}) = P_n(X) = \text{span}(e_j : j \leq n)$ is finite dimensional and, thus, closed. (\tilde{P}_n) satisfies therefore (a) of Proposition 3.1.3. Since the P_n are continuous, and satisfy the equalities in (b) of Proposition 3.1.3 on a dense subset of \tilde{X}, (b) is satisfied on all of \tilde{X}. Finally, (c) of Proposition 3.1.3 is satisfied on a dense subset of \tilde{X}, and we deduce for $\tilde{x} \in \tilde{X}$, $\tilde{x} = \lim_{k \to \infty} x_k$, with $x_k \in X$, for $k \in \mathbb{N}$, that
$$\|\tilde{x} - \tilde{P}_n(\tilde{x})\| \leq \|\tilde{x} - x_k\| + \sup_{j \in \mathbb{N}} \|P_j\| \|\tilde{x} - x_k\| + \|x_k - P_n(x_k)\|$$
and, since (P_n) is uniformly bounded, we can find for given $\varepsilon > 0$, k large enough so that the first two summands do not exceed ε, and then we choose $n \in \mathbb{N}$ large enough so that the third summand is smaller than ε. It follows therefore that also (c) is satisfied on all of \tilde{X}. Thus, our claim follows from the second part of Proposition 3.1.3 applied to \tilde{X}.

We will now show that if (e_n) is a basis for a Banach space X then the coordinate functionals, and thus the canonical projections are bounded, and moreover we will show that the canonical projections are uniformly bounded.

Theorem 3.1.6. Let X be a Banach space with a basis (e_n) and let (e_n^*) be the corresponding coordinate functionals and (P_n) the canonical projections. Then P_n is bounded for every $n \in \mathbb{N}$ and
$$b = \sup_{n \in \mathbb{N}} \|P_n\|_{L(X,X)} < \infty,$$
and thus $e^*_n \in X^*$ and

$$\|e^*_n\|_{X^*} = \left\| \frac{P_n - P_{n-1}}{e_n} \right\| \leq \frac{2b}{\|e_n\|}.$$

We call b the basis constant of (e_i). If $b = 1$ we say that (e_i) is a monotone basis.

Furthermore there is an equivalent renorming $\| \cdot \|$ of $(X, \| \cdot \|)$ for which (e_n) is a monotone basis for $(X, \| \cdot \|)$.

Proof. For $x \in X$ we define

$$\|x\| = \sup_{n \in \mathbb{N}} \|P_n(x)\|,$$

since $\|x\| = \lim_{n \to \infty} \|P_n(x)\|$, it follows that $\|x\| < \infty$ for $x \in X$.

It is clear that $\| \cdot \|$ is a norm on X. Note that for $n \in \mathbb{N}$

$$\|P_n\| = \sup_{x \in X, \|x\| \leq 1} \|P_n(x)\|$$

$$= \sup_{x \in X, \|x\| \leq 1} \sup_{m \in \mathbb{N}} \|P_m \circ P_n(x)\|$$

$$= \sup_{x \in X, \|x\| \leq 1} \sup_{m \in \mathbb{N}} \|P_{\min(m,n)}(x)\| \leq 1.$$

Thus the projections P_n are uniformly bounded on $(X, \| \cdot \|)$. We also note that the \tilde{P}_n satisfy the conditions (a), (b) and (c) of Proposition 3.1.3. Indeed (a) and (b) are purely algebraic properties which are satisfied by the first part of Proposition 3.1.3. Moreover for $x \in X$ then

$$(3.1) \quad \|x - P_n(x)\| = \sup_{m \in \mathbb{N}} \|P_m(x) - P_{\min(m,n)}(x)\|$$

$$= \sup_{m \geq n} \|P_m(x) - P_n(x)\| \to 0 \text{ if } n \to \infty,$$

which verifies condition (c). Thus, it follows therefore from the second part of Proposition 3.1.3, the above proven fact that $\|P_n\| \leq 1$, for $n \in \mathbb{N}$, and Proposition 3.1.5, that (e_n) is a Schauder basis of the completion of $(X, \| \cdot \|)$ which we denote by $(\tilde{X}, \| \cdot \|)$.

We will now show that actually $\tilde{X} = X$, and thus that, $(X, \| \cdot \|)$ is already complete. Then it would follow from Corollary 1.3.6 of the Closed Graph Theorem that $\| \cdot \|$ is an equivalent norm, and thus that

$$C = \sup_{n \in \mathbb{N}} \sup_{x \in B_X} \|P_n(x)\| = \sup_{x \in B_X} \|x\| < \infty.$$
So, let \(\tilde{x} \in \tilde{X} \) and write it (uniquely) as \(\tilde{x} = \sum_{j=1}^{\infty} a_j e_j \), since \(\| \cdot \| \leq ||| \cdot ||| \), and since \(X \) is complete the series \(\sum_{j=1}^{\infty} a_j e_j \) with respect to \(||| \cdot ||| \) in \(X \) to say \(x \in X \). But now (3.1) yields that \(P_n(x) = \sum_{j=1}^{n} a_j e_j \) also converges in \(\| \cdot \| \) to \(x \). This means that \(x = \tilde{x} \), which finishes our proof.

After reading the proof of Theorem 3.1.6 one might ask whether the last part couldn’t be generalized and whether the following could be true: If \(\| \cdot \| \) and \(||| \cdot ||| \) are two norms on the same linear space \(X \), so that \(\| \cdot \| \leq ||| \cdot ||| \), and so that \((\| \cdot \|, X) \) is complete, does it then follow that \((X, ||| \cdot |||) \) is also complete (and thus \(\| \cdot \| \) and \(\| \cdot \| \) are equivalent norms). The answer is negative, as the following example shows.

Example 3.1.7. Let \(X = \ell_2 \) with its usual norm \(\| \cdot \|_2 \) and let \((b_\gamma : \gamma \in \Gamma) \subset S_{\ell_2} \) be a Hamel basis of \(\Gamma \) (by Exercise 2, \(\Gamma \) is necessarily uncountable). For \(x \in \ell_2 \) define \(||| \cdot ||| \),

\[
|||x||| = \sum_{\gamma \in \Gamma} |x_\gamma|,
\]

where \(x = \sum_{\gamma \in \Gamma} x_\gamma b_\gamma \) is the unique representation of \(x \) as a finite linear combination of elements of \((b_\gamma : \gamma \in \Gamma) \). Since \(\|b_\gamma\|_2 \), for \(\gamma \in \Gamma \), it follows for \(x = \sum_{\gamma \in \Gamma} x_\gamma b_\gamma \in \ell_2 \) from the triangle inequality that

\[
\|x\| = \sum_{\gamma \in \Gamma} |x_\gamma| = \sum_{\gamma \in \Gamma} \|x_\gamma b_\gamma\|_2 \geq \left\| \sum_{\gamma \in \Gamma} x_\gamma b_\gamma \right\|_2 = \|x\|_2.
\]

Finally both norms \(\| \cdot \| \) and \(||| \cdot ||| \), cannot be equivalent. Indeed, for arbitrary \(\varepsilon > 0 \), there is an uncountable set \(\Gamma' \subset \Gamma \), so that \(\|b_\gamma - b_{\gamma'}\|_2 < \varepsilon \), \(\gamma, \gamma' \in \Gamma' \), (\(\Gamma \) is uncountable but \(S_{\ell_2} \) is in the \(\| \cdot \|_2 \)-norm separable). for any two different elements \(\gamma, \gamma' \in \Gamma' \) it follows that

\[
\|b_\gamma - b_{\gamma'}\| < \varepsilon < 2 = \|b_\gamma - b_{\gamma'}\|.
\]

Since \(\varepsilon > 0 \) was arbitrary this proves that \(\| \cdot \| \) and \(||| \cdot ||| \) cannot be equivalent.

Definition 3.1.8. [Basic Sequences]

Let \(X \) be a Banach space. A sequence \((x_n) \subset X \setminus \{0\} \) is called basic sequence if it is a basis for \(\text{span}(x_n : n \in \mathbb{N}) \).

If \((e_j) \) and \((f_j) \) are two basic sequences (in possibly two different Banach spaces \(X \) and \(Y \)). We say that \((e_j) \) and \((f_j) \) are isomorphically equivalent if the map

\[
T : \text{span}(e_j : j \in \mathbb{N}) \to \text{span}(f_j : j \in \mathbb{N}), \quad \sum_{j=1}^{n} a_j e_j \mapsto \sum_{j=1}^{n} a_j f_j,
\]
extends to an isomorphism between the Banach spaces between $\text{span}(e_j : j \in \mathbb{N})$ and $\text{span}(f_j : j \in \mathbb{N})$.

Note that this is equivalent with saying that there are constants $0 < c \leq C$ so that for any $n \in \mathbb{N}$ and any sequence of scalars $(\lambda_j)_{j=1}^n$ it follows that

$$c \| \sum_{j=1}^n \lambda_j e_j \| \leq \| \sum_{j=1}^n \lambda_j f_j \| \leq C \| \sum_{j=1}^n \lambda_j e_j \|.$$

Proposition 3.1.9. Let X be Banach space and $(x_n : n \in \mathbb{N}) \subset X \setminus \{0\}$. The (x_n) is a basic sequence if and only if there is a constant $K \geq 1$, so that for all $m < n$ and all scalars $(a_j)_{j=1}^n \subset \mathbb{K}$ we have

$$(3.2) \quad \left\| \sum_{i=1}^m a_i x_i \right\| \leq K \left\| \sum_{i=1}^n a_i x_i \right\|.$$

In that case the basis constant is the smallest of all $K \geq 1$ so that (3.2) holds.

Proof. "⇒" Follows from Theorem 3.1.6, since $K := \sup_{n \in \mathbb{N}} \| P_n \| < \infty$ and $P_n\left(\sum_{i=1}^n a_i x_i \right) = \sum_{i=1}^m a_i x_m$, if $m \leq n$ and $(a_i)_{i=1}^n \subset \mathbb{K}$.

"⇐" Assume that there is a constant $K \geq 1$ so that for all $m < n$ and all scalars $(a_j)_{j=1}^n \subset \mathbb{K}$ we have

$$\left\| \sum_{i=1}^m a_i x_i \right\| \leq K \left\| \sum_{i=1}^n a_i x_i \right\|.$$

We first note that this implies that (x_n) is linear independent. Indeed, if we assume that $\sum_{j=1}^n a_j x_j = 0$, for some choice of $n \in \mathbb{N}$ and $(a_j)_{j=1}^n \subset \mathbb{K}$, and not all of the a_j are vanishing, we first observe that at least two of a_j's cannot be equal to 0 (since $x_j \neq 0$, for $j \in \mathbb{N}$), thus if we let $m := \min\{j : a_j \neq 0\}$, it follows that $\sum_{j=1}^m a_j x_j \neq 0$, but $\sum_{j=1}^n a_j x_j = 0$, which contradicts our assumption.

It follows therefore that (x_n) is a Hamel basis for (the vector space) $\text{span}(x_j : j \in \mathbb{N})$, which implies that the projections P_n are well defined on $\text{span}(x_j : j \in \mathbb{N})$, and satisfy (a), (b), and (c) of Proposition 3.1.3. Moreover, it follows from our assumption that

$$\| P_m \| = \sup \left\{ \left\| \sum_{j=1}^m a_j x_j \right\| : n \in \mathbb{N}, (a_j)_{j=1}^n \subset \mathbb{K}, \left\| \sum_{j=1}^n a_j x_j \right\| \leq 1 \right\} \leq K.$$

Thus, our claim follows from Proposition 3.1.5.
Also note that the proof of “⇒” implies that the smallest constant so that 3.2 is at most as big as the basis constant, and the proof of “⇐” yielded that it is at least as large as the basis constant.

Exercises

1. Let \((e_\gamma : \gamma \in \Gamma)\) be a Hamel basis of an infinite dimensional Banach space \(X\). Show that some of the coordinate functionals associated with that basis are not continuous.
 \textbf{Hint:} pick a sequence \((\gamma_n) \subset \Gamma\) of pairwise different elements of \(\Gamma\) and consider
 \[x = \sum_{n=1}^{\infty} 2^{-n} \frac{e_{\gamma_n}}{\|e_{\gamma_n}\|}. \]

2. Show that the Hamel basis of an infinite dimensional Banach space \(X\) must be uncountable.

3. For \(n \in \mathbb{N}\) define in \(c_0\)
 \[s_n = \sum_{j=1}^{n} c_j = (1, 1, \ldots, 1, 0, \ldots). \]
 Prove that \((s_n)\) is a basis for \(c_0\), but that one can reorder \((s_n)\) so that it is not a basis of \(c_0\).
 \((s_n)\) is called the \emph{summing basis of} \(c_0\).
 \textbf{Hint:} Play around with alternating series of \((s_n)\).

4. Let \(1 < p < \infty\) and assume that \((x_n)\) is a weakly null sequence in \(\ell_p\) with \(\inf_{n \in \mathbb{N}} \|x_n\| > 0\). Show that \((x_n)\) has a subsequence which is isomorphically equivalent to the unit vector basis of \(\ell_p\).

 And then deduce from this:

 Let \(T : \ell_p \to \ell_q\) with \(1 < q < p < \infty\), be a bounded linear operator. Show that \(T\) is compact, meaning that \(T(B_{\ell_p})\) is relatively compact in \(\ell_q\).
3.2 Bases of \(C[0, 1]\) and \(L_p[0, 1]\)

In the previous section we introduced the unit vector bases of \(\ell_p\) and \(c_0\). Less obvious is it to find bases of function spaces like \(C[0, 1]\) and \(L_p[0, 1]\).

Example 3.2.1. [The Spline Basis of \(C[0, 1]\)]

Let \((t_n) \subset [0, 1]\) be a dense sequence in \([0, 1]\), and assume that \(t_1 = 0\), \(t_2 = 1\). It follows that

\[
\text{mesh}(t_1, t_2, \ldots, t_n) \to 0, \text{ if } n \to \infty \text{ where}
\]

\[
\text{mesh}(t_1, t_2, \ldots, t_n) = \max \{|t_i - t_j| : i, j \in \{1, \ldots, n\}, \ i \neq j\}.
\]

For \(f \in C[0, 1]\) we let \(P_1(f)\) to be the constant function taking the value \(f(0)\), and for \(n \geq 2\) we let \(P_n(f)\) be the piecewise linear function which interpolates the \(f\) at the point \(t_1, t_2, \ldots, t_n\). More precisely, let \(0 = s_1 < s_2 < \ldots < s_n = 1\) be the increasing reordering of \(\{t_1, t_2, \ldots, t_n\}\), then define \(P_n(f)\) by

\[
P_n(f) : [0, 1] \to \mathbb{K}, \text{ with}
\]

\[
P_n(f)(s) = \frac{s_j - s}{s_j - s_{j-1}} f(s_{j-1}) + \frac{s - s_{j-1}}{s_j - s_{j-1}} f(s_j), \text{ for } s \in [s_{j-1}, s_j].
\]

We note that \(P_n : C[0, 1] \to C[0, 1]\) is a linear projection and that \(\|P_n\| = 1\), and that (a), (b), (c) of Proposition 3.1.3 are satisfied. Indeed, the image of \(P_n(C[0, 1])\) is generated by the functions \(f_1 \equiv 1, f_2(s) = s, \text{ for } s \in [0, 1]\), and for \(n \geq 2, f_n(s)\) is the functions with the property \(f(t_n) = 1, f(t_j) = 0, j \in \{1, 2, \ldots\} \setminus \{t_n\}\), and is linear between any \(t_j\) and the next bigger \(t_i\). Thus \(\dim(P_n(C[0, 1]))) = n\). Property (b) is clear, and property (c) follows from the fact that elements of \(C[0, 1]\) are uniformly continuous, and condition (3.3).

Also note that for \(n > 1\) it follows that \(f_n \in P_n(C[0, 1]) \cap N(P_{n-1}) \setminus \{0\}\) and thus it follows from Proposition 3.1.3 that \((f_n)\) is a monotone basis of \(C[0, 1]\).

Now we define a basis of \(L_p[0, 1]\), the **Haar basis of \(L_p[0, 1]\)**. Let

\[
T = \{(n, j) : n \in \mathbb{N}_0, j = 1, 2, \ldots, 2^n \cup \{0\}\}.
\]

We partially order the elements of \(T\) as follows

\[
(n_1, j_1) < (n_2, j_2) \iff \ [(j_2 - 1)2^{-n_2}, j_22^{-n_2}] \subseteq [(j_1 - 1)2^{-n_1}, j_12^{-n_1}]
\]

\[
\iff (j_1 - 1)2^{-n_1} \leq (j_2 - 1)2^{-n_2} < j_22^{-n_2} \leq j_12^{-n_1}, \text{ and } n_1 < n_2.
\]
whenever \((n_1, j_1), (n_2, j_2) \in T\)
and
\[0 < (n, j), \quad \text{whenever} \quad (n, j) \in T \setminus \{0\} \]

Let \(1 \leq p < \infty\) be fixed. We define the Haar basis \((h_t)_{t \in T}\) and the in \(L_p\) normalized Haar basis \((h_t^{(p)})_{t \in T}\) as follows.
\[h_0 = h_0^{(p)} \equiv 1 \text{ on } [0, 1] \text{ and for } n \in \mathbb{N}_0 \text{ and } j = 1, 2 \ldots 2^n \text{ we put} \]
\[h_{(n,j)} = 1_{[(j-1)2^{-n}, (j - \frac{1}{2})2^{-n})} - 1_{[(j - \frac{1}{2})2^{-n}, j2^{-n})}.\]

and we let
\[
\Delta_{(n,j)} = \text{supp}(h_{(n,j)}) = [(j - 1)2^{-n}, j2^{-n}],
\]
\[
\Delta^+_{(n,j)} = [(j - 1)2^{-n}, (j - \frac{1}{2})2^{-n}),
\]
\[
\Delta^-_{(n,j)} = [(j - \frac{1}{2})2^{-n}, j2^{-n}).
\]

We let \(h_{(n,j)}^{(\infty)} = h_{(n,j)}.\) And for \(1 \leq p < \infty\)
\[h_{(n,j)}^{(p)} = \frac{h_{(n,j)}}{\|h_{(n,j)}\|_p} = 2^{n/p}(1_{[(j-1)2^{-n}, (j - \frac{1}{2})2^{-n})} - 1_{[(j - \frac{1}{2})2^{-n}, j2^{-n})}).\]

Note that \(\|h_t\|_p = 1\) for all \(t \in T\) and that supp\((h_t) \subset \text{supp}(h_s)\) if and only if \(s \leq t.\)

Theorem 3.2.2. If one orders \((h_t^{(p)})_{t \in T}\) linearly in any order compatible with the order on \(T\) then \((h_t^{(p)})\) is a monotone basis of \(L_p[0, 1]\) for all \(1 \leq p < \infty.\)

Remark. a linear order compatible with the order on \(T\) is for example the lexicographical order
\[h_0, h_{(0,1)}, h_{(1,1)}, h_{(1,2)}, h_{(2,1)}, h_{(2,2)}, \ldots.\]

Important observation: if \((h_t : t \in T)\) is linearly ordered into \(h_0, h_1, \ldots,\) which is compatible with the partial order of \(T,\) then the following is true:
3.2. BASES OF $C[0, 1]$ AND $L_p[0, 1]$

If $n \in \mathbb{N}$ and and if

$$h = \sum_{j=1}^{n-1} a_j h_j,$$

is any linear combination of the first $n - 1$ elements, then h is constant on the support of h_{n-1}. Moreover h can be written as a step function

$$h = \sum_{j=1}^{N} b_j 1_{[s_{j-1}, s_j)},$$

with $0 = s_0 < s_1 < \ldots s_N$, so that

$$\int_{s_{j-1}}^{s_j} h_n(t) dt = 0.$$

As we will see later, if $1 < p < \infty$, any linear ordering of $(h_t : t \in T)$ is a basis of $L_p[0, 1]$, but not necessarily a monotone one.

Proof of Theorem 3.2.2. First note that the indicator functions on all dyadic intervals are in span($h_t : t \in T$). Indeed: $1_{[0, 1/2)} = (h_0 + h_{(0, 1)}/2$, $1_{(1/2, 1]} = (h_0 - h_{(0, 1)})/2$, $1_{[0, 1/4)} = 1/2(1_{[0, 1/2]} - h_{(1, 1)})$, etc.

Since the indicator functions on all dyadic intervals are dense in $L_p[0, 1]$ it follows that span($h_t : t \in T$).

Let (h_n) be a linear ordering of $(h_t^{(p)})_{t \in T}$ which is compatible with the ordering of T.

Let $n \in \mathbb{N}$ and $(a_i)_{i=1}^{n}$ a scalar sequence. We need to show that

$$\left\| \sum_{i=1}^{n-1} a_i h_i \right\| \leq \left\| \sum_{i=1}^{n} a_i h_i \right\|.$$

As noted above, on the set $A = \text{supp}(h_n)$ the function $f = \sum_{i=1}^{n-1} a_i h_i$ is constant, say $f(x) = a$, for $x \in A$, therefore we can write

$$1_A(f + a_n h_n) = 1_{A^+}(a + a_n) + 1_{A^-}(a - a_n),$$

where A^+ is the first half of interval A and A^- the second half. From the convexity of $[0, \infty) \ni r \mapsto r^p$, we deduce that

$$\frac{1}{2} \left[|a + a_n|^p + |a - a_n|^p \right] \geq |a|^p,$$
and thus
\[
\int |f + a_n h_n|^p dx = \int_{A^c} |f|^p dx + \int_A |a + a_n|^p 1_{A^c} + |a - a_n|^p 1_A dx
\]
\[
= \int_{A^c} |f|^p dx + \frac{1}{2} m(A) [|a + a_n|^p + |a - a_n|^p]
\]
\[
\geq \int_{A^c} |f|^p dx + m(A) |a|^p = \int |f|^p dx
\]
which implies our claim. \qed

Proposition 3.2.3. Since for \(1 \leq p < \infty \), and \(1 < q \leq \infty \), with \(\frac{1}{p} + \frac{1}{q} \) it is easy to see that for \(s, t \in T \)

\[
(3.4) \quad \langle h_s^{(p)}, h_t^{(q)} \rangle = \delta(s, t),
\]

we deduce that \((h_t^{(q)})_{t \in T} \) are the coordinate functionals of \((h_t^{(p)})_{t \in T} \).

Exercises

1. Decide whether or not the monomial 1, \(x, x^2, \ldots \) are a Schauder basis of \(C[0,1] \).

2. Show that the Haar basis in \(L_1[0,1] \) can be reordered in such a way that it is not a Schauder basis anymore.
3.3 Shrinking, Boundedly Complete Bases

Proposition 3.3.1. Let \((e_n)\) be a Schauder basis of a Banach space \(X\), and let \((e^*_n)\) be the coordinate functionals and \((P_n)\) the canonical projections for \((e_n)\).

Then

a) \(P^*_n(x^*) = \sum_{j=1}^{n} \langle x^*, e_j \rangle e^*_j = \sum_{j=1}^{n} \langle \chi(e_j), x^* \rangle e^*_j, \) for \(n \in \mathbb{N}\) and \(x^* \in X^*\).

b) \(x^* = \sigma(X^*, X) - \lim_{n \to \infty} P^*_n(x^*),\) for \(x^* \in X^*\).

c) \((e^*_n)\) is a Schauder basis of \(\text{span}(e^*_n : n \in \mathbb{N})\) whose coordinate functionals are \((e_n)\).

Proof. (a) For \(n \in \mathbb{N}, x^* \in X^*\) and \(x = \sum_{j=1}^{\infty} \langle e^*_j, x \rangle e_j \in X\) it follows that

\[\langle P^*_n(x^*), x \rangle = \langle x^*, P_n(x) \rangle = \left\langle x^*, \sum_{j=1}^{n} \langle e^*_j, x \rangle e_j \right\rangle = \left\langle \sum_{j=1}^{n} \langle x^*, e_j \rangle e^*_j, x \right\rangle \]

and thus

\[P^*_n(x^*) = \sum_{j=1}^{n} \langle x^*, e_j \rangle e^*_j. \]

(b) For \(x \in X\) and \(x^* \in X^*\)

\[\langle x^*, x \rangle = \lim_{n \to \infty} \langle x^*, P_n x \rangle = \lim_{n \to \infty} \langle P^*_n(x^*), x \rangle. \]

(c) It follows for \(m \leq n\) and \((a_i)_{i=1}^{n} \subset \mathbb{K},\) that

\[
\left\| \sum_{i=1}^{m} a_i e^*_i \right\| = \sup_{x \in B_X} \left| \sum_{i=1}^{m} a_i \langle e^*_i, x \rangle \right| = \sup_{x \in B_X} \left| \sum_{i=1}^{n} a_i \langle e^*_i, P_m(x) \rangle \right| \leq \left\| \sum_{i=1}^{m} a_i e^*_i \right\| \left\| P_m \right\| \leq \sup_{j \in \mathbb{N}} \left\| P_j \right\| \cdot \left\| \sum_{i=1}^{n} a_i e^*_i \right\|.
\]

It follows therefore from Proposition 3.1.9 that \((e^*_n)\) is a basic sequence, thus, a basis of \(\text{span}(e^*_n)\). Since \(\langle \chi(e_j), e^*_i \rangle = \langle e^*_i, e_j \rangle = \delta_{i,j}\), it follows that \((\chi(e_n))\) are the coordinate functionals for \((e^*_n)\). \qed
CHAPTER 3. BASES IN BANACH SPACES

Remark. If X is a space with basis (e_n) one can identify X with a vector space of sequences $x = (\xi_n) \subset \mathbb{K}$. If (e^*_n) are coordinate functionals for (e_n) we can also identify the subspace $\text{span}(e^*_n : n \in \mathbb{N})$ with a vector space of sequences $x^* = (\eta_n) \subset \mathbb{K}$. The way such a sequence $x^* = (\eta_n) \in X^*$ acts on elements in X is via the infinite scalar product:

$$\langle x^*, x \rangle = \left\langle \sum_{n \in \mathbb{N}} \eta_n e^*_n, \sum_{n \in \mathbb{N}} \xi_n e_n \right\rangle = \sum_{n \in \mathbb{N}} \eta_n \xi_n.$$

We want to address two questions for a basis (e_n) of a Banach space X and its coordinate functionals (e^*_n):

1. Under which conditions it follows that $X^* = \overline{\text{span}(e^*_n)}$?
2. Under which condition it follows that the map $J : X \to \overline{\text{span}(e^*_n)}^*$, with

$$J(x)(z^*) = \langle z^*, x \rangle, \text{ for } x \in X \text{ and } z^* \in \overline{\text{span}(e^*_n)},$$

an isomorphy or even an isometry?

We need first the following definition and some observations.

Definition 3.3.2. [Block Bases]
Assume (x_n) is a basic sequence in Banach space X, a block basis of (x_n) is a sequence $(z_n) \subset X \setminus \{0\}$, with

$$z_n = \sum_{j=k_{n-1}+1}^{k_n} a_j x_j, \text{ for } n \in \mathbb{N}, \text{ where } 0 = k_0 < k_1 < k_2 < \ldots \text{ and } (a_j) \subset \mathbb{K}.$$

We call (z_n) a convex block of (x_n) if the a_j are non negative and $\sum_{j=k_{n-1}+1}^{k_n} a_j = 1$.

Proposition 3.3.3. The block basis (z_n) of a basic sequence (x_n) is also a basic sequence, and the basis constant of (z_n) is smaller or equal to the basis constant of (x_n).

Proof. Let K be the the basis constant of (x_n), let $m \leq n$ in \mathbb{N}, and $(b_i)_{i=1}^m \subset \mathbb{K}$. Then

$$\left\| \sum_{i=1}^{m} b_i z_i \right\| = \left\| \sum_{i=1}^{k_i} \sum_{j=k_{i-1}+1}^{k_i} b_i a_j x_j \right\|$$
3.3. SHRINKING, BOUNDEDLY COMPLETE BASES

\[
\leq K \left\| \sum_{i=1}^{n} \sum_{j=k_{i-1}+1}^{k_{i}} b_{i}a_{j}x_{j} \right\| = K \left\| \sum_{i=1}^{n} b_{i}z_{i} \right\|
\]

\[\text{Theorem 3.3.4.} \quad \text{For a Banach space with a basis } (e_{n}) \text{ and its coordinate functionals } (e_{n}^{*}) \text{ the following are equivalent.}
\]

\begin{enumerate}[a)]
\item \(X^{*} = \text{span}(e_{n}^{*} : n \in \mathbb{N}) \) (and, thus, by Proposition 3.3.1, \((e_{n}^{*})\) is a basis of \(X^{*}\) whose canonical projections are \(P_{n}^{*}\)).
\item For every \(x^{*} \in X^{*} \),
\[
\lim_{n \to \infty} \|x^{*}|_{\text{span}(e_{j}: j > n)}\| = \lim_{n \to \infty} \sup_{x \in \text{span}(e_{j}: j > n), \|x\| \leq 1} |\langle x^{*}, x \rangle| = 0.
\]
\item Every bounded block basis of \((e_{n})\) is weakly convergent to 0.
\end{enumerate}

We call the basis \((e_{n})\) shrinking if these conditions hold.

Remark. Recall that by Corollary 2.1.6 the condition (c) is equivalent with

\[c') \quad \text{Every bounded block basis of } (e_{n}) \text{ has a further convex block which converges to } 0 \text{ in norm.}\]

Proof of Theorem 3.3.4. “(a)⇒(b)” Let \(x^{*} \in X^{*} \) and, using (a), write it as
\[
x^{*} = \sum_{j=1}^{\infty} a_{j}e_{j}^{*}.
\]
Then
\[
\lim_{n \to \infty} \sup_{x \in \text{span}(e_{j}: j > n), \|x\| \leq 1} |\langle x^{*}, x \rangle| = \lim_{n \to \infty} \sup_{x \in \text{span}(e_{j}: j > n), \|x\| \leq 1} |\langle x^{*}, (I - P_{n})(x) \rangle|
\]
\[
= \lim_{n \to \infty} \sup_{x \in \text{span}(e_{j}: j > n), \|x\| \leq 1} |\langle (I - P_{n}^{*})(x^{*}), x \rangle|
\]
\[
\leq \lim_{n \to \infty} \| (I - P_{n}^{*})(x^{*}) \| = 0.
\]

“(b)⇒(c)” Let \((z_{n})\) be a bounded block basis of \((x_{n})\), say
\[
z_{n} = \sum_{j=k_{n-1}+1}^{k_{n}} a_{j}x_{j}, \text{ for } n \in \mathbb{N}, \text{ with } 0 = k_{0} < k_{1} < k_{2} < \ldots \text{ and } (a_{j}) \subset \mathbb{K}.
\]
and \(x^{*} \in X^{*} \). Then, letting \(C = \sup_{j \in \mathbb{N}} \|z_{j}\| \),
\[
|\langle x^{*}, z_{n} \rangle| \leq \sup_{z \in \text{span}(e_{j}: j \geq k_{n-1}), \|z\| \leq C} |\langle x^{*}, z \rangle| \to_{n \to \infty} 0, \text{ by condition (b)},
\]
thus, \((z_n)\) is weakly null.

\[\neg(a) \implies \neg(c) \]

Assume there is an \(x^* \in S_{X^*}\), with \(x^* \notin \overline{\text{span}(e_j^*: j \in \mathbb{N})}\). It follows for some \(0 < \varepsilon \leq 1\)

\[
(3.5) \quad \varepsilon = \limsup_{n \to \infty} \|x^* - P_n^*(x^*)\| > 0.
\]

By induction we choose \(z_1, z_2, \ldots \) in \(B_X\) and \(0 = k_0 < k_1 < \ldots\), so that \(z_n = \sum_{j=k_{n-1}+1}^{k_n} a_j e_j\), for some choice of \((a_j)_{j=k_{n-1}+1}^{k_n}\) and \(\|x^*, z_n\| \geq \varepsilon / (1 + K)\), where \(K = \sup_{j \in \mathbb{N}} \|P_j\|\). Indeed, let \(z_1 \in B_X \cap \text{span}(e_j)\), so that \(\|x^*, z_1\| \geq \varepsilon / (1 + K)\) and let \(k_1 = \min\{k : z_1 \in \text{span}(e_j : j \leq k)\}\). Assuming \(z_1, z_2, \ldots \) has been chosen. Using (3.5) we can choose \(m > k_n\) so that \(\|x^* - P_m^*(x^*)\| > \varepsilon / 2\) and then we let \(\tilde{z}_{n+1} \in B_X \cap \text{span}(e_i : i \in \mathbb{N})\) with

\[|\langle x^*, P_m^*(x^*) \rangle, \tilde{z}_{n+1} \rangle| = |\langle x^*, \tilde{z}_{n+1} - P_m(\tilde{z}_{n+1}) \rangle| > \varepsilon / 2.\]

Finally choose

\[z_{n+1} = \frac{\tilde{z}_{n+1} - P_m(\tilde{z}_{n+1})}{1 + K} \in B_X \]

and

\[k_{n+1} = \min\{k : z_{n+1} \in \text{span}(e_j : j \leq k)\}.\]

It follows that \((z_n)\) is a bounded block basis of \((e_n)\) which is not weakly null. \(\square\)

Examples 3.3.5. Note that the unit vector bases of \(\ell_p\), \(1 < p < \infty\), and \(c_0\) are shrinking. But the unit vector basis of \(\ell_1\) is not shrinking (consider \((1, 1, 1, 1, 1, \ldots) \in \ell_1^* = \ell_\infty^*\).

Proposition 3.3.6. Let \((e_j)\) be a shrinking basis for a Banach space \(X\) and \((e_j^*)\) its coordinate functionals. Put

\[Y = \{(a_i) \subseteq K : \sup_{n} \left\| \sum_{j=1}^{n} a_je_j \right\| < \infty\}.\]

Then \(Y\) with the norm

\[\|(a_i)\| = \sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^{n} a_je_j \right\|,\]

is a Banach space and

\[T : X^{**} \to Y, \quad x^{**} \mapsto (\langle x^{**}, e_j^* \rangle)_{j \in \mathbb{N}},\]

is an isomorphism between \(X^{**}\) and \(Y\).

If \((e_n)\) is monotone then \(T\) is an isometry.
Remark. Note that if $a_j = 1$, for $j \in \mathbb{N}$, then in c_0

$$\sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^{n} a_j e_j \right\|_{c_0} = 1,$$

but the series $\sum_{j \in \mathbb{N}} a_j e_j$ does not converge in c_0.

Considering X as a subspace of X^{**} (via the canonical embedding) the image of X under T is the space of sequences

$$Z := \left\{ (a) \in Y : \sum_{j=1}^{\infty} a_j e_j \text{ converges in } X \right\}.$$

Proof of Proposition 3.3.6. Let K denote the basis constant of $(e_n), (e_n^*)$ the coordinate functionals, and (P_n) the canonical projections. It is straightforward to check that Y is a vector space and that $\| \cdot \|$ is a norm on Y.

For $x^* \in X^*$ and $x^{**} \in X^{**}$ we have by Proposition 3.3.1

$$P_n^*(x^*) = \sum_{j=1}^{n} \langle x^*, e_j^* \rangle e_j^* \text{ and }$$

$$\langle P_n^{**}(x^{**}), x^* \rangle = \left\langle x^{**}, \sum_{j=1}^{n} \langle x^*, e_j^* \rangle e_j^* \right\rangle = \left\langle \sum_{j=1}^{n} \langle x^{**}, e_j^* \rangle e_j, x^* \right\rangle,$$

which implies that

\begin{equation}
(3.6) \quad \| T(x^{**}) \| = \sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^{n} \langle x^{**}, e_j^* \rangle e_j \right\|_{X} = \sup_{n \in \mathbb{N}} \| P_n^{**}(x^{**}) \| \leq K \| x^{**} \|.
\end{equation}

Thus T is bounded and $\| T \| \leq K$.

Assume that $(a_n) \in Y$. We want to find $x^{**} \in X^{**}$, so that $T(x^{**}) = (a_n)$. Put

$$x_n^{**} = \sum_{j=1}^{n} a_j e_j, \text{ for } n \in \mathbb{N}.$$

(where we identify X with its canonical image in X^{**} and, thus, e_j with $\chi(e_j) \in X^{**}$) Since

$$\| x_n^{**} \|_{X^{**}} = \left\| \sum_{j=1}^{n} a_j e_j \right\|_X \leq \|(a_i)\|, \text{ for all } n \in \mathbb{N},$$
and since X^* is separable (and thus $(B_{X^{**}}, \sigma(X^{**}, X^*))$ is metrizable by Exercise 8 in Chapter 2) $(x_{n_j}^{**})$ has a w^*-converging subsequence $x_{n_j}^{**}$ to an element x^{**} with

$$
\|x^{**}\| \leq \limsup_{n \to \infty} \|x_{n_j}^{**}\| \leq \|(a_j)\|.
$$

It follows for $m \in \mathbb{N}$ that

$$
\langle x^{**}, e_m^* \rangle = \lim_{j \to \infty} \langle x_{n_j}^{**}, e_m^* \rangle = a_m,
$$

and thus it follows that $T(x^{**}) = (a_j)$, and thus that T is surjective.

Finally, since (e_n^*) is a basis for X^* it follows for any x^{**}

$$
\|T(x^{**})\| = \sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^{n} \langle x^{**}, e_j^* \rangle e_j \right\| = \sup_{n \in \mathbb{N}, x^* \in B_{X^*}} \left| \sum_{j=1}^{n} \langle x^{**}, e_j^* \rangle \langle x^*, e_j \rangle \right| = \sup_{x^* \in B_{X^*}} \sup_{n \in \mathbb{N}} \left\| \langle x^{**}, P^*_n(x^*) \rangle \right\| \geq \|x^{**}\| \quad \text{(since $P^*_n(x^*) \to x^*$ if $n \to \infty$)},
$$

which proves that T is an isomorphism, and, that $\|T(x^*)\| \geq \|x^{**}\|$, for $x^{**} \in X^{**}$. Together with (3.6) that shows T is an isometry if $K = 1$.

Lemma 3.3.7. Let X be a Banach space with a basis (e_n), with basis constant K and let (e_n^*) be its coordinate functionals. Let $Z = \text{span}(e_n^* : n \in \mathbb{N}) \subset X^*$ and define the operator

$$
S : X \to Z^*, \quad x \mapsto \chi(x)|_Z \quad \text{i.e.} \quad S(x)(z) = \langle z, x \rangle, \text{ for } z \in Z \text{ and } x \in X.
$$

Then S is an isomorphic embedding of X into Z^* and for all $x \in X$.

$$
\frac{1}{K} \|x\| \leq \|S(x)\| \leq \|x\|.
$$

Moreover, the sequence $(S(e_n)) \subset Z^*$ are the coordinate functionals of (e_n^*) (which by Proposition 3.3.1 is a basis of Z).

Proof. For $x \in X$ note that

$$
\|S(x)\| = \sup_{z \in Z, \|z\|_{X^*} \leq 1} |\langle z, x \rangle| \leq \sup_{x^* \in B_{X^*}} |\langle x^*, x \rangle| = \|x\|,
$$

By Corollary 1.4.6 of the Hahn Banach Theorem.
On the other hand, again by using that Corollary of the Hahn Banach Theorem, we deduce that

\[
\|x\| = \sup_{w^* \in B_X^*} |\langle w^*, x \rangle| \\
= \lim_{w^* \in B_X^*} \lim_{n \to \infty} |\langle w^*, P_n(x) \rangle| \\
= \lim_{w^* \in B_X^*} \lim_{n \to \infty} |\langle P_n^*(w^*), x \rangle| \\
\leq \sup_{n \in \mathbb{N}} \sup_{w^* \in B_X^*} |\langle P_n^*(w^*), x \rangle| \\
\leq \sup_{n \in \mathbb{N}} \sup_{\|z\| \leq 1} \sup_{\|w\| \leq 1} |\langle z, x \rangle| = K\|S(x)\|.
\]

\[\square \]

Theorem 3.3.8. Let \(X \) be a Banach space with a basis \((e_n)\), and let \((e_n^*)\) be its coordinate functionals. Let \(Z = \text{span}(e_n^* : n \in \mathbb{N}) \subset X^* \). Then the following are equivalent

a) \(X \) is isomorphic to \(Z^* \), via the map \(S \) as defined in Lemma 3.3.7

b) \((e_n^*)\) is a shrinking basis of \(Z \).

c) If \((a_j) \subset \mathbb{K}\), with the property that

\[
\sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^{n} a_j e_j \right\| < \infty,
\]

then \(\sum_{j=1}^{\infty} a_j e_j \) converges.

In that case we call \((e_n)\) boundedly complete.

Proof. “(a) \(\Rightarrow\) (b)” Assuming condition (a) we will verify condition (b) of Theorem 3.3.4 for \(Z \) and its basis \((e_n^*)\). So let \(z^* \in Z^* \). By (a) we can write \(z^* = S(x) \) for some \(x \in X \). Since \(x = \lim_{n \to \infty} P_n(x) \), where \((P_n)\) are the canonical projection for \((e_n)\), we deduce that

\[
\sup_{w \in \text{span}(e_j^* : j > n)} \|w\| \leq 1 \langle z^*, w \rangle = \sup_{w \in \text{span}(e_j^* : j > n)} \|w\| \leq 1 \langle S(x), w \rangle \\
= \sup_{w \in \text{span}(e_j^* : j > n)} \|w\| \leq 1 \langle w, x \rangle \\
= \sup_{w \in \text{span}(e_j^* : j > n)} \|w\| \leq 1 \langle w, (I - P_n)(x) \rangle.
\]
It follows now from Theorem 3.3.4 that \((e^*_j)\) is a shrinking basis of \(Z\).

“\((b) \Rightarrow (c)\)” Assume \((b)\) and let \((a_j) \subset \mathbb{K}\) so that

\[
\|a_j\| = \sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^n a_j e_j \right\| = \sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^n a_j \chi(e_j) \right\| < \infty.
\]

By Proposition 3.3.6 there is an \(x^{**} \in X^{**}\) so that \(\langle x^{**}, e^*_n \rangle = a_n\) for all \(n \in \mathbb{N}\). Let \(z^*\) be the restriction of \(x^{**}\) to the space \(Z\). Since \((e^*_j)\) is a shrinking basis of \(Z\), since by Lemma 3.3.7 \((S(e^*_N))\) are the coordinate functionals we can write (in a unique way)

\[
z^* = \sum_{j=1}^{\infty} b_j S(e_j)
\]

But this means that \(a_j = \langle x^{**}, e^*_j \rangle = \langle z^*, e^*_j \rangle = b_j\) for all \(j \in \mathbb{N}\), and since \(S\) is an isomorphism between \(X\) and its image it follows that \(\sum_{j=1}^{\infty} a_j e_j\) converges in norm in \(X\).

“(c) \Rightarrow (a)” By Lemma 3.3.7 it is left to show that the operator \(S\) is surjective. Thus, let \(z^* \in Z^*\). Since \((e^*_n)\) is a basis of \(Z\) and \((S(e_n)) \subset Z^*\) are the coordinate functionals of \((e^*_n)\), it follows from Proposition 3.3.1 that \(z^*\) is the \(w^*\) limit of \((z^*_n)\) where

\[
z^*_n = \sum_{j=1}^n \langle z^*, e^*_j \rangle S(e_j).
\]

Since \(w^*\)-converging sequences are bounded it follows that

\[
\sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^n \langle z^*, e^*_j \rangle S(e_j) \right\| < \infty
\]

and, thus, by Lemma 3.3.7

\[
\sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^n \langle z^*, e^*_j \rangle e_j \right\| < \infty.
\]

By our assumption \((c)\) it follows therefore that \(x = \sum_{j=1}^n \langle z^*, e^*_j \rangle e_j\) converges in \(X\), and moreover

\[
S(x) = \lim_{n \to \infty} \sum_{j=1}^n \langle z^*, e^*_j \rangle S(e_j) = z^*,
\]

which proves our claim.
3.3. SHRINKING, BOUNDEDLY COMPLETE BASES

Theorem 3.3.9. Let X be a Banach space with a basis (e_n). Then X is reflexive if and only if (e_j) is shrinking and boundedly complete, or equivalently if (e_j) and (e^*_j) are shrinking.

Proof. Let (e^*_n) be the coordinate functionals of (e_n) and (P_n) be the canonical projections for (e_n).

\Rightarrow Assume that X is reflexive. By Proposition 3.3.1 it follows for every $x^* \in X^*$

$$x^* = w^* - \lim_{n \to \infty} \sum_{j=1}^{n} P^*_n(x^*) = w - \lim_{n \to \infty} P^*_n(x^*),$$

which implies that $x^* \in \overline{\text{span}(e^*_n : n \in \mathbb{N})}^w$, and thus, by Proposition 2.1.5 $x^* \in \overline{\text{span}(e^*_n : n \in \mathbb{N})}^\|$. It follows therefore that $X^* = \overline{\text{span}(e^*_n : n \in \mathbb{N})}^\|$ and thus that (e_j) is shrinking (by Proposition 3.3.1).

Thus X^* is a Banach space with a basis (e^*_j) which is also reflexive. We can therefore apply to X^* what we just proved for X and deduce that (e^*_n) is a shrinking basis for X^*. But, by Theorem 3.3.8 (in this case $Z = X^*$) this means that (e_n) is boundedly complete.

\Leftarrow Assume that (e_n) is shrinking and boundedly complete, and let $x^{**} \in X^{**}$. Then

$$X^{**} = \sigma(X^{**}, X^*) - \lim_{n \to \infty} \sum_{j=1}^{n} \langle x^{**}, e^*_j \rangle \chi(e_j)$$

\[\begin{align*}
&= \| \cdot \| - \lim_{n \to \infty} \sum_{j=1}^{n} \langle x^{**}, e^*_j \rangle \chi(e_j) \in \chi(X) \\
&= \left[\text{By Proposition 3.3.1 and the fact that } X^* = \overline{\text{span}(e^*_j : j \in \mathbb{N})} \text{ has } (e^*_j) \text{ as a basis, since } (e_j) \text{ is shrinking} \right] \\
&= \left[\text{Since } \sup_{n \in \mathbb{N}} \| \sum_{j=1}^{n} \langle P^{**}(x^{**}), e^*_j \rangle e_j \| < \infty \text{, by Exercise 9 in Chapter 2, and since } (e_j) \text{ is boundedly complete} \right]
\]

which proves our claim. \qed

The last Theorem in this section describes by how much one can perturb a basis of a Banach space X and still have a basis of X.

Theorem 3.3.10. [The small Perturbation Lemma]

Let (x_n) be a basic sequence in a Banach space X, and let (x^*_n) be the coordinate functionals (they are elements of $\overline{\text{span}(x_j : j \in \mathbb{N})}$) and assume
that \((y_n)\) is a sequence in \(X\) such that
\[
 c = \sum_{n=1}^{\infty} \|x_n - y_n\| \cdot \|x_n^*\| < 1.
\]

Then
a) \((y_n)\) is also basic in \(X\) and isomorphically equivalent to \((x_n)\), more precisely
\[
(1 - c) \sum_{n=1}^{\infty} a_n x_n \leq \sum_{n=1}^{\infty} a_n y_n \leq (1 + c) \sum_{n=1}^{\infty} a_n x_n,
\]
for all in \(X\) converging series \(x = \sum_{n \in \mathbb{N}} a_n x_n\).

b) If \(\text{span}(x_j : j \in \mathbb{N})\) is complemented in \(X\), then so is \(\text{span}(y_j : j \in \mathbb{N})\).

c) If \((x_n)\) is a Schauder basis of all of \(X\), then \((y_n)\) is also a Schauder basis of \(X\) and it follows for the coordinate functionals \((y_n^*)\) of \((y_n)\), that \(y_n^* \in \text{span}(x_j^* : j \in \mathbb{N})\), for \(n \in \mathbb{N}\).

Proof. By Corollary 1.4.4 of the Hahn Banach Theorem we extend the functionals \(x_n^*\) to functionals \(\tilde{x}_n^* \in X^*\), with \(\|\tilde{x}_n^*\| = \|x_n^*\|\), for all \(n \in \mathbb{N}\).

Consider the operator:
\[
 T : X \to X, \quad x \mapsto \sum_{n=1}^{\infty} \langle \tilde{x}_n^*, x \rangle (x_n - y_n).
\]

Since \(\sum_{n=1}^{\infty} \|x_n - y_n\| \cdot \|x_n^*\| < 1\), \(T\) is well defined, linear and bounded and \(\|T\| \leq c < 1\). It follows \(S = Id - T\) is an isomorphism between \(X\) and itself. Indeed, for \(x \in X\) we have, \(\|S(x)\| \geq \|x\| - \|T\| \cdot \|x\| \geq (1 - c)\|x\|\) and if \(y \in X\), define \(x = \sum_{n=0}^{\infty} T^n(y) (T^0 = Id)\) then
\[
 (Id - T)(x) = \sum_{n=0}^{\infty} T^n(y) - T\left(\sum_{n=0}^{\infty} T^n(y)\right) = \sum_{n=0}^{\infty} T^n(y) - \sum_{n=1}^{\infty} T^n(y) = y.
\]
Thus \(Id - T\) is surjective, and, it follows form Corollary 1.3.6 that \(Id - T\) is an isomorphism between \(X\) and itself.

(a) We have \((I - T)(x_n) = y_n\), for \(n \in \mathbb{N}\), this means in particular that \((y_n)\) is basic and \((x_n)\) and \((y_n)\) are isomorphically equivalent.

(b) Let \(P : X \to \text{span}(x_n : n \in \mathbb{N})\) be a bounded linear projection onto \(\text{span}(x_n : n \in \mathbb{N})\). Then it is easily checked that
\[
 Q : X \to \text{span}(y_n : n \in \mathbb{N}), \quad x \mapsto (Id - T) \circ P \circ (Id - T)^{-1}(x),
\]
3.3. SHRINKING, BOUNDEDLY COMPLETE BASES

is a linear projection onto $\overline{\text{span}}(y_n : n \in \mathbb{N})$.

(c) If $X = \overline{\text{span}}(x_n : n \in \mathbb{N})$, then, since $I - T$ is an isomorphism, $(y_n) = (((I - T)(x_n))$ is also a Schauder basis of X.

Moreover define for k and i in \mathbb{N},

$$y_{i,k}^* = \sum_{j=1}^{k} (y_i^*, x_j)x_j^* = \sum_{j=1}^{n} (\chi(x_j), y_i^*)x_j^* \in \overline{\text{span}}(x_j^* : j \in \mathbb{N}).$$

It follows from Proposition 3.3.1, part (b), that $w^* - \lim_{k \to \infty} y_{i,k}^* = y_i^*$, which implies that $y_i^*(x) = \sum_{j=1}^{\infty} (y_i^*, x_j)\langle x_j^*, x \rangle$, for all $x \in X$, and thus for $k \geq i$

$$\|y_i^* - y_{i,k}^*\| = \sup_{x \in B_X} |(y_i^* - y_{i,k}^*, x)|$$

$$= \sup_{x \in B_X} \left| \sum_{j=k+1}^{\infty} (y_i^*, x_j)\langle x_j^*, x \rangle \right|$$

$$= \sup_{x \in B_X} \left| \sum_{j=k+1}^{\infty} (y_i^*, x_j - y_j)\langle x_j^*, x \rangle \right|$$

$$\leq \|y_i^*\| \sum_{j=k+1}^{\infty} \|x_j - y_j\| \cdot \|x_j^*\| \to 0, \text{ if } k \to \infty.$$

so it follows that $y_i^* = \| \cdot \| - \lim_{k \to \infty} y_{i,k}^* \in \overline{\text{span}}(x_j^* : j \in \mathbb{N})$ for every $i \in \mathbb{N}$, which finishes the proof of our claim (c). \qed

Exercises

1. Prove that Y with $\| \cdot \|$, as defined in Proposition 3.3.6 is a normed linear space.

2. A Banach space X is said to have the Approximation Property if for every compact set $K \subset X$ and every $\varepsilon > 0$ there is a finite rank operator T so that $\|x - T(x)\| < \varepsilon$ for all $x \in K$.

Show that every Banach space with a Schauder basis has the approximation property.
3. Show that \((e_i)\) is a shrinking basis of a Banach space \(X\), then the coordinate functionals \((e_i^*)\) are boundedly complete basis of \(X^*\).

4.* A Banach space is called \(L_{(p,\lambda)}\)-space, for some \(1 \leq p \leq \infty\) and some \(\lambda \geq 1\), if for every finite dimensional subspace \(F\) of \(X\) and every \(\varepsilon > 0\) there is a finite dimensional subspace \(E\) of \(X\) which contains \(F\) and so that \(d_{BM}(E, \ell_p^{\dim(E)}) < \lambda + \varepsilon\).

Show that \(L_p[0,1], 1 \leq p < \infty\) is a \(L_{(p,1)}\)-space.

Hint: Firstly, he span of the first \(n\) elements of the Haar basis is isometrically isomorphically to \(\ell_p^n\) (why?), secondly consider Small Perturbation Lemma.
3.4 Unconditional Bases

As shown in Exercise 2 of Section 3.2 there are basic sequences which are not longer basic sequences if one reorders them. Unconditional bases are defined to be bases which are bases no matter how one reorders them.

We will first observe the following result on unconditionally converging series

Theorem 3.4.1. For a sequence \((x_n)\) in Banach space \(X\) the following statements are equivalent.

1. For any reordering (also called permutation) \(\sigma\) of \(\mathbb{N}\) (i.e. \(\sigma : \mathbb{N} \to \mathbb{N}\) is bijective) the series \(\sum_{n \in \mathbb{N}} x_{\sigma(n)}\) converges.
2. For any \(\varepsilon > 0\) there is an \(n \in \mathbb{N}\) so that whenever \(M \subset \mathbb{N}\) is finite with \(\min(M) > n\), then \(\| \sum_{n \in M} x_n \| < \varepsilon\).
3. For any subsequence \((n_j)\) the series \(\sum_{j \in \mathbb{N}} x_{n_j}\) converges.
4. For sequence \((\varepsilon_j) \subset \{\pm 1\}\) the series \(\sum_{j=1}^{\infty} \varepsilon_j x_{n_j}\) converges.

In the case that above conditions hold we say that the series \(\sum x_n\) converges unconditionally.

Proof. "(a)⇒(b)" Assume that (b) is false. Then there is an \(\varepsilon > 0\) and for every \(n \in \mathbb{N}\) there is a finite set \(M \subset \mathbb{N}\), \(n < \min(M)\), so that \(\| \sum_{j \in M} x_j \| \geq \varepsilon\). We can therefore, recursively choose finite subsets of \(\mathbb{N}\), \(M_1, M_2, M_3\) etc. so that \(\min(M_{n+1}) > \max(M_n)\) and \(\| \sum_{j \in M_n} x_j \| \geq \varepsilon\), for \(n \in \mathbb{N}\). Now consider a bijection \(\sigma : \mathbb{N} \to \mathbb{N}\), which on each interval of the form \([\max(M_{n-1}) + 1, \max(M_n)]\) (with \(M_0 = 0\)) is as follows: The interval \([\max(M_{n-1}) + 1, \max(M_n)\) will be mapped to \(M_n\), and \([\max(M_{n-1} + \#M_n), \max(M_n)]\) will be mapped to \([\max(M_{n-1} + 1, \max(M_n)] \setminus M_n\). It follows then for each \(n \in \mathbb{N}\) that

\[
\left\| \sum_{j=\max(M_{n-1})+1}^{\max(M_n) + \#M_n} x_{\sigma(j)} \right\| = \left\| \sum_{j \in M_n} x_j \right\| \geq \varepsilon,
\]

and, thus, the series \(\sum x_{\sigma(n)}\) cannot be convergent, which is a contradiction.

"(b)⇒(c)" Let \((n_j)\) be a subsequence of \(\mathbb{N}\). For a given \(\varepsilon > 0\), use condition (b) and choose \(n \in \mathbb{N}\), so that \(\| \sum_{j \in M} x_j \| < \varepsilon\), whenever \(M \subset \mathbb{N}\) is finite and \(\min M > n\). This implies that for all \(i_0 \leq i < j\), with \(i_0 = \min\{s : n_s > n\}\), it follows that \(\| \sum_{s=i_0}^{j-1} x_{n_s} \| < \varepsilon\). Since \(\varepsilon > 0\) was arbitrary this means that the sequence \((\sum_{s=1}^{j} x_{n_s})_{j \in \mathbb{N}}\) is Cauchy and thus convergent.
Proposition 3.4.2. If \((\varepsilon_n)\) is a sequence of \(\pm 1\)'s, let \(N^+ = \{n \in \mathbb{N} : \varepsilon_n = 1\}\) and \(N^- = \{n \in \mathbb{N} : \varepsilon_n = -1\}\). Since

\[
\sum_{j=1}^{n} \varepsilon_j x_j = \sum_{j \in N^+, j \leq n} x_j - \sum_{j \in N^-, j \leq n} x_j, \text{ for } n \in \mathbb{N},
\]

and since \(\sum_{j \in N^+, j \leq n} x_j\) and \(\sum_{j \in N^-, j \leq n} x_j\) converge by (c), it follows that \(\sum_{j=1}^{n} \varepsilon_j x_j\) converges.

If (d) is false, then there is an \(\varepsilon > 0\) and for every \(n \in \mathbb{N}\) there is a finite set \(M \subset \mathbb{N}\), \(n < \min M\), so that \(\|\sum_{j \in M} x_j\| \geq \varepsilon\). As above choose finite subsets of \(\mathbb{N}\), \(M_1, M_2, M_3\) etc. so that \(\min M_{n+1} > \max M_n\) and \(\|\sum_{j \in M_n} x_j\| \geq \varepsilon\), for \(n \in \mathbb{N}\). Assign \(\varepsilon_n = 1\) if \(n \in \bigcup_{k \in \mathbb{N}} M_k\) and \(\varepsilon_n = -1\), otherwise.

Note that the series \(\sum_{n=1}^{\infty} (1 + \varepsilon_n) x_n\) cannot converge because

\[
\sum_{k=1}^{n} \sum_{i \in M_j} x_i = \frac{1}{2} \sum_{n=1}^{\max M_k} (1 + \varepsilon_n) x_n, \text{ for } k \in \mathbb{N}.
\]

Thus at least one of the series \(\sum_{n=1}^{\infty} x_n\) and \(\sum_{n=1}^{\infty} \varepsilon_n x_n\) cannot converge.

If (b) is false, then there is an \(\varepsilon > 0\) and for every \(n \in \mathbb{N}\) there is a finite set \(M \subset \mathbb{N}\), \(n < \min M\), so that \(\|\sum_{j \in M} x_j\| \geq \varepsilon\). As above choose finite subsets of \(\mathbb{N}\), \(M_1, M_2, M_3\) etc. so that \(\min M_{n+1} > \max M_n\) and \(\|\sum_{j \in M_n} x_j\| \geq \varepsilon\), for \(n \in \mathbb{N}\). Assign \(\varepsilon_n = 1\) if \(n \in \bigcup_{k \in \mathbb{N}} M_k\) and \(\varepsilon_n = -1\), otherwise.

Note that the series \(\sum_{n=1}^{\infty} (1 + \varepsilon_n) x_n\) cannot converge because

\[
\sum_{k=1}^{n} \sum_{i \in M_j} x_i = \frac{1}{2} \sum_{n=1}^{\max M_k} (1 + \varepsilon_n) x_n, \text{ for } k \in \mathbb{N}.
\]

Thus at least one of the series \(\sum_{n=1}^{\infty} x_n\) and \(\sum_{n=1}^{\infty} \varepsilon_n x_n\) cannot converge.

Proposition 3.4.2. In case that the series \(\sum x_n\) is unconditionally converging, then \(\sum x_{\sigma(j)} = \sum x_j\) for every permutation \(\sigma : \mathbb{N} \to \mathbb{N}\).

Definition 3.4.3. A basis \((e_j)\) for a Banach space \(X\) is called unconditional, if for every \(x \in X\) the expansion \(x = \sum (e_j^* x) c_j\) converges unconditionally, where \((e_j^*)\) are coordinate functionals of \((e_j)\).

A sequence \((x_n) \subset X\) is called unconditional basic sequence if \((x_n)\) is an unconditional basis of \(\text{span}(x_j : j \in \mathbb{N})\).
3.4. UNCONDITIONAL BASES

Proposition 3.4.4. For a sequence of non zero elements \((x_j)\) in a Banach space \(X\) the following are equivalent.

a) \((a_j)\) is an unconditional basic sequence,

b) There is a constant \(C\), so that for all \(n \in \mathbb{N}\), all \(A \subset \{1, 2, \ldots, n\}\) and all scalars \((a_j)_{j=1}^n \subset \mathbb{K}\),

\[
\left\| \sum_{j \in A} a_j x_j \right\| \leq C \left\| \sum_{j=1}^n a_j x_j \right\|.
\]

(3.8)

c) There is a constant \(C'\), so that for all \(n \in \mathbb{N}\), all \((\varepsilon_j)_{j=1}^n \subset \{\pm 1\}\) and all scalars \((a_j)_{j=1}^n \subset \mathbb{K}\),

\[
\left\| \sum_{j=1}^n \varepsilon_j a_j x_j \right\| \leq C' \left\| \sum_{j=1}^n a_j x_j \right\|.
\]

(3.9)

In that case we call the smallest constant \(C = K_s\) which satisfies (3.8) the suppression-unconditional constant of \((x_n)\) for all \(n\), \(A \subset \{1, 2, \ldots, n\}\) and all scalars \((a_j)_{j=1}^n \subset \mathbb{K}\) and we call the smallest constant \(C' = K_u\) so that (3.9) holds for all \(n\), \((\varepsilon_j)_{j=1}^n \subset \{\pm 1\}\) and all scalars \((a_j)_{j=1}^n \subset \mathbb{K}\) the unconditional constant of \((x_n)\).

Moreover, it follows

\[
K_s \leq K_u \leq 2K_s.
\]

(3.10)

Proof. “(a) \(\Rightarrow\) (b)” Assume that (b) does not hold. We can assume that \((x_n)\) is a basic sequence with constant \(b\). Then (see Exercise 4) we choose recursively \(k_0 < k_1 < k_2, \ldots, A_n \subset \{k_{n-1} + 1, k_{n-1} + 1, \ldots, k_n\}\), and scalars \((a_j)_{j=k_{n-1}+1}^n \subset \mathbb{K}\) so that

\[
\left\| \sum_{j \in A_n} a_j x_j \right\| \geq 1 \text{ and } \left\| \sum_{j=k_{n-1}}^n a_j x_j \right\| \leq \frac{1}{n^2} \text{ for all } n \in \mathbb{N}.
\]

For any \(l < m\), we can choose \(i \leq j\) so that \(k_{i-1} < l \leq k_i\) and \(k_{j-1} < m \leq k_j\), and thus

\[
\left\| \sum_{s=l}^m a_s x_s \right\| \leq \left\| \sum_{s=l}^{k_i} a_s x_s \right\| + \sum_{t=1}^{k_i} \left\| \sum_{s=k_{t-1}+1}^{k_t} a_s x_s \right\| + \sum_{s=k_{j-1}+1}^m \left\| a_s x_s \right\|
\]
(where the second term is defined to be 0, if \(i \geq j - 1 \))

\[
\leq \frac{2b}{(i-1)^2} + \sum_{t=i+1}^{j-1} \frac{1}{t^2} + \frac{2b}{(j-1)^2}
\]

It follows therefore that \(x = \sum_{j=1}^{\infty} a_j x_j \) converges, but by Theorem 3.4.1 (b) it is not unconditionally.

“(b) \iff (c)” and (3.10) follows from the following estimates for \(n \in \mathbb{N} \), \((a_j)_{j=1}^{n} \subset \mathbb{K} \), \(A \subset \{1, 2, \ldots, n\} \) and \((\varepsilon_j)_{j=1}^{n} \subset \{\pm 1\} \)

\[
\| \sum_{j=1}^{n} \varepsilon_j a_j x_j \| \leq \| \sum_{j=1, \varepsilon_j=1}^{n} a_j x_j \| + \| \sum_{j=1, \varepsilon_j=-1}^{n} a_j x_j \| \quad \text{and}
\]

\[
\| \sum_{j \in A} a_j x_j \| \leq \frac{1}{2} \left[\left\| \sum_{j \in A} a_j x_j + \sum_{j \in \{1,2,\ldots\}\setminus A} a_j x_j \right\| + \left\| \sum_{j \in A} a_j x_j - \sum_{j \in \{1,2,\ldots\}\setminus A} a_j x_j \right\| \right].
\]

“(b)\Rightarrow (a)” First, note that (b) implies by Proposition 3.1.9 that \((x_n) \) is a basic sequence. Now assume that for some \(x = \sum_{j=1}^{\infty} a_j x_j \in \text{span}(x_j : j \in \mathbb{N}) \) is converging but not unconditionally converging. It follows from the equivalences in Theorem 3.4.1 that there is some \(\varepsilon > 0 \) and of \(\mathbb{N} \), \(M_1 \), \(M_2 \), \(M_3 \) etc. so that \(\min M_{n+1} > \max M_n \) and \(\| \sum_{j \in M_n} a_j x_j \| \geq \varepsilon \), for \(n \in \mathbb{N} \). On the other hand it follows from the convergence of the series \(\sum_{j=1}^{\infty} a_j x_j \) that

\[
\limsup_{n \to \infty} \left\| \sum_{j=1+\max(M_{n-1})}^{\max(M_n)} a_j x_j \right\| = 0,
\]

and thus

\[
\sup_{n \to \infty} \left\| \sum_{j \in M_n} a_j x_j \right\| = \infty,
\]

which is a contradiction to condition (b).

Proposition 3.4.5. Assume that \(X \) is a Banach space over the field \(\mathbb{C} \) with an unconditional basis \((e_n) \), then it follows if \(\sum_{j=1}^{\infty} \alpha_n e_n \) is convergent and \((\beta_n) \subset \{ \beta \in \mathbb{C} : |\beta| = 1 \} \) that \(\sum_{j=1}^{\infty} \beta_n \alpha_n e_n \) is also converging and

\[
\left\| \sum_{n \in \mathbb{N}} \beta_n \alpha_n e_n \right\| \leq 2K \left\| \sum_{n \in \mathbb{N}} \alpha_n e_n \right\|.
\]

Proof. See Exercise 1.
3.4. UNCONDITIONAL BASES

Proposition 3.4.6. If X is a Banach space with an unconditional basis, then the coordinate functionals (e^*_n) are also an unconditional basic sequence, with the same unconditional constant and the same suppression-unconditional constant.

Proof. Let K_u and K_s be the unconditional and suppression unconditional constant of X.

Let $x^* = \sum_{n \in \mathbb{N}} \eta_n e^*_n$ and $(\varepsilon_n) \subset \{\pm 1\}$ then

$$\left\| \sum_{n \in \mathbb{N}} \varepsilon_n \eta_n e^*_n \right\|_{X^*} = \sup_{x = \sum_{n=1}^\infty \xi_n e_n \in B_X} \left\langle \sum_{n \in \mathbb{N}} \varepsilon_n \eta_n e^*_n, \sum_{n=1}^\infty \xi_n e_n \right\rangle$$

$$= \sup_{x = \sum_{n=1}^\infty \xi_n e_n \in B_X} \sum_{n \in \mathbb{N}} \varepsilon_n \eta_n \xi_n$$

$$= \sup_{x = \sum_{n=1}^\infty \xi_n e_n \in B_X} \left\| \sum_{n \in \mathbb{N}} \eta_n e^*_n \right\| \cdot \left\| \sum_{n \in \mathbb{N}} \varepsilon_n \xi_n e_n \right\|$$

$$\leq K_u \left\| \sum_{n \in \mathbb{N}} \eta_n e^*_n \right\| .$$

Using the Hahn Banach Theorem we can similarly show that if K^*_u is the unconditional constant of (e^*_n) then

$$\left\| \sum_{n \in \mathbb{N}} \xi_n e_n \right\|_X \leq K^*_u \leq \left\| \sum_{n \in \mathbb{N}} \xi_n e_n \right\|_X .$$

Thus $K_u = K^*_u$. A similar argument works to show that K_s is equal to the suppression unconditional constant of (e^*_n).

The following Theorem about spaces with unconditional basic sequences was shown by James [Ja]

Theorem 3.4.7. Let X be a Banach space with an unconditional basis (e_j). Then either X contains a copy of c_0, or a copy of ℓ_1 or X is reflexive.

We will need first the following Lemma (See Exercise 2)

Lemma 3.4.8. Let X be a Banach space with an unconditional basis (e_n) and let K_u its constant of unconditionality. Then it follows for any converging series $\sum_{n \in \mathbb{N}} a_n e_n$ and a bounded sequence of scalars $(b_n) \subset \mathbb{K}$, that $\sum_{n \in \mathbb{N}} a_n b_n e_n$ is also converging and

$$\left\| \sum_{n \in \mathbb{N}} a_n b_n e_n \right\| \leq K \sup_{n \in \mathbb{N}} |b_n| \left\| \sum_{n=1}^\infty a_n e_n \right\| ,$$

where $K = K_u$, if $\mathbb{K} = \mathbb{R}$, and $K = 2K_u$, if $\mathbb{K} = \mathbb{C}$.
Proof of Theorem 3.4.7. We will prove the following two statements for a space X with unconditional basis (e_n).

Claim 1: If (e_n) is not boundedly complete then X contains a copy of c_0.

Claim 2: If (e_n) is not shrinking then X contains a copy of ℓ_1.

Together with Theorem 3.3.9, this yields the statement of Theorem 3.4.7.

Let K_u be the constant of unconditionality of (e_n) and let $K_u' = K_u$, if $\mathbb{K} = \mathbb{R}$, and $K_u' = 2K_u$, if $\mathbb{K} = \mathbb{C}$.

Proof of Claim 1: If (e_n) is not boundedly complete there is, by Theorem 3.3.8, a sequence of scalars (a_n) such that

$$\sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^{n} a_j e_j \right\| = C_1 < \infty, \text{ but } \sum_{j=1}^{\infty} a_j e_j \text{ does not converge}.$$

This implies that there is an $\varepsilon > 0$ and a sequence $0 = n_0 < n_1 < n_2 < \ldots$ in \mathbb{N} so that if we put $y_k = \sum_{j=n_k}^{n_{k+1}} a_j e_j$, for $k \in \mathbb{N}$, it follows that $\|y_k\| \geq \varepsilon$, and also

$$\|y_k\| \leq \left\| \sum_{j=1}^{n_k} a_j e_j \right\| + \left\| \sum_{j=1}^{n_{k-1}} a_j e_j \right\| \leq 2C_1.$$

For any $n \in \mathbb{N}$ and any sequence of scalars $(\lambda_j)_{j=1}^{n}$ it follows therefore from Lemma 3.4.8, that

$$\left\| \sum_{j=1}^{n} \lambda_j y_j \right\| \leq 2K_u \max_{j \leq n} |\lambda_j| \left\| \sum_{j=1}^{n} y_j \right\| \leq 4K_u C_1 \sup_{j \leq n} |\lambda_j|.$$

Since the supression-unconditional constant does not exceed the unconditional constant, it follows on the other hand for every $j_0 \leq n$ that

$$\left\| \sum_{j=1}^{n} \lambda_j y_j \right\| \geq \frac{1}{K_u} \left\| \lambda_{j_0} y_{j_0} \right\| \geq \frac{\varepsilon}{K_u} \max_{j \leq n} |\lambda_j|.$$

Letting $c = \varepsilon/K_u$ and $C = 4K_u C_1$, it follows therefore for any $n \in \mathbb{N}$ and any sequence of scalars $(\lambda_j)_{j=1}^{n}$ that

$$c \|(\lambda)_{j=1}^{n} y_{j_0}\| \leq \left\| \sum_{j=1}^{n} \lambda_j y_j \right\| \leq C \|(\lambda)_{j=1}^{n}\|_{c_0},$$

which means that (y_j) and the unit vector basis of c_0 are isomorphically equivalent.
3.4. UNCONDITIONAL BASES

Proof of Claim 2. \((e_n)\) is not shrinking then there is by Theorem 3.3.4 a bounded block basis \((y_n)\) of \((e_n)\) which is not weakly null. After passing to a subsequence we can assume that there is a \(x^* \in X^*\), \(\|x^*\| = 1\), so that

\[
\varepsilon = \inf_{n \in \mathbb{N}} |\langle x^*, y_n \rangle| > 0.
\]

We also can assume that \(\|y_n\| = 1\), for \(n \in \mathbb{N}\) (otherwise replace \(y_n\) by \(y_n/\|y_n\|\) and change \(\varepsilon\) accordingly).

We claim that \((y_n)\) is isomorphically equivalent to the unit vector basis of \(\ell_1\). Let \(n \in \mathbb{N}\) and \((a_j)_{j=1}^n \subset \mathbb{K}\). By the triangle inequality we have

\[
\left\| \sum_{j=1}^n a_j y_j \right\| \leq \sum_{j=1}^n |a_j|,
\]

On the other hand we can choose for \(j = 1, 2 \ldots n\) \(\varepsilon_j = \text{sign}(a_j \langle x^*, y_j \rangle)\) if \(\mathbb{K} = \mathbb{R}\) and \(\varepsilon_j = a_j \langle x^*, y_j \rangle / |a_j \langle x^*, y_j \rangle|\), if \(\mathbb{K} = \mathbb{C}\) (if \(a_j = 0\), simply let \(\varepsilon = 1\)) and deduce from Lemma 3.4.8

\[
\left\| \sum_{j=1}^n a_j y_j \right\| \geq \frac{1}{K^u} \left\| \sum_{j=1}^n \varepsilon_j a_j y_j \right\| \geq \left| \sum_{j=1}^n \varepsilon_j a_j \langle x^*, y_j \rangle \right| \geq \varepsilon \sum_{j=1}^n |a_j|,
\]

which implies that \((y_n)\) is isomorphically equivalent to the unit vector basis of \(\ell_1\).

\[\Box\]

Remark. It was for long time an open problem whether or not every infinite dimensional Banach space contains an unconditional basis sequence. If this were so, every infinite dimensional Banach space would contain a copy of \(c_0\) or a copy of \(\ell_1\), or has an infinite dimensional reflexive subspace space. In [GM], Gowers and Maurey proved the existence of a Banach space which does not contain any unconditional basic sequences. Later then Gowers [Go] constructed a space which does not contain any copy of \(c_0\) or \(\ell_1\), and has no infinite dimensional reflexive subspace.

Exercises.

1. Prove Proposition 3.4.5.
2. Prove Lemma 3.4.8
3. Show that every separable X Banach space is isomorphic to the quotient space of ℓ_1.

4. Assume that (x_n) is a basic sequence in a Banach space X for which (b) of Proposition 3.4.4 does not hold. Show that there is a sequence of scalars (a_j) and a subsequence (k_n) of \mathbb{N}, so that

$$\left\| \sum_{j \in A_n} a_j x_j \right\| \geq 1 \text{ and } \left\| \sum_{j=k_{n-1}}^{k_n} a_j x_j \right\| \leq \frac{1}{n^2} \text{ for all } n \in \mathbb{N}.$$

5. Let $1 < p < \infty$ and assume that (x_n) is a weakly null sequence in ℓ_p with $\inf_{n \in \mathbb{N}} \| x_n \| > 0$. Show that (x_n) has a subsequence which is isomorphically equivalent to the unit vector basis of ℓ_p.

Let $T : \ell_p \to \ell_q$ with $1 < q < p < \infty$, be a bounded linear operator. Show that T is compact, meaning that $T(B_{\ell_p})$ is relatively compact in ℓ_q.

3.5 James’ Space

The following space J was constructed by R. C. James [Ja]. It is a space which is not reflexive and does not contain a subspace isomorphic to c_0 or ℓ_1. By Theorem 3.4.7 it does not admit an unconditional basis. Moreover we will prove that $J^{**}/\chi(J)$ is one dimensional and that J is isomorphically isometric to J^{**} (but of course not via the canonical mapping).

We will define the space J over the real numbers \mathbb{R}.

For a sequence $(\xi_n) \subset \mathbb{R}$ we define the quadratic variation to be
\[
\|\(\xi_n\)\|_{qv} = \sup \left\{ \left(\sum_{j=1}^{l} |\xi_{n_j} - \xi_{n_{j-1}}|^2 \right)^{1/2} : l \in \mathbb{N} \text{ and } 1 \leq n_0 < n_1 < \ldots n_l \right\}
\]
and the cyclic quadratic variation norm to be
\[
\|\(\xi_n\)\|_{cqv} = \sup \left\{ \frac{1}{\sqrt{2}} \left(|\xi_{n_0} - \xi_{n_l}|^2 + \sum_{j=1}^{l} |\xi_{n_j} - n_{j-1}|^2 \right)^{1/2} : l \in \mathbb{N} \text{ and } 1 \leq n_0 < n_1 < \ldots n_l \right\}.
\]

Note that for a bounded sequences $(\xi_n), (\eta_n) \subset \mathbb{R}$
\[
\|\(\xi_n + \eta_n\)\|_{qv} = \sup \left\{ \|\(\xi_{n_i} + \eta_{n_i} - \xi_{n_{i-1}} - \eta_{n_{i-1}}\)_{i=1}^{l} \|_2 : l \in \mathbb{N}, n_0 < n_1 < \ldots n_l \right\}
\]
\[
\leq \sup \left\{ \|\(\xi_{n_i} - \xi_{n_{i-1}}\)_{i=1}^{l} \|_2 + \|\(\eta_{n_i} - \eta_{n_{i-1}}\)_{i=1}^{l} \|_2 : l \in \mathbb{N}, n_0 < n_1 < \ldots n_l \right\}
\]
\[
\leq \sup \left\{ \|\(\xi_{n_i} - \xi_{n_{i-1}}\)_{i=1}^{l} \|_2 : l \in \mathbb{N}, n_0 < n_1 < \ldots n_l \right\}
\]
\[
+ \sup \left\{ \|\(\eta_{n_i} - \eta_{n_{i-1}}\)_{i=1}^{l} \|_2 : l \in \mathbb{N}, n_0 < n_1 < \ldots n_l \right\}
\]
\[
= \|\(\xi_n\)\|_{qv} + \|\(\eta_n\)\|_{qv}
\]
and similarly
\[
\|\(\xi_n + \eta_n\)\|_{cqv} \leq \|\(\xi_n\)\|_{cqv} + \|\(\eta_n\)\|_{cqv}.
\]

and we note that
\[
\frac{1}{\sqrt{2}}\|\(\xi_n\)\|_{qv} \leq \|\(\xi_n\)\|_{cqv} \leq \sqrt{2}\|\(\xi_n\)\|_{qv}.
\]

Thus $\| \cdot \|_{qv}$ and $\| \cdot \|_{cqv}$ are two equivalent semi norms on the vector space
\[
\tilde{J} = \{ (\xi_n) \subset \mathbb{R} : \|\(\xi_n\)\|_{qv} < \infty \}.
\]
and since
\[\|(ξ_n)\|_{q_v} = 0 \iff \|(ξ_n)\|_{c_{q_v}} = 0 \iff (ξ_n) \text{ is constant} \]

\[\| \cdot \|_{q_v} \text{ and } \| \cdot \|_{c_{q_v}} \text{ are two equivalent norms on the vector space} \]
\[J = \{ (ξ_n) \subset \mathbb{R} : \lim_{n \to \infty} ξ_n = 0 \text{ and } \|(ξ_n)\|_{q_v} < \infty \} \].

Proposition 3.5.1. The space \(J \) with the norms \(\|\cdot\|_{q_v} \) and \(\|\cdot\|_{c_{q_v}} \) is complete and, thus, a Banach space.

Proof. The proof is similar to the proof of showing that \(\ell_p \) is complete. Let \((x_k) \) be a sequence in \(J \) with \(\sum_{k \in \mathbb{N}} \|x_k\|_{q_v} < \infty \) and write \(x_k = (ξ(k,j))_{j \in \mathbb{N}} \), for \(k \in \mathbb{N} \). Since for \(j, k \in \mathbb{N} \) it follows that
\[|ξ(k,j)| = \lim_{n \to \infty} |ξ(k,j) - ξ(k,n)| \leq \|x_k\|_{q_v} \]
it follows that
\[ξ_j = \sum_{k \in \mathbb{N}} ξ(k,j) \]
exists and for \(x = (ξ_j) \) it follows that \(x \in c_0 \) (\(c_0 \) is complete) and
\[\|x\|_{q_v} = \sup \left\{ \left(\sum_{j=1}^{l} |ξ_{n_j} - ξ_{n_{j-1}}|^2 \right)^{1/2} : l \in \mathbb{N} \text{ and } 1 \leq n_0 < n_1 < \ldots < n_l \right\} \]
\[\leq \sup \left\{ \sum_{k \in \mathbb{N}} \left(\sum_{j=1}^{l} |ξ(k,n_j) - ξ(k,n_{j-1})|^2 \right)^{1/2} : l \in \mathbb{N} \text{ and } 1 \leq n_0 < \ldots < n_l \right\} \]
\[\leq \sum_{k \in \mathbb{N}} \|x_k\|_{q_v} < \infty \]

and for \(m \in \mathbb{N} \)
\[\|x - \sum_{k=1}^{m} x_k\|_{q_v} \]
\[= \sup \left\{ \left(\sum_{j=1}^{l} \sum_{k=m+1}^{\infty} |ξ(k,n_j) - ξ(k,n_{j-1})|^2 \right)^{1/2} : l \in \mathbb{N} \text{ and } 1 \leq n_0 \leq \ldots \right\} \]
\[\leq \sup \left\{ \sum_{k=m+1}^{\infty} \left(\sum_{j=1}^{l} |ξ(k,n_j) - ξ(k,n_{j-1})|^2 \right)^{1/2} : l \in \mathbb{N} \text{ and } 1 \leq n_0 \leq \ldots \right\} \]
(By the triangle inequality in \(ℓ_2 \))
3.5. JAMES’ SPACE

\[\leq \sum_{k=m+1}^{\infty} \|x_k\|_{qv} \to 0 \text{ for } m \to \infty. \]

\[\square \]

Proposition 3.5.2. The unit vector basis \((e_i)\) is a monotone basis of \(J\) for both norms, \(\| \cdot \|_{qv}\) and \(\| \cdot \|_{cqv}\).

Proof. First we claim that \(\text{span}(e_j : j \in \mathbb{N}) = J\). Indeed, if \(x = (\xi_n) \in J\), and \(\epsilon > 0\) we choose \(l\) and \(1 \leq n_0 < n_1 < \ldots n_l \in \mathbb{N}\) so that

\[\sum_{j=1}^{l} |\xi_{n_j} - \xi_{n_{j-1}}| > \|x\|_{qv} - \epsilon. \]

But this implies that

\[\|x - \sum_{j=1}^{n_l+1} \xi_j e_j\| = \|((0,0,\ldots,0,\xi_{n_l+2},\xi_{n_l+3},\ldots))\| < \epsilon. \]

In order to show monotonicity, assume \(m < n\) are in \(\mathbb{N}\) and \((a_i)_{i=1}^{n} \subset \mathbb{R}\). For \(i \in \mathbb{N}\) let

\[\xi_i = \begin{cases} a_i & \text{if } i \leq m \\ 0 & \text{otherwise} \end{cases} \]

\[\eta_i = \begin{cases} a_i & \text{if } i \leq n \\ 0 & \text{otherwise}. \end{cases} \]

For \(x = \sum_{i=1}^{\infty} \xi_i e_i\) and \(y = \sum_{i=1}^{\infty} \eta_i e_i\) we need to show that \(\|x\|_{qv} \leq \|y\|_{qv}\) and \(\|x\|_{cqv} \leq \|y\|_{cqv}\). So choose \(l\) and \(n_0 < n_1 < \ldots n_l \in \mathbb{N}\) so that

\[\|x\|_{qv}^2 = \sum_{j=1}^{l} |\xi_{n_j} - \xi_{n_{j-1}}|^2. \]

Then we can assume that \(n_l > n\) (otherwise replace \(l\) by \(l + 1\) and add \(n_{l+1} = n + 1\)) and we can assume that \(n_{l-1} \leq m\) (otherwise we drop all the \(n_j\)’s in \(m, n\)), and thus

\[\|x\|_{qv}^2 = \sum_{j=1}^{l} |\xi_{n_j} - \xi_{n_{j-1}}|^2 = \sum_{j=1}^{l} |\eta_{n_j} - \eta_{n_{j-1}}|^2 \leq \|y\|_{qv}. \]

The argument for the cyclic variation norm is similar. \[\square \]
Our next goal is to show that \((e_n)\) is a shrinking basis of \(J\). We need the following lemma

Lemma 3.5.3. For any normalized block basis \((u_i)\) of \(e_i\) in \(J\), and \(m \in \mathbb{N}\) and any scalars \((a_i)_{i=1}^m\) it follows that

\[
(3.11) \quad \left\| \sum_{i=1}^m a_i u_i \right\| \leq \sqrt{5} \| (a_i)_{i=1}^m \|_2.
\]

Proof. Let \((\eta_j) \subset \mathbb{R}\) and \(k_0 = 0 < k_1 < k_2 < \ldots\) in \(\mathbb{N}\) so that for \(i \in \mathbb{N}\)

\[
u_i = \sum_{j=k_{i-1}+1}^{k_i} \eta_j e_j.
\]

Let for \(i = 1, 2, 3 \ldots m\) and \(j = k_{i-1} + 1, k_{i-1} + 2, \ldots k_i\) put \(\eta_j = a_i \cdot \eta_j\), and

\[
x = \sum_{i=1}^n a_i u_i = \sum_{j=1}^{k_n} \xi_j e_j.
\]

For given \(l \in \mathbb{N}\) and \(1 \leq n_0 < n_1 < \ldots < n_l\) we need to show that

\[
(3.12) \quad \sum_{j=1}^{\ell} |\xi_{n_j} - \xi_{n_{j-1}}|^2 \leq 5 \sum_{i=1}^m a_i^2.
\]

For \(i = 1, 2 \ldots m\) define \(A_i = \{j \geq 1 : k_{i-1} < n_{j-1} < n_j \leq k_i\}\). It follows that

\[
\sum_{j \in A_i} |\xi_j - \xi_{j-1}|^2 = a_i^2 \sum_{j \in A_i} |\eta_j - \eta_{j-1}|^2 \leq a_i^2 \|u_i\|_{q'}^2,
\]

and thus

\[
\sum_{j \in \bigcup_{i=1}^n A_i} |\xi_j - \xi_{j-1}|^2 \leq \sum_{i=1}^n a_i^2.
\]

Now let \(A = \bigcup_{i=1}^n A_i\) and \(B = \{j \leq l : j \notin A\}\). For each \(j \in B\) there must exist \(l(j)\) and \(m(j)\) in \(\{1, 2 \ldots m\}\) so that

\[
k_{l(j)-1} < n_{j-1} \leq k_{l(j)} \leq k_{m(j)} < n_j < k_{m(j)+1}
\]

and thus

\[
|\xi_{n_j} - \xi_{n_{j-1}}|^2 = |a_{m(j)} \eta_{n_j} - a_{l(j)} \eta_{n_{j-1}}|^2
\]
\[\leq 2a_{m(j)}^2 \eta_{n_j}^2 + 2a_{l(j)}^2 \eta_{n_{j-1}}^2 \leq 2a_{m(j)}^2 + 2a_{l(j)}^2 \]

(for the last inequality note that \(|\eta_i| \leq 1\) since \(\|u_j\| = 1\)). For \(j, j' \in B\) it follows that \(l(j) \neq l(j')\) and \(m(j) \neq m(j')\), \(j \neq j'\) and thus

\[
\sum_{j=1}^{l} |\xi_{n_j} - \xi_{n_{j-1}}|^2 = \sum_{j \in A} |\xi_{n_j} - \xi_{n_{j-1}}|^2 + \sum_{j \in B} |\xi_{n_j} - \xi_{n_{j-1}}|^2 \\
\leq \sum_{i=1}^{n} a_i^2 + 2 \sum_{j \in B} a_{l(j)}^2 + 2 \sum_{j \in B} a_{m(j)}^2 \leq 5 \sum_{i=1}^{n} a_i^2,
\]

which finishes the proof of our claim. \(\square\)

Corollary 3.5.4. The unit vector basis \((e_n)\) is shrinking in \(J\).

Proof. Let \((u_n)\) be any block basis of \((e_n)\), which is w.l.o.g. normalized. Then by Lemma 3.5.3

\[
\frac{1}{n} \left\| \sum_{j=1}^{n} u_j \right\|_{q^2} \leq \frac{5}{\sqrt{n}} \to 0 \text{ if } n \to \infty.
\]

By Corollary 2.1.6 \((u_n)\) is therefore weakly null. Since \((u_n)\) was an arbitrary block basis of \((e_n)\) this yields by Theorem 3.3.8 that \((e_n)\) is shrinking. \(\square\)

Definition 3.5.5. [Skipped Block Bases]
Assume \(X\) is a Banach space with basis \((e_n)\). A **Skipped Block Basis** of \((e_n)\) is a sequence \((u_n)\) for which there are \(0 = k_0 < k_1 < k_2 \ldots \) in \(\mathbb{N}\), and \((a_j) \subset \mathbb{K}\) so that

\[
u_n = \sum_{j=k_{n-1}+1}^{k_n-1} a_j e_j, \text{ for } n \in \mathbb{N}.
\]

(i.e. the \(k_n\)'s are skipped).

Proposition 3.5.6. Every normalized skipped block sequence of the unit vector basis in \(J\) is isomorphically equivalent to the unit vector basis in \(\ell_2\). Moreover the constant of equivalence is \(\sqrt{5}\).

Proof. Assume that

\[
u_n = \sum_{j=k_{n-1}+1}^{k_n-1} a_j e_j, \text{ for } n \in \mathbb{N}.
\]
with $0 = k_0 < k_1 < k_2 \ldots$ in \mathbb{N}, and $(a_j) \subset \mathbb{K}$, and $a_{k_n} = 0$, for $n \in \mathbb{N}$. For $n \in \mathbb{N}$ we can find l_n and $k_{n-1} = p_0^{(n)} < p_1^{(n)} < \ldots p_{l_n} = k_n$ in \mathbb{N} so that

$$\| u_n \|_2^2 = \sum_{j=1}^{l_n} (a_{p_j^{(n)}} - a_{p_{j-1}^{(n)}})^2 = 1.$$

Now let $m \in \mathbb{N}$ and $(b_i)_{i=1}^{m} \subset \mathbb{R}$ we can string the $p_j^{(n)}$’s together and deduce:

$$\left\| \sum_{n=1}^{m} b_n u_n \right\|_2 \geq \sum_{i=1}^{m} b_i^2 \sum_{j=1}^{l_n} (a_{p_j^{(n)}} - a_{p_{j-1}^{(n)}})^2 = \sum_{i=1}^{m} b_i^2.$$

On the other hand it follows from Lemma 3.5.3 that

$$\left\| \sum_{n=1}^{m} b_n u_n \right\|_2^2 \leq 5 \sum_{i=1}^{m} b_i^2.$$

\[\square \]

Corollary 3.5.7. J is hereditarily ℓ_2, meaning every infinite dimensional subspace of J has a further subspace which is isomorphic to ℓ_2.

Proof. Let Z be an infinite dimensional subspace of J. By induction we choose for each $n \in \mathbb{N}$, $z_n \in Z$, $u_n \in J$ and $k_n \in \mathbb{N}$, so that

\begin{align*}
(3.13) & \quad \| z_n \|_2 = \| u_n \|_2 = 1 \text{ and } \| z_n - u_n \|_2 < 2^{-4-n}, \\
(3.14) & \quad u_n \in \text{span}(e_j : k_{n-1} < j < k_n)
\end{align*}

Having accomplished that, (u_n) is a skipped block basis of (e_n) and by Proposition 3.5.6 isomorphically equivalent to the unit vector basis of ℓ_2. Letting (u^*_n) be the coordinate functionals of (u_n) it follows that $\| u^*_n \| \leq \sqrt{5}$, for $n \in \mathbb{N}$, and thus, by the third condition in (3.13),

$$\sum_{n=1}^{\infty} \| u^*_n \| \| u_n - z_n \| \leq \sqrt{5} 2^{-4} < 1,$$

which implies by the Small Perturbation Lemma, Theorem 3.3.10, that (z_n) is also isomorphically equivalent to unit vector basis in ℓ_2.

We choose $z_1 \in S_Z$ arbitrarily, and then let $u_1 \in \text{span}(e_j : j \in \mathbb{N})$, with $\| u_1 \|_2 = 1$ and $\| u_1 - z_1 \|_2 < 2^{-4}$. Then let $k_1 \in \mathbb{N}$ so that $u_1 \in \text{span}(e_j : j < k_1)$. If we assume that $z_1, z_2, \ldots, z_n, u_1, u_2, \ldots, u_n$, and $k_1 < k_2 < \ldots k_n$
have been chosen we choose \(z_{n+1} \in Z \cap \{ e^*_1, \ldots, e^*_k \} \perp \) (note that this space is infinite dimensional and a subspace of \(\text{span}(e_j : j > k_{n+1}) \)) and then choose \(u_{n+1} \in \text{span}(e_j : j > k_{n+1}) \), \(\| u_{n+1} \|_{qv} = 1 \), with \(\| u_{n+1} - z_{n+1} \|_{qv} < 2^{4^2-n-1} \) and let \(k_{n+1} \in \mathbb{N} \) so that \(u_{n+1} \in \text{span}(e_j : j < k_{n+1}) \).

Using the fact that \((e_n) \) is a monotone and shrinking basis of \(J \) (see Proposition 3.5.2 and Corollary 3.5.4) we can use Proposition 3.3.6 to represent the bidual \(J^{**} \) of \(J \). We will now use the cyclic variation norm.

\[
J^{**} = \left\{ (\xi_n) \subset \mathbb{R} : \sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^{n} \xi_j e_i \right\|_{cqv} < \infty \right\}
\]

and for \(x^{**} = (\xi_n) \in J^{**} \)

\[
\| x^{**} \|_{J^{**}} = \sup_{n \in \mathbb{N}} \left\| (\xi_1, \xi_2, \ldots, \xi_n, 0, 0, \ldots) \right\|_{cqv}
\]

\[
= \sup_{l \in \mathbb{N}, k_0 < k_1 < \ldots < k_l} \max \left(\left(\xi_{k_0} - \xi_{k_l} \right)^2 + \sum_{j=1}^{l} \left(\xi_{k_{j-1}} - \xi_{k_j} \right)^2 \right)^{1/2},
\]

\[
\left(\xi_{k_0}^2 + \xi_{k_l}^2 + \sum_{j=1}^{l} \left(\xi_{k_{j-1}} - \xi_{k_j} \right)^2 \right)^{1/2}.
\]

The second equality in (3.16) can be seen as follows: Fix an \(n \in \mathbb{N} \) and consider

\(x^{(n)} = (\xi_1, \xi_2, \ldots, \xi_n, 0, 0, \ldots) \), thus \(x^{(n)} = (\xi^{(n)}_j) \), with \(\xi^{(n)}_j = \begin{cases} \xi_j & \text{if } j \leq n \\ 0 & \text{else} \end{cases} \).

Now we let \(l \) and \(1 \leq k_1 < k_2 < k_3 \) in \(\mathbb{N} \) be chosen so that

\[
\| x^{(n)} \|_{cqv}^2 = \frac{1}{2} \left(\left(\xi^{(n)}_{k_0} - \xi^{(n)}_{k_l} \right)^2 + \sum_{j=1}^{l} \left(\xi^{(n)}_{k_{j-1}} - \xi^{(n)}_{k_j} \right)^2 \right).
\]

There are two cases: Either \(k_l \leq n \). In this case \(\xi^{(n)}_{k_j} = \xi_{k_j} \), for all \(j \leq l \), and thus

\[
\| x^{(n)} \|_{cqv}^2 = \left(\left(\xi_{k_0} - \xi_{k_l} \right)^2 + \sum_{j=1}^{l} \left(\xi_{k_{j-1}} - \xi_{k_j} \right)^2 \right)^{1/2},
\]

which leads to the first term in above “max”. Or \(k_l > n \). Then we can assume without loss of generality that \(k_{l-1} \leq n \) (otherwise we can drop
and we note that $\xi_{k_l}^{(n)} = 0$, while $\xi_{k_j}^{(n)} = \xi_{k_j}$ for all $j \leq l - 1$, and thus

$$\|x^{(n)}\|^2_{cqv} = \frac{1}{2} \left(\xi_{k_0}^2 + \sum_{j=1}^{l-1} (\xi_{k_{j-1}} - \xi_{k_j})^2 \right)^{1/2} = \left(\xi_{k_0}^2 + \xi_{k_{l-1}}^2 + \sum_{j=1}^{l-1} (\xi_{k_{j-1}} - \xi_{k_j})^2 \right)^{1/2},$$

which, after renaming $l - 1$ to be l, leads to the second term above “max”.

Remark. Note that there is a difference between

$$\|(\xi_1, \xi_2, \ldots)\|_{cqv}$$

and

$$\sup_{n \in \mathbb{N}} \|(\xi_1, \xi_2, \ldots, \xi_n, 0, 0, \ldots)\|_{cqv}$$

and there is only equality if $\lim_{n \to \infty} \xi_n = 0$.

It follows that for all $x^{**} = (\xi_n) \in J^{**}$, that $e_\infty^*(x) = \lim_{n \to \infty} \xi_n$ exists, that $(1, 1, 1, 1, \ldots) \in J^{**} \setminus J$, and that

$$x^{**} - e_\infty^*(x)(1, 1, 1, \ldots) \in J.$$

Theorem 3.5.8. J is not reflexive, does not contain an isomorphic copy of c_0 or ℓ_1 and the codimension of J in J^{**} is 1.

Proof. We only need to observe that it follows from the above that

$$J^{**} = \{ (\xi_j) \subset \mathbb{R} : \|(\xi_j)\|_{cqv} < \infty \}$$

$$= (\xi_j) + \xi_\infty (1, 1, 1 \ldots) \subset \mathbb{R} : \|(\xi_j)\|_{cqv} < \infty \lim_{j \to \infty} \xi_j = 0 \xi_\infty \in \mathbb{R} \},$$

where the second equality follows form the fact that if (ξ_n) has finite quadratic variation then $\lim_{j \to \infty} \xi_j$ exists.

It follows therefore from Theorem 3.4.7.

Corollary 3.5.9. J does not have an unconditional basis.

Theorem 3.5.10. The operator

$$T : J^{**} \to J, \quad x^{**} = (\xi_j) \mapsto (\eta_j) = (-e_\infty^*(x^{**}), \xi_1 - e_\infty^*(x^{**}), \xi_2 - e_\infty^*(x^{**}), \ldots)$$

is an isometry between J^{**} and J with respect to the cyclic quadratic variation.
Proof. Let $x^{**} = (\xi_j) \in J^{**}$ and

$z = (\eta_j) = (-e^*_\infty(x^{**}), \xi_1 - e^*_\infty(x^{**}), \xi_2 - e^*_\infty(x^{**}), \ldots).$

By (3.16)

$$\sqrt{2}\|x^{**}\| = \sup_{l \in \mathbb{N}, k_0 < k_1 < \ldots < k_l} \max \left(\left(\xi_{k_0} - \xi_{k_j} \right)^2 + \sum_{j=1}^{l} (\xi_{k_j} - \xi_{k_{j-1}})^2 \right)^{1/2},$$

$$\left(\xi_{k_0}^2 + \xi_{k_l}^2 + \sum_{j=1}^{l} (\xi_{k_j} - \xi_{k_{j-1}})^2 \right)^{1/2}$$

$$= \sup_{l \in \mathbb{N}, k_0 < k_1 < \ldots < k_l} \max \left(\left(\eta_{k_0+1} - \eta_{k_{j+1}} \right)^2 + \sum_{j=1}^{l} (\eta_{k_j+1} - \eta_{k_{j-1}+1})^2 \right)^{1/2},$$

$$\left(\eta_{k_0+1} + e^*_\infty(x^{**}) \right)^2 + \left(\eta_{k_{j+1}} + e^*_\infty(x^{**}) \right)^2 + \sum_{j=1}^{l} (\eta_{k_j+1} - \eta_{k_{j-1}+1})^2 \right)^{1/2}$$

$$= \sup_{l \in \mathbb{N}, k_0 < k_1 < \ldots < k_l} \max \left(\left(\eta_{k_0+1} - \eta_{k_{j+1}} \right)^2 + \sum_{j=1}^{l} (\eta_{k_j+1} - \eta_{k_{j-1}+1})^2 \right)^{1/2},$$

$$\left(\eta_{k_0+1} - \eta_1 \right)^2 + (\eta_1 - \eta_{k_{j+1}})^2 + \sum_{j=1}^{l} (\eta_{k_j+1} - \eta_{k_{j-1}+1})^2 \right)^{1/2}$$

$$= \max \left(\sup_{l \in \mathbb{N}, 1 < k_0 < k_1 < \ldots < k_l} \left(\left(\eta_{k_0} - \eta_{k_l} \right)^2 + \sum_{j=1}^{l} (\eta_{k_j} - \eta_{k_{j-1}})^2 \right)^{1/2}, \right.$$

$$\left. \sup_{l \in \mathbb{N}, 1 = k_0 < k_1 < \ldots < k_l} \left(\left(\eta_{k_0} - \eta_{k_l} \right)^2 + \sum_{j=1}^{l} (\eta_{k_j} - \eta_{k_{j-1}})^2 \right)^{1/2} \right)$$

(For the first part we rename $k_j + 1$ to be k_j, for the second part, we rename 1 to be k_0, $k_0 + 1$ to be k_1,.., and $k_l + 1$ to be k_{l+1}, and then we rename $l + 1$ to be l)

$$= \sup_{l \in \mathbb{N}, k_0 < k_1 < \ldots < k_l} \left(\left(\eta_{k_0} - \eta_{k_l} \right)^2 + \sum_{j=1}^{l} (\eta_{k_j} - \eta_{k_{j-1}})^2 \right)^{1/2},$$
\[\|z\|_{cv} = \sqrt{2}\|z\|_{cv}. \]

Since \(T \) is surjective this implies the claim.

\[\square \]

Exercises

1. Define the James Function space as

\[JF = \{ f \in C[0, 1] : f(0) = 0 \text{ and } \|f\|_{qv} < \infty \}, \]

where

\[\|f\|_{qv} = \sup_{t_0 < t_1 < t_2 < \ldots < t_l} \left(\sum_{j=1}^{l} f(t_j) - f(t_{j-1}) \right)^{1/2}. \]

Show that \(\|\cdot\|_{qv} \) is a norm on \(JF \), and that \((JF, \|\cdot\|_{qv}) \) is a Banach space.

2. Show that the unit vector basis is also monotone with respect to the cyclic quadratic variation \(\|\cdot\|_{cv} \).

3. (The Gliding Hump Argument) Assume that \(Y \) is an infinite dimensional subspace of a Banach space \(X \) with a basis \((e_i) \) and \(\varepsilon > 0 \). Show that there is an infinite dimensional subspace \(Z \) of \(Y \) which has normalized basis \((z_n) \), which is \((1 + \varepsilon) \)-equivalent to a block basis of \((e_i) \).

4.* Show that \(J \) has a boundedly complete basis.
Chapter 4

Convexity and Smoothness

4.1 Strict Convexity, Smoothness, and Gateaux Differentiability

Definition 4.1.1. Let X be a Banach space with a norm denoted by $\| \cdot \|$. A map

$$f : X \setminus \{0\} \to X^* \setminus \{0\}, \quad f \mapsto f_x$$

is called a support mapping whenever.

a) $f(\lambda x) = \lambda f_x$, for $\lambda > 0$ and

b) If $x \in S_X$, then $\|f_x\| = 1$ and $f_x(x) = 1$ (and thus $f_x(x) = \|x\|^2$ for all $x \in X$).

Often we only define f_x for $x \in S_X$ and then assume that $f_x = \|x\|f_x/\|x\|$, for all $x \in X \setminus \{0\}$.

For $x \in X$ a support functional of x is an element $x^* \in X^*$, with $\|x^*\| = \|x\|$ and $\langle x^*, x \rangle = \|x\|^2$. Thus a support map is a map $f(\cdot) : X \to X^*$, which assigns to each $x \in X$ a support functional of x.

We say that X is smooth at $x_0 \in S_X$ if there exists a unique $f_x \in S_{X^*}$, for which $f_x(x) = 1$, and we say that X is smooth if it is smooth at each point of S_X.

The Banach space X is said to have Gateaux differentiable norm at $x_0 \in S_X$, if for all $y \in S_X$

$$\rho'(x_0, y) = \lim_{h \to 0} \frac{\|x_0 + hy\| - \|x_0\|}{h}$$

exists, and we say that $\| \cdot \|$ is Gateaux differentiable if it is Gateaux differentiable norm at each $x_0 \in S_X$.
Example 4.1.2. For $X = L_p[0, 1]$, $1 < p < \infty$ the function

$$f : L_p[0, 1] \to L_q[0, 1], \quad f_x(t) = \text{sign}(x(t)) \left| \frac{x(t)}{\|x\|_p} \right|^{p/q} = \|x\|_p^{1-\frac{q}{p}} |x(t)|^{\frac{q}{p}}$$

is a (and the only) support function for $L_p[0, 1]$.

In order establish a relation between Gateaux differentiability and smoothness we observe the following equalities and inequalities for any $x \in X$, $y \in S_X$, and $h > 0$:

$$f_x(y) \frac{\|x\|}{\|x\|} = f_x(hy) \frac{h\|x\|}{\|x\|} = f_x(x) - \|x\|^2 + f_x(hy) \frac{h\|x\|}{\|x\|} = f_x(x + hy) - \|x\|^2 \frac{h\|x\|}{\|x\|} \leq |f_x(x + hy)| - \|x\|^2 \frac{h\|x\|}{\|x\|} \leq \|x\| \|x + hy\| - \|x\|^2 \frac{h\|x\|}{\|x\|} = \|x + hy\| - \|x\| \leq \|x + hy\|^2 - \|x + hy\||x\| \frac{h\|x + hy\|}{\|x + hy\|} \leq \|x + hy\|^2 - |f_{x+hy}(x)| \frac{h\|x + hy\|}{\|x + hy\|} = f_{x+hy}(x + hy) - |f_{x+hy}(x)| \frac{h\|x + hy\|}{\|x + hy\|} = hf_{x+hy}(y) + f_{x+hy}(x) - |f_{x+hy}(x)| \frac{h\|x + hy\|}{\|x + hy\|} \leq hf_{x+hy}(y) \frac{f_{x+hy}(y)}{\|x + hy\|} \|x + hy\|$$

and thus for any $x \in X , y \in S_X$, and $h > 0$:

$$\frac{f_x(y)}{\|x\|} \leq \frac{|f_x(x + hy)| - \|x\|}{h\|x\|} \leq \frac{\|x + hy\| - \|x\|}{h} \leq \frac{f_{x+hy}(y)}{\|x + hy\|}.$$
4.1. STRICT CONVEXITY, SMOOTHNESS, AND GATEAUX DIFFERENTIABILITY

Theorem 4.1.3. Assume X is a Banach space and $x_0 \in S_X$. The following statements are equivalent:

a) X is smooth at x_0.

b) Every support mapping $f : x \mapsto f_x$ is norm to w^* continuous from S_X to S_{X^*} at the point x_0.

c) There exists a support mapping $f(\cdot) : x \mapsto f_x$ which is norm to w^* continuous from S_X to S_{X^*} at the point x_0.

d) The norm is Gateaux differentiable at x_0.

In that case

$$f_x(y) = \rho'(x_0, y) = \lim_{h \to 0} \frac{\|x_0 + hy\| - \|x_0\|}{h} \text{ for all } y \in S_X.$$

Proof. \neg(b) \Rightarrow \neg(a). Assume that $(x_n) \subset S_X$ is a net, which converges in norm to x_0, but for which f_{x_n} does not converge in w^* to f_{x_0}, where $f(\cdot) : X \to X^*$ is the support map. We can assume that there is a w^* neighborhood U of f_{x_0}, not containing any of the f_{x_n}, and by Alaoglu’s Theorem 2.1.8 we can assume that f_{x_n} has an accumulation point $x^* \in U$, which cannot be equal to f_{x_0}.

As

$$|x^*(x_0) - 1| = |x^*(x_0) - f_{x_n}(x_n)| \leq |x^*(x_0) - f_{x_n}(x_0)| + |f_{x_n}(x_0) - x_n| \leq |x^*(x_0) - f_{x_n}(x_0)| + \|x_0 - x_n\| \to_{n \in M, n \to \infty} 0,$$

it follows that $x^*(x_0) = 1$, and since $\|x^*\| \leq 1$ we must have $\|x^*\| = 1$. Since $x^* \neq f_{x_0}$, X cannot be smooth at x_0.

(b) \Rightarrow (c) is clear (since by Theorem of Hahn Banach there is always at least one support map).

(c) \Rightarrow (d) Follows from (4.1), and from the fact that (4.1) implies for $x \in X$, $y \in S_X$ and $h > 0$, that

$$\frac{\|x - hy\| - \|x\|}{-h\|x\|} = \frac{\|x + h(-y)\| - \|x\|}{h\|x\|} \geq - \frac{f_x(-y)}{\|x\|} = f_x(y)$$

and

$$\frac{\|x - hy\| - \|x\|}{-h\|x\|} = \frac{\|x + h(-y)\| - \|x\|}{h\|x\|} \leq - \frac{f_x+h(-y)(-y)}{\|x + h(-y)\|} = \frac{f_{x+h(-y)}(y)}{\|x + h(-y)\|}.$$
(d) ⇒ (a) Let \(f \in S_{x^*} \) be such that \(f(x) = \|x\| = 1 \). Since (4.1) is true for any support function it follows that

\[
f(y) \leq \frac{\|x_0 + hy\| - \|x_0\|}{h}, \text{ for all } y \in S_X \text{ and } h > 0,
\]

and

\[
\frac{\|x_0 - hy\| - \|x_0\|}{-h} = -\frac{\|x_0 + (-y)\| - \|x_0\|}{h} \leq -f(-y) = f(y)
\]

for all \(y \in S_X \) and \(h < 0 \).

Thus, by assumption (d), \(\rho'(x_0, y) = f(y) \), which proves the uniqueness of \(f \in S_{x^*} \) with \(f(x_0) = 1 \).

Definition 4.1.4. A Banach space \(X \) with norm \(\|\cdot\| \) is called **strictly convex** whenever \(S(X) \) contains no non-trivial line segment, i.e. if for all \(x, y \in S_X \), \(x \neq y \) it follows that \(\|x + y\| < 2 \).

Theorem 4.1.5. If \(X^* \) is strictly convex then \(X \) is smooth, and if \(X^* \) is smooth the \(X \) is strictly convex.

Proof. If \(X \) is not smooth then there exists an \(x_0 \in S_X \), and two functionals \(x^* \neq y^* \) in \(S_{X^*} \) with \(x^*(x_0) = y^*(x_0) = 1 \) but this means that

\[
\|x^* + y^*\| \geq (x^* + y^*)(x_0) = 2,
\]

which implies that \(X^* \) is not strictly convex. If \(X \) is not strictly convex then there exist \(x \neq y \) in \(S_X \) so that \(\|\lambda x + (1 - \lambda)y\| = 1 \), for all \(0 \leq \lambda \leq 1 \). So let \(x^* \in S_{X^*} \) such that

\[
x^* \left(\frac{x + y}{2} \right) = 1.
\]

But this implies that

\[
1 = x^* \left(\frac{x + y}{2} \right) = \frac{1}{2} x^*(x) + \frac{1}{2} x^*(y) \leq \frac{1}{2} + \frac{1}{2} = 1,
\]

which implies that \(x^*(x) = x^*(y) = 1 \), which by viewing \(x \) and \(y \) to be elements in \(X^{**} \), implies that \(X^* \) is not smooth.

Exercises
4.1. STRICT CONVEXITY, SMOOTHNESS, AND GATEAUX DIFFERENTIABILITY

1. Show that ℓ_1 admits an equivalent norm $\| \cdot \|$ which is strictly convex and $(\ell_1, \| \cdot \|)$ is (isometrically) the dual of c_0 with some equivalent norm.

2. Assume that $T : X \to Y$ is a linear, bounded, and injective operator between two Banach spaces and assume that Y is strictly convex. Show that X admits an equivalent norm for which X is strictly convex.
CHAPTER 4. CONVEXITY AND SMOOTHNESS

4.2 Uniform Convexity and Uniform Smoothness

Definition 4.2.1. Let X be a Banach space with norm $\| \cdot \|$. We say that the norm of X is Fréchet differentiable at $x_0 \in S_X$ if
\[
\lim_{h \to 0} \frac{\|x_0 + hy\| - \|x_0\|}{h}
\]
exists uniformly in $y \in S_X$.

We say that the norm of X is Fréchet differentiable if the norm of X is Fréchet differentiable at each $x_0 \in S_X$.

Remark. By Theorem 4.1.3 it follows from the Fréchet differentiability of the norm at x_0 that there is a unique support functional $f_{x_0} \in S^*_X$ and
\[
\lim_{h \to 0} \frac{\|x_0 + hy\| - \|x_0\| - f_{x_0}(y)}{h} = 0,
\]
uniformly in y and thus that (put $z = hy$)
\[
\lim_{z \to 0} \frac{\|x_0 + z\| - \|x_0\| - f_{x_0}(z)}{\|z\|} = 0.
\]

In particular, if X has a Fréchet differentiable norm it follows from Theorem 4.1.3 that there is a unique support map $x \to f_x$.

Proposition 4.2.2. Let X be a Banach space with norm $\| \cdot \|$. Then the norm is Fréchet differentiable if and only if the support map is norm-norm continuous.

Proof. (We assume that $\mathbb{K} = \mathbb{R}$) “⇒” Assume that $(x_n) \subset S_X$ converges to x_0 and put $x_n^* = f_{x_n}$, $n \in \mathbb{N}$, and $x_0^* = f_{x_0}$. It follows from Theorem 4.1.3 that $x_n^*(x_0) \to 1$, for $n \to \infty$. Assume that our claim were not true, and we can assume that for some $\varepsilon > 0$ we have $\|x_n^* - x_0^*\| > 2\varepsilon$, and therefore we can choose vectors $z_n \in S_X$, for each $n \in \mathbb{N}$ so that $(x_n^* - x_0^*)(z_n) > 2\varepsilon$. But then
\[
x_0^*(x_0) - x_n^*(x_0) \leq (x_0^*(x_0) - x_n^*(x_0))\frac{1}{\varepsilon}(x_n^*(z_n) - x_0^*(z_n)) - 1
\]
\[
= (x_n^*(x_0) - x_0^*(x_0)) + \frac{1}{\varepsilon}(x_0^*(z_n) - x_n^*(z_n))(x_n^*(x_0) - x_0^*(x_0))
\]
\[
= (x_n^* - x_0^*)\left(x_0 + \frac{1}{\varepsilon}(x_0^*(x_0) - x_n^*(x_0))\right)
\]
4.2. UNIFORM CONVEXITY AND UNIFORM SMOOTHNESS

\[\frac{x_n^*(x_0 + z_n \frac{1}{\varepsilon} (x_0^*(x_0) - x_n^*(x_0)))}{\varepsilon} - x_n^*(x_0 + z_n \frac{1}{\varepsilon} (x_0^*(x_0) - x_n^*(x_0))\]

\[\leq \Vert x_0^* \vert x_0 + z_n \frac{1}{\varepsilon} (x_0^*(x_0) - x_n^*(x_0)) \Vert - \Vert x_0 \Vert - x_n^* (z_n \frac{1}{\varepsilon} (x_0^*(x_0) - x_n^*(x_0))).\]

Thus if we put

\[y_n = z_n \frac{1}{\varepsilon} (x_0^*(x_0) - x_n^*(x_0)),\]

it follows that \(\|y_n\| \to 0,\) if \(n \to \infty,\) and, using the Fréchet differentiability of the norm that (note that \((x_0^*(x_0) - x_n^*(x_0))/\|y_n\| = \varepsilon)\) we deduce that

\[0 < \varepsilon = \frac{x_0^*(x_0) - x_n^*(x_0)}{\|y_n\|} \leq \frac{\|x_0 + y_n\| - \|x_0\| - x_0^*(y_n)}{\|y_n\|} \to_{n \to \infty} 0,\]

which is a contradiction.

\[\varepsilon \leq \frac{1}{\|f_{x + hy} - f_x\|} - 1\]

which converges uniformly in \(y\) to 0 and proves our claim.

\[\varepsilon \leq \frac{1}{\|f_{x + hy} - f_x\|} - 1\]

which converges uniformly in \(y\) to 0 and proves our claim.

\[\varepsilon \leq \frac{1}{\|f_{x + hy} - f_x\|} - 1\]

which converges uniformly in \(y\) to 0 and proves our claim.

Definition 4.2.3. Let \(X\) be a Banach space with norm \(\| \cdot \|\).

We say that the norm is uniformly Fréchet differentiable on \(S_X\) if

\[\lim_{h \to 0} \frac{\|x + hy\| - \|x\|}{h} - f_x(y),\]

uniformly in \(x \in S_X\) and \(y \in S_X\). In other words if for all \(\varepsilon > 0\) there is a \(\delta > 0\) so that for all \(x, y \in S_X\) and all \(h \in \mathbb{R}, 0 < |h| < \delta\)

\[\left| \frac{\|x + hy\| - \|x\|}{h} - f_x(y) \right| < \varepsilon.\]
X is uniformly convex if for all $\varepsilon > 0$ there is a $\delta > 0$ so that for all $x, y \in S_X$ with $\|x - y\| \geq \varepsilon$ it follows that $\|(x + y)/2\| < 1 - \delta$. We call

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : x, y \in S_X, \|x - y\| \geq \varepsilon \right\}, \quad \text{for } \varepsilon \in [0, 2]$$

the modulus of uniform convexity of X.

X is called uniform smooth if for all $\varepsilon > 0$ there exists a $\delta > 0$ so that for all $x, y \in S_X$ and all $h \in (0, \delta]$

$$\|x + hy\| + \|x - hy\| < 2 + \varepsilon h.$$

The modulus of uniform smoothness of X is the map $\rho : [0, \infty) \to [0, \infty)$

$$\rho_X(\tau) = \sup \left\{ \frac{\|x + z\|}{2} + \frac{\|x - z\|}{2} - 1 : x, z \in X, \|x\| = 1, \|z\| \leq \tau \right\}.$$

Remark. X is uniformly convex if and only if $\delta_X(\varepsilon) > 0$ for all $\varepsilon > 0$. X is uniformly smooth if and only if $\lim_{\tau \to 0} \rho_X(\tau)/\tau = 0$.

Theorem 4.2.4. For a Banach space X the following statements are equivalent.

a) There exists a support map $x \to f_x$ which uniformly continuous on S_X with respect to the norms.

b) The norm on X is uniformly Fréchet differentiable on S_X.

c) X is uniformly smooth.

d) X^* is uniformly convex.

e) Every support map $x \to f_x$ is uniformly continuous on S_X with respect to the norms.

Proof. “(a)\Rightarrow,(b)” We proceed as in the proof of Proposition 4.2.2. From (4.1) it follows that for $x, y \in S_X$, and $h \in \mathbb{R}$

$$\left| \frac{\|x + hy\| - \|x\|}{h} - f_x(y) \right| \leq \left| \frac{f_{x+hy}(y)}{\|x + hy\|} - f_x(y) \right|$$
4.2. UNIFORM CONVEXITY AND UNIFORM SMOOTHNESS

\[\leq |f_{x+h}(y) - f_x(y)| + \left| \frac{f_{x+h}(y)}{|x+h|} - f_{x+h}(y) \right| \]
\[\leq \|f_{x+h} - f_x\| + \frac{1}{1+|h|} - 1 \|f_{x+h}\| \]

which converges by (a) uniformly in \(x \) and \(y \), to 0.

“(b)⇒(c)”. Assuming (b) we can choose for \(\varepsilon > 0 \) a \(\delta > 0 \) so that for all \(h \in (0, \delta) \) and all \(x, y \in S_X \)
\[\left| \frac{\|x+h\| - \|x\| - f_x(y)}{h} \right| < \varepsilon/2. \]

But this implies that for all \(h \in (0, \delta) \) and all \(x, y \in S_X \) we have
\[\|x+h\| + \|x-h\| \]
\[= 2 + h \left(\frac{\|x+h\| - \|x\| - f_x(y)}{h} + \left(\frac{\|x+h(-y)\| - \|x\| - f_x(-y)}{h} \right) \right) \]
\[\leq 2 + \varepsilon h, \]

which implies our claim.

“(c)⇒(d)”. Let \(\varepsilon > 0 \). By (c) we can find \(\delta > 0 \) such that for all \(x \in S_X \) and \(z \in X \), with \(\|z\| \leq \delta \), we have \(\|x+z\| + \|x-z\| \leq 2 + \varepsilon \|z\|/4. \)

Let \(x^*, y^* \in S_{X^*} \) with \(\|x^* - y^*\| \geq \varepsilon \). There is a \(z \in X \), \(\|z\| \leq \delta/2 \) so that \((x^* - y^*)(z) \geq \varepsilon \delta/2 \). This implies
\[\|x^* + y^*\| = \sup_{x \in S_X} \|x^* + y^*(x)\| \]
\[= \sup_{x \in S_X} \|x^*(x+z) + y^*(x-z) - (x^* - y^*)(z)\| \]
\[\leq \sup_{x \in S_X} \|x+z\| + \|x-z\| - \varepsilon \delta/2 \]
\[\leq 2 + \varepsilon \|z\|/4 - \varepsilon \delta/2 < 2 - \varepsilon \delta/4. \]

“(d)⇒(e)”. Let \(x \mapsto f_x \) be a support functional. By (d) we can choose for \(\varepsilon > 0 \) a \(\delta > 0 \) so that for all \(x^*, y^* \in S_{X^*} \) we have \(\|x^* - y^*\| < \varepsilon \), whenever \(\|x^* + y^*\| > 2 - \delta \).

Assume now that \(x, y \in S_X \) with \(\|x-y\| < \delta \). Then
\[\|f_x + f_y\| \geq \frac{1}{2} (f_x + f_y)(x+y) \]
\[f_x(x) + f_y(y) + \frac{1}{2} f_x(y - x) + \frac{1}{2} f_y(x - y) \geq 2 - \|x - y\| \geq 2 - \delta, \]

which implies that \(\|f_x - f_y\| < \varepsilon \), which proves our claim.

"(e)⇒(a)". Clear.

Theorem 4.2.5. Every uniformly convex and every uniformly smooth Banach space is reflexive.

Proof. Assume that \(X \) is uniformly convex, and let \(x^{**} \in S_{X^{**}} \). Since \(B_X \) is \(w^* \)-dense in \(B_{X^{**}} \) we can find a net \((x_i)_{i \in I} \) which converges with respect to \(w^* \) to \(x^{**} \). Since for every \(\eta > 0 \) there is an \(x^* \in S_{X^*} \) with \(\lim_{i \in I} x^*(x_i) = x^{**}(x^*) > 1 - \eta \), it follows that \(\lim_{i \in I} \|x_i\| = 1 \) and we can therefore assume that \(\|x_i\| = 1, i \in I \). We claim that \(\chi(x_i) \) is a Cauchy net with respect to the norm to \(x^{**} \), which would finish our proof.

So let \(\varepsilon > 0 \) and choose \(\delta \) so that \(\|x + y\| > 2 - \delta \) implies that \(\|x - y\| < \varepsilon \), for any \(x, y \in S_X \). Then choose \(x^* \in S_{X^*} \), so that \(x^{**}(x^*) > 1 - \delta/4 \), and finally let \(i_0 \in I \) so that \(x^* \circ (x_i) \geq 1 - \delta/2 \), for all \(i \geq i_0 \). It follows that

\[\|x_i + x_j\| \geq x^*(x_i + x_j) \geq 2 - \delta \text{ whenever } i, j \geq i_0, \]

and thus \(\|x_i - x_j\| < \varepsilon \), which verifies our claim.

If \(X \) is uniformly smooth it follows from Theorem 4.2.4 that \(X^* \) is uniformly convex. The first part yields that \(X^* \) is reflexive, which implies that \(X \) is reflexive.

\[\square \]

Exercises

1. Show that for there is a constant \(c > 0 \) so that for all \(\varepsilon > 0 \),

\[\delta_{\ell_2}(vp) \geq c\varepsilon^2. \]

(Here \(\delta_{\ell_2} \) is the modulus of uniform convexity of \(\ell_2 \)).

2. Prove that for every \(\varepsilon > 0 \), \(C > 1 \) and any \(n \in \mathbb{N} \) there is an \(N = (n, \varepsilon, C) \) so that the following holds:

If \(X \) is an \(N \) dimensional space which is \(C \)-isomorphic to \(\ell_1^n \), then \(X \) has an \(n \)-dimensional subspace \(Y \) which is \((1 + \varepsilon) \) isomorphic to \(\ell_1^n \).
Hint: prove first the following: Assume that $\| \cdot \|$ is a norm on ℓ_1^n so that
$$\frac{1}{C} \| x \|_1 \leq \| x \| \leq \| x \| < \text{ for all } x \in \ell_1^n,$$
then there is a $\| \cdot \|$-normalized block sequence (x_1, x_2, \ldots, x_n) so that :
$$\frac{1}{\sqrt{C}} \sum_{i=1}^{n} |b_i| \leq \left\| \sum_{i=1}^{n} b_i x_i \right\| \leq \sum_{i=1}^{n} |b_i|.$$

3. Show that $\left(\oplus_{n=1}^{\infty} \ell_1^n \right)_{\ell_2}$ does not admit a norm which is uniformly convex.
Chapter 5

L_p-spaces

5.1 Reduction to the Case ℓ_p and L_p

The main (and only) result of this section is the following Theorem.

Theorem 5.1.1. Let $1 \leq p < \infty$ and let (Ω, Σ, μ) be a separable measure space, i.e. Σ is generated by a countable set of subsets of Ω.

Then there is a countable set I so that $L_p(\Omega, \Sigma, \mu)$ is isometrically isomorphic to $L_p[0, 1] \oplus_p \ell_p(I)$ or $\ell_p(I)$.

Moreover, if (Ω, Σ, μ) has no atoms we can choose I to be empty and, thus, $L_p(\Omega, \Sigma, \mu)$ is isometrically isomorphic to $L_p[0, 1]$.

Proof. First note that the assumption that Σ is generated by a countable set say $\mathcal{D} \subset \mathcal{P}(\Omega)$ implies that $L_p(\mu)$ is separable. Indeed, the algebra generated by \mathcal{D} is $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{A}_n$, where \mathcal{A}_n is defined by recursively for every $n \in \mathbb{N}$ as follows: $\mathcal{A}_1 = \mathcal{D}$, and, assuming, \mathcal{A}_n is defined we let first

$$\mathcal{A}'_{n+1} = \left\{ \bigcup_{j=1}^{k} B_j : k \in \mathbb{N}, B_j \in \mathcal{A}_n \text{ or } B_j^c \in \mathcal{A}_n \right\}$$

and then

$$\mathcal{A}_{n+1} = \left\{ \bigcap_{j=1}^{k} B_j : k \in \mathbb{N}, B_j \in \mathcal{A}_n \text{ or } B_j^c \in \mathcal{A}_n \right\}.$$

This proves that \mathcal{A} is countable. Then we observe that $\text{span}(1_A : A \in \mathcal{A})$ is dense in $L_p(\mu)$

We first reduce to the σ-finite case.
Step 1: \(L_p(\Omega, \Sigma, \mu) \) is isometrically isomorphic to a space \(L_p(\Omega', \Sigma', \mu') \) where \((\Omega', \Sigma', \mu')\) is a \(\sigma \)-finite measure.

Let \((f_n) \subset L_p(\Omega, \Sigma, \mu)\) be a dense sequence in \(L_p(\Omega, \Sigma, \mu) \) and define

\[
\Omega' = \bigcup_{n \in \mathbb{N}} \{|f_n| > 0\}.
\]

Since \(\{ |f_n| > 0 \}\) is a countable union of sets of finite measure, namely

\[
\{ |f_n| > 0 \} = \bigcup_{m \in \mathbb{N}} \{ |f_n| > 1/m \}
\]

\(\Omega'\) is also \(\sigma \)-finite. Moreover, for any \(f \in L_p(\Omega, \Sigma, \mu) \) it follows that \(\{ |f| > 0 \}\) \(\subset\) \(\Omega'\) \(\mu\) a.e. Therefore we can choose \(\Sigma' = \Sigma|_{\Omega'} = \{ A \in \Sigma : A \subset \Omega' \} \) and \(\mu' = \mu|_{\Sigma'} \).

Step 2: Assume \((\Omega, \Sigma, \mu)\) is a \(\sigma \)-finite measure space. Let \(I \) be the set of all atoms of \((\Omega, \Sigma, \mu)\). Since \(\mu \) is \(\sigma \)-finite, \(I \) is countable, and \(\mu(A) < \infty \) for all \(A \in I \). We put \(\Omega' = \Omega \setminus \bigcup_{A \in I} A \), \(\Sigma' = \Sigma|_{\Omega'} \) and \(\mu' = \mu|_{\Sigma'} \). Then

\[
T : L_p(\Omega, \Sigma, \mu) \rightarrow \ell_p(I) \oplus_p L_p(\Omega', \Sigma', \mu'), \quad f \mapsto \left(\left(\int_A f d\mu : A \in I \right), f|_{\Omega'} \right),
\]

is an isometry onto \(\ell_p(I) \oplus_p L_p(\Omega', \Sigma', \mu') \).

Now either \(\mu' = 0 \) or it is an atomless \(\sigma \)-finite measure. In the next step we reduce to the case of \(\mu \) being an atomless probability measure.

Step 3: Assume that \((\Omega, \Sigma, \mu)\) is \(\sigma \)-finite, atomless and not 0. Then there is an atomless probability \(\mu' \) on \((\Omega, \Sigma)\) so that \(L_p(\Omega, \Sigma, \mu) \) is isometrically isomorphic to the space \(L_p(\Omega, \Sigma, \mu') \).

Since \((\Omega, \Sigma, \mu)\) is \(\sigma \)-finite there is an \(f \in L_1(\Omega, \Sigma, \mu) \), with \(f(\omega) > 0 \) for all \(\omega \in \Omega \) and \(\|f\|_1 = 1 \). Let \(\mu' \) be the measure whose Radon Nikodym derivative with respect to \(\mu \) is \(f \) (thus \(\mu' \) is a probability measure) and consider the operator

\[
T : L_p(\Omega, \Sigma, \mu) \rightarrow L_p(\Omega, \Sigma, \mu'), \quad g \mapsto g \cdot f^{-1/p},
\]

which is an isometry onto \(L_p(\Omega, \Sigma, \mu') \).

Step 4: Reduction to \([0, 1]\). Assume \((\Omega, \Sigma, \mu)\) is an atomless countably generated probability space. Let \((B_n) \subset \Sigma\) be a sequence which generates \(\Sigma\). By induction we choose for each \(n \in \mathbb{N}_0\) a finite \(\Sigma \)-partition \(\mathcal{P}_n = (P_1^{(n)}, P_2^{(n)}, \ldots, P_k^{(n)}) \) of \(\Omega\) with the following properties:

\[
(5.1) \quad \{B_1, B_2, \ldots, B_n\} \subset \sigma(\mathcal{P}_n) \text{ (the } \sigma \text{-algebra generated by } \mathcal{P}_n),
\]
5.1. REDUCTION TO THE CASE \(\ell_p \) AND \(L_P \)

(5.2) \(\mu(P_i^{(n)}) \leq 2^{-n} \), for \(i = 1, 2 \ldots k_n \),

(5.3) \(\mathcal{P}_n \) is a subpartition of \(\mathcal{P}_{n-1} \) if \(n > 1 \), i.e.

for each \(i \in \{1, \ldots, k_{n-1}\} \) there are \(s_n(i) \leq t_n(i) \) in \(\{1, \ldots, k_n\} \), so that

\[
P_i^{(n-1)} = \bigcup_{j=s_n(i)}^{t_n(i)} P_j^{(n)}.
\]

Put for \(n \in \mathbb{N} \) and \(1 \leq i \leq k_n \)

\[
\hat{P}_i^{(n)} = \left[\sum_{j \leq i-1} \mu(P_j^{(n)}), \sum_{j \leq i} \mu(P_j^{(n)}) \right], \quad \text{if } j < k_n \text{ and}
\]

\[
\hat{P}_{k_n}^{(n)} = \left[\sum_{j \leq k_n-1} \mu(P_j^{(n)}), \sum_{j \leq k_n} \mu(P_j^{(n)}) \right]
\]

and \(\hat{P}^{(n)} = (\hat{P}_1^{(n)}, \hat{P}_2^{(n)}, \ldots, \hat{P}_{k_n}^{(n)}) \). Then \(\hat{P}^{(n)} \) is a Borel partition of \([0, 1]\),

with \(\lambda(\hat{P}_i^{(n)}) = \mu(P_i^{(n)}) \), for each \(i \leq k_n \), and \(\bigcup_{n \in \mathbb{N}} \hat{P}^{(n)} \) generate the Borel

\(\sigma \)-algebra on \([0, 1]\).

For \(n \in \mathbb{N} \) put

\[
V_n = \left\{ \sum_{i=1}^{k_n} a_i \chi_{P_i^{(n)}} : a_i \text{ scalars} \right\},
\]

Then \(V_n \) is a vector space and \(V = \bigcup_n V_n \) is a dense subspace of \(L_P(\mu) \).

Similarly \(\tilde{V} \), with

\[
\tilde{V}_n = \left\{ \sum_{i=1}^{k_n} a_i \chi_{\hat{P}_i^{(n)}} : a_i \text{ scalars} \right\},
\]

is a dense subspace of \(L_P[0, 1] \), and

\[
T : V \to \tilde{V}, \quad \sum_{i=1}^{k_n} a_i \chi_{P_i^{(n)}} \mapsto \sum_{i=1}^{k_n} a_i \chi_{\hat{P}_i^{(n)}},
\]

is an isometry whose image is dense in \(L_P[0, 1] \). Thus \(T \) extends to an

isometry from \(L_P(\mu) \) onto \(L_P[0, 1] \). \(\square \)

Exercises
1. Prove that for $1 \leq p \leq \infty$,

$$\bigcup_{q>p} L_q[0, 1] \subseteq L_p[0, 1].$$
5.2. Uniform Convexity and Uniform Smoothness of L_p, $1 < p < \infty$

Let (Ω, Σ, μ) be a measure space. The first goal of this section is to prove the following

Theorem 5.2.1. Let $1 < p < \infty$ and denote the modulus of uniform convexity of $L_p(\mu)$ by δ_p. Then for any $1 < p < \infty$ there is a $c_p > 0$ so that

$$\delta_p(\varepsilon) \begin{cases} c_p \varepsilon^2 & \text{if } 1 < p < 2 \\ c_p \varepsilon^p & \text{if } 2 < p < \infty. \end{cases}$$

Lemma 5.2.2. Assume $\xi, \eta \in \mathbb{R}$

a) If $2 \leq p < \infty$, then

$$|\xi + \eta|^p + |\xi - \eta|^p \geq 2(|\xi|^p + |\eta|^p).$$

b) If $0 < p \leq 2$

$$|\xi + \eta|^p + |\xi - \eta|^p \leq 2(|\xi|^p + |\eta|^p).$$

If $p \neq 2$ equality in (a) and (b) only holds if either ξ or η is zero.

Proof. If $p = 2$ we have equality by the binomial formula.

If $2 < p < \infty$ and $\alpha, \beta \in \mathbb{R}$, we apply Hölder’s inequality to the function

$$\{1, 2\} \to \{\alpha^2, \beta^2\}, 1 \mapsto \alpha^2, 2 \mapsto \beta^2,$$

the counting measure on $\{1, 2\}$, and the exponents $p/2$ and $p/(p - 2)$.

$$\alpha^2 + \beta^2 \leq (|\alpha|^p + |\beta|^2)^{2/p2(p-2)/p}, \text{ and, thus,}$$

$$|\alpha|^p + |\beta|^p \geq (\alpha^2 + \beta^2)^{p/22(2-p)/2}. \tag{5.4}$$

If $0 < p < 2$ we can replace p by $4/p$ and obtain

$$|\alpha|^{4/p} + |\beta|^{4/p} \geq (\alpha^2 + \beta^2)^{2/p2(p-2)/p},$$

and if we replace $|\alpha|$ and $|\beta|$ by $|\alpha|^{p/2}$ and $|\beta|^{p/2}$ respectively, we obtain

$$|\alpha|^2 + |\beta|^2 \geq (|\alpha|^p + |\beta|^2)^{2/p2(p-2)/p}, \text{ or}$$

$$|\alpha|^p + |\beta|^p \leq 2^{(2-p)/2}(|\alpha|^2 + |\beta|^2)^{p/2}. \tag{5.5}$$
Since

$$0 \leq \frac{\xi^2}{\eta^2 + \xi^2} \leq 1$$

we derive that

$$(5.6) \quad \frac{\|\xi\|^p}{(|\eta|^2 + |\xi|^2)^{p/2}} \begin{cases} \leq \frac{\xi^2}{\eta^2 + \xi^2} & \text{if } 2 < p \\ \geq \frac{\xi^2}{\eta^2 + \xi^2} & \text{if } 2 > p. \end{cases}$$

Forming similar inequalities by exchanging the roles of η and ξ and adding them we get

$$(5.7) \quad |\eta|^p + |\xi|^p \begin{cases} \leq (|\eta|^p + |\xi|^p)^{p/2} & \text{if } 2 < p \\ \geq (|\eta|^p + |\xi|^p)^{p/2} & \text{if } 2 > p. \end{cases}$$

Note that equality in (5.7) can only hold if $\eta = 0$ or $\xi = 0$.

Letting now $\alpha = |\xi + \eta|$ and $\beta = |\xi - \eta|$ we deduce from (5.4) and (5.7) if $p > 2$

$$|\alpha|^p + |\beta|^p \geq \left(|\xi + \eta|^2 + |\xi - \eta|^2 \right)^{p/2} 2^{(2-p)/2}$$

$$= 2(\xi^2 + \eta^2)^{p/2} \geq 2(|\eta|^p + |\xi|^p),$$

which finishes the proof of part (a), while part (b) follows from applying (5.5) and (5.7). \qed

Corollary 5.2.3. Let $0 < p < \infty$ and $f, g \in L_p(\mu)$. Then

$$\|f + g\|_p + \|f - g\|_p \begin{cases} \geq 2(|f|^p + |g|^p) & \text{if } p \geq 2 \\ \leq 2(|f|^p + |g|^p) & \text{if } p \leq 2. \end{cases}$$

If $p \neq 2$ equality only holds if $f \cdot g = 0$ μ-almost everywhere.

Lemma 5.2.4. Let $1 < p < 2$. Then there is a positive constant $C = C(p)$ so that

$$(5.8) \quad \left(\frac{|s - t|^2 + |s + t|^2}{C} \right)^{1/2} \leq \left(\frac{|s|^p + |t|^p}{2} \right)^{1/p}.$$

Proof. We can assume without loss of generality that $s = 1 > |t|$ and need therefore to show that for some $C > 0$ and all $t \in [-1, 1]$ we have

$$(5.9) \quad \left(\frac{1 - t}{C} \right)^2 \leq \phi(t) = \left(\frac{1 + |t|^p}{2} \right)^{2/p} - \left(\frac{1 + t}{2} \right)^2.$$
5.2. UNIFORM CONVEXITY AND SMOOTHNESS OF L_p

Since ϕ is strictly positive on $[-1, 0]$ we only need to find C so that (5.11) holds for all $t \in [0, 1]$. Since $\xi \mapsto \xi^{1/p}$ is strictly concave it follows for all $0 < t < 1$

$$\left(\frac{1}{2} + \frac{t^p}{2}\right)^{2/p} > \left(\frac{1}{2} + \frac{t}{2}\right)^2,$$

we only need to show that

(5.10) $\lim_{t \to 1^-} \frac{\phi(t)}{(1 - t)^2} > 0$.

We compute

$$\frac{d^2}{dt^2} \phi(t) = \frac{d}{dt} \left[2^{-2/p + 1}(1 + t^p)^{(2/p) - 1}t^{p-1} - \frac{1}{2}(1 + t) \right]$$

$$= 2^{-2/p + 1}(2 - p)(1 + t^p)^{(2/p) - 2}t^{2p-2}$$

$$+ 2^{-2/p + 1}(p - 1)(1 + t^p)^{(2/p) - 1}t^{p-2} - \frac{1}{2}$$

and thus

$$\frac{d}{dt} \phi(t) \bigg|_{t=1} = 0, \text{ and}$$

$$\frac{d^2}{dt^2} \phi(t) \bigg|_{t=1} = (2 - p)(1/2) + (p - 1) - (1/2) = (p - 1)/2 > 0$$

Applying now twice the L’Hospital rule, we deduce our wanted inequality (5.10) \[\square \]

Via integrating, Lemma 5.2.4 yields

Corollary 5.2.5. If $1 < p \leq 2$ and $f, g \in L_p(\mu)$ and if $C = C(p)$ is as in Lemma 5.2.4, it follows

(5.11) $\left\| \left(\frac{|f - g|}{C} \right)^2 + \frac{|f + g|^2}{2} \right\|_p^{1/2} \leq \left\| \left(\frac{|f|^p + |g|^p}{2} \right)^{1/p} \right\|_p$

$$= 2^{-1/p} \left(\|f\|^p + \|g\|^p \right)^{1/p}.$$

Proposition 5.2.6. If $1 \leq p < q < \infty$ and $f_j \in L_p$, $j = 1, 2, \ldots$ then

$$\left(\sum_{j=1}^n \|f_j\|^q_p \right)^{1/q} \leq \left\| \left(\sum_{j=1}^n |f_j|^q \right)^{1/q} \right\|_p.$$
Proof. We can assume without loss of generality that

\[\sum_{j=1}^{n} \|f_j\|_p^q = 1. \]

We estimate

\[\left\| \left(\sum_{j=1}^{n} |f_j|^q \right)^{1/q} \right\|_p = \left\| \left(\sum_{j=1}^{n} \|f_j\|_p^q \left(\frac{|f_j|}{\|f_j\|_p} \right)^q \right)^{1/q} \right\|_p \]

\[\geq \left\| \left(\sum_{j=1}^{n} \|f_j\|_p^q \left(\frac{|f_j|}{\|f_j\|_p} \right)^p \right)^{1/p} \right\|_p \]

(We use the concavity of the function \(\xi \mapsto \xi^{p/q} \).)

\[\geq \left\| \sum_{j=1}^{n} \|f_j\|_p^q \left(\frac{|f_j|}{\|f_j\|_p} \right)^p \right\|_1^{1/p} = 1, \]

which proves our claim. \(\square \)

Proof of Theorem 5.2.1. For \(2 \leq p < \infty \) we will deduce our claim from Corollary 5.2.3. For \(f, g \in L_p(\mu) \), with \(\|f\| = \|g\| = 1 \), we deduce from the first inequality in Corollary 5.2.3

\[2^p = \frac{1}{2} [\|f + g\| - \|f - g\|^p + \|f + g\| + \|f - g\|^p] \geq \|f + g\|^p + \|f - g\|^p \]

and thus, using the approximation \((2^p + \xi)^{1/p} = 2 + \frac{1}{p} 2^{1-p} \xi + o(\xi) \), we deduce that

\[\|f + g\| \leq (2^p - \|f - g\|^p)^{1/p} = 2 - \frac{1}{p} 2^{1-p} \|f - g\|^p + o(\|f - g\|^p), \]

which implies our claim.

Now assume that \(1 < p < 2 \). Let \(f, g \in S_{L_p(\mu)} \) with \(\varepsilon = \|f - g\|_p > 0 \). Let \(C = C(p) \) be the constant in Corollary 5.2.5.

We deduce from Proposition 5.2.6 and Corollary 5.2.5 that

\[\left\| \left(\frac{f-g}{C} \right)^2 + \left(\frac{f+g}{2} \right)^2 \right\|_p^{1/2} \leq \left\| \left(\frac{f-g}{C} \right)^2 + \left(\frac{f+g}{2} \right)^2 \right\|_p \]
5.2. **UNIFORM CONVEXITY AND SMOOTHNESS OF L_p**

$$\leq \left\| \left(\frac{|f|^p + |g|^p}{2} \right)^{1/p} \right\|_p$$

$$= 2^{-1/p} \left(\|f\|^p + \|g\|^p \right)^{1/p} = 1.$$

Solving for $\|(f + g)/2\|_p$ leads to

$$\left\| \frac{f + g}{2} \right\|_p \leq \sqrt{1 - \left\| \frac{f - g}{C} \right\|_p^2} = 1 - \frac{\varepsilon^2}{2C} + o(\varepsilon^2)$$

which implies our claim. \qed

Exercises

1. We say that a Banach space X is **finitely representable in a Banach space** Y, if for every finite dimensional subspace F of X and every $\varepsilon > 0$ there is a finite dimensional subspace E of Y, so that $d_{BM}(E, F) < 1 + \varepsilon$.

Show that if Y is uniform convex and X is finitely representable in Y, then X is also uniformly convex.

2. We say that a Banach space X is **crudely finitely representable in a Banach space** Y, if there is a constant K so that for every finite dimensional subspace F of X there is a finite dimensional subspace E of Y, so that $d_{BM}(E, F) < 1 + \varepsilon$.

Show that if Y is uniform convex and X is finitely representable in Y, then there is an equivalent convex norm on X which turns X into a uniformly convex space.
5.3 On “Small Subspaces” of \(L_p\)

By small subspaces of \(L_p[0,1]\) we usually mean subspaces which are not isomorphic to the whole space. Khintchine’s theorem, says that \(L_p[0,1]\), \(1 \leq p \leq \infty\) contains isomorphic copies of \(\ell_2\), which are complemented if \(1 < p < \infty\).

Note that all the arguments below can be made in a general probability space \((\Omega, \Sigma, \mathbb{P})\) on which a Rademacher sequence \((r_i)\) exists, i.e. \((r_i)\) is an independent sequence of random variables for which \(\mathbb{P}(r_i = 1) = \mathbb{P}(r_i = -1) = 1/2\).

Theorem 5.3.1. [Khintchine’s Theorem]
\(L_p[0,1]\), \(1 \leq p \leq \infty\) contains a subspaces isomorphic to \(\ell_2\), if \(1 < p < \infty\).

Remark. By Theorem 5.1.1 the conclusion of Theorem 5.3.1 holds for all spaces \(L_p(\mu)\), as long as \(\mu\) is a measure on some measurable space \((\Omega, \Sigma)\) for which there is in \(\Omega' \subset \Omega\), \(\Omega' \in \Sigma\) so that \(\mu|_{\Omega'}\) is a non zero atomless measure.

Definition 5.3.2. The Rademacher functions are the functions:
\[r_n : [0, 1] \to \mathbb{R}, \quad t \mapsto \text{sign}(\sin 2^n \pi t),\]
whenever \(n \in \mathbb{N}\).

Lemma 5.3.3. [Khintchine inequality]
For every \(p \in [1, \infty)\) there are numbers \(0 < A_p \leq 1 \leq B_p\) so that for any \(m \in \mathbb{N}\) and any scalars \((a_i)_{i=1}^m\).

\[
A_p \left(\sum_{i=1}^m |a_i|^2 \right)^{1/2} \leq \left\| \sum_{i=1}^m a_i r_i \right\|_{L_p} \leq B_p \left(\sum_{i=1}^m |a_i|^2 \right)^{1/2}.
\]

Proof. We prove the claim for Banach spaces over the reals. The complex case can be easily deduced (using some worse constants).

Since for \(p > r \geq 1\)

\[
\left\| \sum_{i=1}^m a_i r_i \right\|_{L_p} \geq \left\| \sum_{i=1}^m a_i r_i \right\|_{L_r},
\]

it is enough to prove the right hand inequality for all even integers, and then choose \(B_p = B'_p\) with \(p' = 2 \lceil \frac{p}{2} \rceil\), for \(1 \leq p < \infty\) and the left hand inequality for \(p = 1\), and take \(A_p = A_1\).
5.3. ON "SMALL SUBSPACES" OF L_p

We first show the existence of B_{2k} for any $k \in \mathbb{N}$. For scalars $(a_i)_i$ we deduce

$$\int_0^1 \left(\sum_{i=1}^m a_ir_i(t) \right)^{2k} dt = \sum_{(\alpha_1, \alpha_2, \ldots, \alpha_m) \in \mathbb{N}_0^m} A(\alpha_1, \alpha_2, \ldots, \alpha_m) \prod_{\beta=1}^m a_i^{\alpha_i} \prod_{\beta=1}^m a_i^{\alpha_i} \int_0^1 r_1^{\alpha_1}(t) r_2^{\alpha_2}(t) \ldots r_m^{\alpha_m}(t) \, dt$$

where $A(\alpha_1, \alpha_2, \ldots, \alpha_m) = \frac{\prod_{i=1}^m \alpha_i!}{\prod_{i=1}^m \alpha_i!}$

$$= \sum_{(\beta_1, \beta_2, \ldots, \beta_m) \in \mathbb{N}_0^m} A(2\beta_1, 2\beta_2, \ldots, 2\beta_m) a_1^{2\beta_1} a_2^{2\beta_2} \ldots a_m^{2\beta_m}$$

[Note that above integral vanishes if one of the exponents is odd, and that it equals otherwise to 1].

On the other hand

$$\left(\sum |a_i|^2 \right)^k = \left(\sum_{(\beta_1, \beta_2, \ldots, \beta_m) \in \mathbb{N}_0^m} A(\beta_1, \beta_2, \ldots, \beta_m) a_1^{2\beta_1} a_2^{2\beta_2} \ldots a_m^{2\beta_m} \right)$$

$$= \sum_{(\beta_1, \beta_2, \ldots, \beta_m) \in \mathbb{N}_0^m} A(\beta_1, \beta_2, \ldots, \beta_m) a_1^{2\beta_1} a_2^{2\beta_2} \ldots a_m^{2\beta_m}$$

$$\geq \min_{(\beta_1, \beta_2, \ldots, \beta_m) \in \mathbb{N}_0^m} A(\beta_1, \beta_2, \ldots, \beta_m) \sum_{\beta_i=k} A(2\beta_1, 2\beta_2, \ldots, 2\beta_m) a_1^{2\beta_1} a_2^{2\beta_2} \ldots a_m^{2\beta_m}$$

$$= \min_{(\beta_1, \beta_2, \ldots, \beta_m) \in \mathbb{N}_0^m} A(\beta_1, \beta_2, \ldots, \beta_m) \sum_{\beta_i=k} \left(\sum_{i=1}^m a_i r_i \right)^{2k} dt$$

which implies our claim if put

$$B_{2k}^{-2k} = \min_{(\beta_1, \beta_2, \ldots, \beta_m) \in \mathbb{N}_0^m} \frac{A(\beta_1, \beta_2, \ldots, \beta_m)}{A(2\beta_1, 2\beta_2, \ldots, 2\beta_m)} = \min_{m \leq k} \frac{\min_{(\beta_1, \beta_2, \ldots, \beta_m) \in \mathbb{N}_0^m} A(\beta_1, \beta_2, \ldots, \beta_m)}{A(2\beta_1, 2\beta_2, \ldots, 2\beta_m)}.$$
CHAPTER 5. \(L_p \)-SPACES

In order to show that we can choose \(A_1 > 0 \), to satisfy (5.12) we observe that for \(f(t) = \sum_{i=1}^{m} a_i r_i(t) \)

\[
\int_0^1 |f(t)|^2 \, dt = \int_0^1 |f(t)|^{2/3} |f(t)|^{4/3} \, dt \\
\leq \left[\int_0^1 |f(t)| \, dt \right]^{2/3} \left[\int_0^1 |f(t)|^4 \, dt \right]^{1/3}
\]

[By Hölder’s inequality for \(p = \frac{3}{2} \) and \(q = 3 \)]

\[
\leq \left[\int_0^1 |f(t)| \, dt \right]^{2/3} B_4^{4/3} \left[\sum_{i=1}^{m} a_i^2 \right]^{2/3}.
\]

Therefore

\[
\int_0^1 |f(t)| \, dt \geq B_4^{-4/3} \int_0^1 |f(t)|^2 \, dt \left(\sum_{i=1}^{m} a_i^2 \right)^{-2/3} \left[B_4^{4/3} \sum_{i=1}^{m} a_i^2 \right]^{3/2}
\]

\[
= B_4^{-4/3} \left[\sum_{i=1}^{m} a_i^2 \right] \left(\sum_{i=1}^{m} a_i^2 \right)^{-2/3} \left[\sum_{i=1}^{m} a_i^2 \right]^{3/2}
\]

\[
= B_4^{-4/3} \left[\sum_{i=1}^{m} a_i^2 \right]^{1/2}
\]

which proves our claim if we let \(A_1 = B_4^{-2} \).

Proof of Theorem 5.3.1. Since the Rademacher functions are an orthonormal basis inside \(L_2[0,1] \) it follows from Lemma 5.3.3 that \(\ell_2 \) is isomorphically embeddable in \(L_p[0,1] \), for \(1 \leq p < \infty \). Secondly, for \(2 \leq p < \infty \) the formal identity \(I : L_p[0,1] \to L_2[0,1] \) is bounded and the restriction of \(I \) to \(\overline{\text{span}(r_i : i \in \mathbb{N})} \) is an isomorphism onto \(\overline{\text{span}(r_i : i \in \mathbb{N})} \). We conclude that the map:

\[
P : L_p[0,1] \to \overline{\text{span}(r_i : i \in \mathbb{N})}, \quad f \mapsto \sum_{n=1}^{\infty} \left(\int_0^1 f(s) r_n(s) \, ds \right) r_n,
\]

is a projection onto \(\overline{\text{span}(r_i : i \in \mathbb{N})} \), which proves that \(\ell_2 \) is isomorphic to a complemented subspace of \(L_p[0,1] \), if \(2 \leq p < \infty \). The same conclusion follows also for \(1 < p < 2 \) by duality.

The next Theorem on subspaces of \(L_p \) is due to Kadets and Pelczynski. We first state the Extrapolation Principle.

Theorem 5.3.4. [The Extrapolation Principle]

*Let \(X \subset L_p[0,1] \) be a linear subspace on which \(\| \cdot \|_{p_1} \) and \(\| \cdot \|_{p_2} \), where \(p_1 < p_2 \), are finite and equivalent. Thus, there is a \(C \geq 1 \) so that

\[
\| f \|_{p_1} \leq \| f \|_{p_2} \leq C \| f \|_{p_1} \quad \text{whenever} \ f \in X.
\]
5.3. ON "SMALL SUBSPACES" OF L_p

(first inequality holds always by Hölder inequality).

Then for all $0 < p \leq p_1$ and all $x \in X$

$$C^{(p_2/p)(1-(1/\lambda))}\|x\|_{p_1} \leq \|x\|_p \leq \|x\|_{p_1},$$

where $\lambda \in (0, 1)$ is defined by $p_1 = \lambda p + (1 - \lambda)p_2$.

Proof. Let $0 < p \leq p_1$ and choose $0 < \lambda < 1$ so that $p_1 = \lambda p + (1 - \lambda)p_2$.

For $x \in X$ it follows

$$\|x\|_{p_1} = \left[\int |x(t)|^{\lambda p} \cdot |x(t)|^{(1-\lambda)p_2} dt \right]^{1/p_1} \leq \left[\int |x(t)|^p dt \right]^{\lambda/p_1} \cdot \left[\int |x(t)|^{p_2} dt \right]^{(1-\lambda)/p_1} dt$$

[Hölder inequality for exponents $1/\lambda$ and $1/(1-\lambda)$]

$$= \|x\|_{p_1}^{\frac{p_2}{p_1}} \|x\|_{p_2}^{\frac{(1-\lambda)}{p_1}} \leq C^{\frac{p_2}{p_1}(1-\lambda)} \|x\|_{p_1}^{\frac{p_2}{p_1}(1-\lambda)} \|x\|_{p_1}^{\frac{p_2}{p_1}}$$

thus (since $1 - \frac{p_2}{p_1}(1 - \lambda) = \frac{\lambda p}{p_1}$)

$$\|x\|_{p_1}^{\frac{\lambda p}{p_1}} \leq C^{\frac{p_2}{p_1}(1-\lambda)} \|x\|_{p_1}^{\frac{p_2}{p_1}}$$

and thus

$$\|x\|_{p_1} \leq C^{\frac{p_2}{p_1}(1-\lambda)} \|x\|_p$$

which yields that

$$C^{(p_2/p)(1-(1/\lambda))}\|x\|_{p_1} \leq \|x\|_p.$$
Theorem 5.3.5 (Kadets and Pelczynski). Assume $2 < p < \infty$ and assume that X is a closed subspace of $L_p[0,1]$. Then:

Either there is an $0 < r < p$ so that $\| \cdot \|_r$ and $\| \cdot \|_p$ are equivalent norms. In that case it follows that X is isomorphic to a Hilbert space, X is complemented in $L_p[0,1]$ and the constant of isomorphism as well as the constant of complementation only depend on r, p and the equivalence constant between $\| \cdot \|_r$ and $\| \cdot \|_p$ on X.

Or $\| \cdot \|_r$ and $\| \cdot \|_p$ are not equivalent on X for some $r < p$. Then X contains for any $\varepsilon > 0$ a sequence which is $(1 + \varepsilon)$-equivalent to the ℓ_p-unit vector basis.

Proof. Let X be (w.l.o.g) an infinite dimensional subspace of $L_p[0,1]$. If for some $r < p$ the norms $\| \cdot \|_p$ and $\| \cdot \|_r$ are equivalent on X it follows from Theorem 5.3.4 and the following remark that $\| \cdot \|_2$ and $\| \cdot \|_p$ are equivalent norms on X and the constant of equivalence only depends on r, p and the equivalence constant of $\| \cdot \|_r$ and $\| \cdot \|_p$. Thus, X is isomorphic to a separable Hilbert space. Moreover X, seen as a linear subspace of $L_2[0,1]$, is closed and thus complemented. Let $P : L_2[0,1] \to X$ be the orthogonal projection from $L_2[0,1]$ onto X. Then $Q = P \circ I$, where $I : L_p[0,1] \to L_2[0,1]$ is the formal identity, is a projection from $L_p[0,1]$ onto X.

Assume for all $r < p$ the norms $\| \cdot \|_p$ and $\| \cdot \|_r$ are not equivalent on X and let $\varepsilon > 0$. For $n \in \mathbb{N}$, choose inductively $r_n < p$, $M_n > 1$ and $f_n \in X$ so that

\begin{align*}
M_n & \geq 2^n \text{ and, }
\int_{\{|f| > M_n\}} |f_i(t)|^p \, dt < 2^{-n-1} \varepsilon, \\
\text{whenever } 1 \leq i < n \text{ and } f \in B_{L_p[0,1]} \\
M_n^{p-r_n} & = 2 \\
\|f_n\|_{r_n} & < 2^{-n-1} \varepsilon, \text{ and } \|f_n\|_p = 1.
\end{align*}

Indeed, for $n = 1$ let $M_1 = 2$ (which satisfies (5.13), since the second condition is vacuous). Then choose $r_1 < p$ close enough to p so that (5.14) holds. Since $\| \cdot \|_{r_1}$ and $\| \cdot \|_p$ are not equivalent on X, and we can choose $f_1 \in S_X$ so that (5.15) holds.

Assuming $f_1, f_2, \ldots f_{n-1}, r_1, r_2 \ldots r_{n-1}$, and $M_1, M_2, \ldots M_{n-1}$ have been chosen, we first choose $\eta > 0$ so that for all $i = 1, 2 \ldots n$, and all measurable $A \subset [0,1]$ with $m(A) < \eta$ and all $i = 1, 2 \ldots n-1$, it follows that

\[\int_A |f_i(t)|^p \, dt < 2^{-n-1} \varepsilon. \]
Now for any \(f \in B_{L_p[0,1]} \) and any \(M > 0 \) we have
\[
m(\{|f| > M\}) \leq \frac{1}{M^p} \int |f(t)|^p dt \leq \frac{1}{M^p},
\]
So choosing \(M_n = \max(2^n, \frac{1}{n^{1/p}}) \), we deduce (5.13). We can then choose \(r_n \in (0, p) \) close enough to \(p \), so that (5.14), and since by assumption \(\| \cdot \|_{r_n} \) and \(\| \cdot \|_p \) are not equivalent on \(X \), we can choose \(f_n \in X \) so that (5.15) holds. This finishes the recursion.

Then
\[
\int_{|f_n| < M_n} |f_n(t)|^p dt \leq \int M_{n}^{-r_n} |f(t)|^{r_n} dt \leq 2\|f_n\|_{r_n} < 2^{-n} \varepsilon.
\]

For \(n \in \text{put } A_n = \{f_n \geq M_n\} \setminus \bigcup_{j>n} \{|f_j| \geq M_j\} \) and \(g_n = f_n1_{A_n} \). Then the \(g_n \)'s have disjoint support and
\[
\|f_n - g_n\|_p^p \leq \int_{|f_n| < M_n} |f_n(t)|^p dt + \sum_{j>n} \int_{|f_j| > M_j} |f_n(t)|^p dt
\leq 2^{-n} \varepsilon + \sum_{j>n} \int_{|f_j| > M_j} |f_n(t)|^p dt < 2^{-n} \varepsilon + 2^{j-1} \varepsilon = 2^{1-n} \varepsilon,
\]

Fix \(\delta > 0 \). For \(\varepsilon \) small enough (depending on \(\delta \)), it follows that \((g_n) \) is \((1+\delta) \)-equivalent to the \(\ell_p \)-unit vector basis (since the \(g_n \) have disjoint support).

By choosing \(\delta \) small enough we can secondly ensure that
\[
\sum_{n \in \mathbb{N}} \|g_n - f_n\|_p \|g_n^*\|_q < 1,
\]
where the \((g_n^*) \) are the coordinate functionals of \((g_n) \). Applying now the Small Perturbation Lemma yields that \((f_n) \) is also equivalent to the \(\ell_p \) unit basis.

\[\square\]

Remark. The Theorem of Kadets and Pelczynski started the investigation of complemented subspaces of \(L_p[0,1] \), \(2 < p < \infty \). Here are some results:

Johnson-Odell 1974: Every complemented subspace of \(L_p[0,1] \) which does not contain \(\ell_2 \), must be a subspace of \(\ell_p \). In other words if \(X \) is an infinite dimensional complemented subspace of \(L_p[0,1] \) it must be either \(\ell_2 \) or \(\ell_p \) or contain \(\ell_p \oplus \ell_2 \) (we are using here also that \(\ell_p \) is prime, i.e that every infinite dimensional complemented subspace of \(\ell_p \) is isomorphic to \(\ell_p \)).
Bourgain-Rosenthal-Schechtman 1981: There are uncountable many non isomorphic complemented subspaces of $L_p[0, 1]$.

Haydon-Odell-Schlumprecht 2011: If X is a complemented subspace of $L_p[0, 1]$ which does not isomorphically embed into $\ell_2 \oplus \ell_p$ then it must contain $\ell_p(\ell_2)$.

Next Question: Assume that X is a complemented subspace of $L_p[0, 1]$ which is not contained in an isomorphic copy of $\ell_p(\ell_2)$. What can we say about X?

Exercises

1. Show that for $p \neq 2$, ℓ_2 is not isomorphic to a subspace of ℓ_p
5.4. THE SPACES ℓ_p, $1 \leq p < \infty$, AND c_0 ARE PRIME SPACES

5.4 The Spaces ℓ_p, $1 \leq p < \infty$, and c_0 are Prime Spaces

The main goal of this section is show that the spaces ℓ_p, $1 \leq p < \infty$, and c_0 are prime spaces.

Definition 5.4.1. A Banach space X is said to be prime if every complemented subspace of X is isomorphic to X.

The following Theorem is due to Pelczynski.

Theorem 5.4.2. The spaces ℓ_p, $1 \leq p < \infty$, and c_0 are prime.

We will prove this theorem using the Pelczynski Decomposition Method, an argument which is important in its own right and also very pretty. Before doing that we need some lemmas. The first one was, up to the “moreover part” a homework problem and can be easily deduced from the Small Perturbation Lemma.

Lemma 5.4.3. [The Gliding Hump Argument]

Let X be a Banach space with a basis (e_i) and Y an infinite dimensional closed subspace of X. Let $\varepsilon > 0$. Then Y contains a normalized sequence (y_n) which is basic and $(1 - \varepsilon)^{-1}$-equivalent to some normalized block basis (u_n).

Moreover, if the span of (u_n) is complemented in X, so is the span of (y_n).

Proof. Without loss of generality we can assume that $\|e_n\| = 1$, for $n \in \mathbb{N}$.

Let b be the basis constant, and (e^*_i) the coordinated functionals of (e_n). Let $\delta_n \subset (0, 1)$ a null sequence, with $\sum_{n=1}^{\infty} \delta_n \leq \varepsilon/2b$. By induction we choose for every $n \in \mathbb{N}$ $y_n, u_n \in S_X$ and $k_n \in \mathbb{N}$, so that:

a) $0 = k_0 < k_1 < k_2 < \ldots$,

b) $u_n \in \text{span}(e_j : k_{n-1} + 1 \leq j \leq k_n)$, and

c) $y_n \in Y$, and $\|u_n - y_n\| < \delta_n$.

For $n = 1$ we simply choose any $y_1 \in S_Y$, and then by density of $\text{span}(e_j : j \in \mathbb{N})$ in X an element $x_1 \in \text{span}(e_j : j \in \mathbb{N})$, with $\|x_1\| = 1$ and choose $k_1 \in \mathbb{N}$ so that $x_1 \in \text{span}(e_j : j \in \mathbb{N})$.

Assuming k_n has been chosen we can choose $y_{n+1} \in \bigcap_{i \leq k_n} \mathcal{N}(e^*_i) \cap S_X$. Since $\text{span}(e_j : j \in \mathbb{N}, j > k_n)$ is dense in $\bigcap_{i \leq k_n} \mathcal{N}(e^*_i)$, we can choose
$u_{n+1} \in \text{span}(e_j : j \in \mathbb{N}, j > k_n) \cap S_X$ so that $\|x_{n+1} - u_{n+1}\| < \delta_{n+1}$, and finally choose k_{n+1}, so that $u_{n+1} \in \text{span}(e_j : j \in \mathbb{N}, k_n < j \leq k_{n+1})$.

Since the basis constant of (u_n) does not exceed b (Proposition 3.3.3) we deduce for the coordinate functionals (u_n^*) of (u_n) that

$$\sup_{n \in \mathbb{N}} \|u_n^*\| \leq \sup_{n \in \mathbb{N}} \frac{2b}{\|u_n\|} = 2b,$$

and thus

$$\sum_{j=1}^{n} \|y_n - u_n\| \cdot \|u_n^*\| \leq 2b \sum_{j=1}^{\infty} \delta_n \leq \varepsilon,$$

and we conclude therefore our claim form the Small Perturbation Lemma 3.3.10.

Proposition 5.4.4. The closed span of block bases in ℓ_p and c_0 are isometrically equivalent to the unit vector basis and are 1-complemented in ℓ_p, or c_0.

Proof. We only present the proof for ℓ_p, $1 \leq p < \infty$, the c_0-case works in the same way. Let (u_n) be a normalized block basis, and write $u_n, n \in \mathbb{N}$, as

$$u_n = \sum_{j=k_{n-1}+1}^{k_n} a_j e_j, \text{ with } 0 = k_0 < k_1 < k_2 < \ldots \text{ and } (a_n) \subset \mathbb{K}.$$

It follows for $m \in \mathbb{N}$ and $(b_n)_{n=1}^{m} \subset \mathbb{K}$, that

$$\left\| \sum_{n=1}^{m} b_n u_n \right\|_p = \sum_{n=1}^{m} \sum_{j=k_{n-1}+1}^{k_n} \left| b_n \right|^p |a_j|^p = \sum_{j=1}^{m} \left| b_j \right|^p,$$

and thus (u_n) is isometrically equivalent to (e_n).

For $n \in \mathbb{N}$ choose $u_n^* \in \ell_q$, $u_n^* \in \text{span}(e_j^* : k_{n-1} < j \leq k_n)$, $\|u_n^*\|_q = 1$, so that $\langle u_n^*, u_n \rangle = 1$, and define

$$P : \ell_p \rightarrow \text{span}(u_n : j \in \mathbb{N}), x \mapsto \sum\langle x, u_n^* \rangle u_n.$$

For $x = \sum_{j=1}^{\infty} x_j e_j \in \ell_p$ it follows that

$$|\langle u_n^*, x \rangle|^p = \left\| u_n^*, \sum_{j=k_{n-1}+1}^{k_n} x_j e_j \right\| \leq \sum_{j=k_{n-1}+1}^{k_n} |x_j|^p.$$
and, thus, that
\[
\|P(x)\|_p^p = \sum_{n=1}^{\infty} \sum_{j=k_{n-1}+1}^{k_n} |a_j|^p |\langle u_n^*, x \rangle|^p \leq \sum_{n=1}^{\infty} |\langle u_n^*, x \rangle|^p \leq \sum_{n=1}^{\infty} \sum_{j=k_{n-1}+1}^{k_n} |x_j|^p = \|x\|_p^p.
\]
This shows that \(\|P\| \leq 1 \), and, since moreover \(P(u_n) = u_n \), and \(P(X) \subset \text{span}(u_j : j \in \mathbb{N}) \), it follows that \(P \) is a projection onto \(\text{span}(u_j : j \in \mathbb{N}) \) of norm 1.

Remark. It follows from Lemma 5.4.3 and Proposition 5.4.4 for \(X = \ell_p \) or \(c_0 \) that every subspace \(Y \) of \(X \) has a further subspace \(Z \) which is complemented in \(X \) and isomorphic to \(X \). We call a space \(X \) which has this property *complementably minimal*, a notion introduced by Casazza. In particular if \(Y \) is any complemented subspace of \(X \) the pair \((Y, X) \) has the *Schröder Bernstein property*, which means that \(X \) is isomorphic to a subspace \(Y \), and \(Y \) is isomorphic to a complemented subspace of \(X \).

It was for long time an open question whether a complementably minimal space is prime, and an even longer open problem was the question whether or not \(\ell_p \) and \(c_0 \) are the only separable prime spaces. The first question would have a positive answer if all Banach spaces \(X \) and \(Y \) for which \((X, Y) \) has the Schröder Bernstein property then it follows that \(X \) and \(Y \) are isomorphic. It is also open if complementably minimal spaces have to be prime.

Then Gowers and Maurey [GM2] constructed a space \(X \) (this is a variation of the space cited in [GM] and also does not contain any unconditional basis sequence) which only has trivial complemented subspaces, namely the finite and cofinite dimensional subspaces which has the property that all the cofinite dimensional subspaces are isomorphic to \(X \). Thus, this space is prime, but not \(\ell_p \) or \(c_0 \).

Then Gowers [Go2] also found a counterexamples to the Schröder Bernstein problem, which also does not contain any unconditional basic sequence.

Both questions are still open for spaces with unconditional basic sequences, and thus spaces with *lots of complemented subspaces*. In [Sch] a space with a 1-unconditional space was constructed which is complementably minimal (shown in [AS]) but does not contain \(\ell_p \) or \(c_0 \). This space together with some complemented subspace \(Y \) must either be a counterexample to the Schröder Bernstein Problem, or it is new prime space.

The *Pełczyński Decomposition Method* now proves that a complementably minimal space is prime, if you assume some additional assumptions which are all satisfied by \(\ell_p \) or \(c_0 \).

Let’s start with a very easy and general observation.
Proposition 5.4.5. If X and Y are Banach spaces, with the property that X is isomorphic to a complemented subspace of Y and if X is isomorphic to its square, i.e. $X \sim X \oplus X$, then Y is isomorphic to $X \oplus Y$.

In particular if X and Y are isomorphic to their squares, isomorphic to complemented subspaces of each other, then it follows that $X \sim X \oplus Y \sim Y$.

Proof. Let Z be a complemented subspace of Y so that $Y \sim X \oplus Z$. Then

$$Y \sim X \oplus Z \sim (X \oplus X) \oplus Z \sim X \oplus (X \oplus Z) \sim X \oplus Y.$$

\[\square\]

Remark. It is easy to see that $\ell_p \sim \ell_p \oplus \ell_p$, $1 \leq p < \infty$ and $c_0 \sim c_0 \oplus c_0$, but it is not clear how to show directly that any complemented subspace of ℓ_p or c_0 is isomorphic to its square. So we will need an additional property of ℓ_p and c_0. Nevertheless we can easily deduce the following Corollary from Proposition 5.4.5 and Khintchine’s Theorem 5.2.1.

Corollary 5.4.6. For $1 < p < \infty$ it follows that $L_p[0,1]$ is isomorphic to $L_p[0,1] \oplus L_2[0,1]$.

Proof of Theorem 5.4.2. Let $X = \ell_p$ or c_0. From now on we consider on all complemented sums the ℓ_p-sum, respectively c_0-sum. Note that $X \sim (\bigoplus_{n \in \mathbb{N}} X)_X$ (actually isometrically)

Let Y be a complemented subspace of X, by Proposition 5.4.5 we only need to show that $X \sim X \oplus Y$, and that can be seen as follows: we let Z be a subspace of X so that $X \sim Y \oplus Z$, then

$$Y \oplus X \sim Y \oplus (\bigoplus_{n \in \mathbb{N}} X)_X$$

$$\sim Y \oplus (\bigoplus_{n \in \mathbb{N}} (Z \oplus Y))_X$$

$$\sim Y \oplus Z \oplus (\bigoplus_{n \in \mathbb{N}} (Y \oplus Z))_X$$

(consider $(y_1, (z_1, x_1, z_2, x_2, \ldots)) \mapsto ((y_1, z_1), (x_1, z_2, x_2, \ldots))$)

$$\sim (\bigoplus_{n \in \mathbb{N}} (Y \oplus Z))_X$$

$$\sim (\bigoplus_{n \in \mathbb{N}} X)_X \sim X.$$

\[\square\]

One more open question:

Remark. $L_1[0,1]$ cannot be prime since ℓ_1 is isomorphic to complemented subspaces of $L_1[0,1]$, but is this only other complemented subspace? Are all the complemented subspaces of $L_1[0,1]$ either isomorphic to ℓ_1 or to $L_1[0,1]$?
5.5. THE HAAR BASIS IS UNCONDITIONAL IN $L_P[0, 1], 1 < P < \infty$

5.5 The Haar basis is Unconditional in $L_P[0, 1], 1 < P < \infty$

S:5.3

Theorem 5.5.1. [Unconditionality of the Haar basis in L_P]
Let $1 < P < \infty$. Then $(h_t^{(p)})$ is an unconditional basis of $L_P[0, 1]$. More precisely, for any two families $(a_t)_{t \in T}$ and $(b_t)_{t \in T}$ in $c_00(T)$ with $|a_t| \leq |b_t|$, for all $t \in T$, it follows that

\begin{equation}
\left\| \sum_{t \in T} a_t h_t^{(p)} \right\| \leq (p^* - 1) \left\| \sum_{t \in T} b_t h_t^{(p)} \right\|,
\end{equation}

where

\[p^* = \max\left(p, \frac{p}{p - 1} \right) = \begin{cases} p & \text{if } p \geq 2 \\ \frac{p}{p - 1} & \text{if } p \leq 2 \end{cases} \]

We will prove the theorem for $2 < P < \infty$. For $P = 2$ it is clear since $(h_t^{(2)})$ is orthonormal and for $1 < P < 2$ it follows from Proposition 3.4.5 by duality (note that $p^* = q^*$ if $\frac{1}{p} + \frac{1}{q} = 1$).

We first need the following Lemma

Lemma 5.5.2. Let $2 < P < \infty$ and define

\begin{align*}
(5.17) & \quad v : \mathbb{C} \times \mathbb{C} \to [0, \infty), \quad (x, y) \mapsto |y|^p - (p - 1)^p |x|^p, \text{ and} \\
(5.18) & \quad u : \mathbb{C} \times \mathbb{C} \to [0, \infty), \quad (x, y) \mapsto \alpha_p \left(|x| + |y| \right)^{p-1} \left(|y| - (p - 1)|x| \right)
\end{align*}

with \(\alpha_p = p \left(1 - \frac{1}{p} \right)^{p-1} \).

Then it follows for $x, y, a, b \in \mathbb{C}$, with $|a| \leq |b|$

\begin{align*}
(5.19) & \quad v(x, y) \leq u(x, y) \\
(5.20) & \quad u(-x, -y) = u(x, y) \\
(5.21) & \quad u(0, 0) = 0 \\
(5.22) & \quad u(x + a, y + b) + u(x - a, y - b) \leq 2u(x, y)
\end{align*}

Proof. Let $x, y, a, b \in \mathbb{C}, |a| \leq |b|$ be given. (5.20) and (5.21) are trivially satisfied. Since u and v are both p-homogeneous (i.e. $u(\alpha \cdot x, \alpha y) = |\alpha|^p u(x, y)$ for $\alpha \in \mathbb{C}$) we can assume that $|x| + |y| = 1$ in order to show (5.19). Thus the inequality (put $s = |x|$) reduces to show

\begin{equation}
F(s) = \alpha_p(1 - ps) - (1 - s)^p + (p - 1)^p s^p \geq 0 \text{ for } 0 \leq s \leq 1 \text{ and } 2 \leq p.
\end{equation}
In order to verify (5.23), first show that \(F(0) > 0 \). Indeed, by concavity of \(\ln x \) it follows that

\[
\ln p = \ln ((p-1)+1) < \ln(p-1) + \frac{1}{p-1},
\]

and, thus,

\[
\ln(p-1)+1 = \ln(p-1) + \frac{1}{p-1} + \frac{p-2}{p-1} > \ln(p-1) + \frac{p-2}{p-1} > \ln p + \frac{p-2}{p}.
\]

Integrating both sides of

\[
\ln(x-1) + 1 > \ln x + \frac{x-2}{x}.
\]

from \(x = 2 \) to \(p > 2 \), implies that

\[(p-1)\ln(p-1) > (p-2)\ln p\]

and, thus,

\[(p-1)^{p-1} > pp^{p-2},\]

which yields

\[\alpha_p = p\left(1 - \frac{1}{p}\right)^{p-1} = \frac{(p-1)^{p-1}}{p^{p-2}} > 1\]

and thus the claim that \(F(0) > 0 \).

Secondly we claim that \(F(1) > 0 \). Indeed,

\[
F(1) = -\left(\frac{(p-1)^{p-2}}{p^p}\right) + (p-1)^p = (p-1)^{p-2}\left(\frac{(p-1)^2 - 1}{p^p}\right) > 0,
\]

Thirdly, we compute the first and second derivative of \(F \) and get

\[
F'(s) = -\alpha_p p + p(1-s)^{p-1} + (p-1)p s^{p-1}, \quad \text{and}
\]

\[
F''(s) = -p(p-1)(1-s)^{p-2} + (p-1)^{p+1} s^{p-2}
\]

and deduce that \(F(\frac{1}{p}) = F'\left(\frac{1}{p}\right) = 0, F''\left(\frac{1}{p}\right) > 0 \) and that \(F''(s) \) vanishes for exactly one value of \(s \) (because it is the difference of an increasing functions and a decreasing function). Thus, \(F(s) \) cannot have more points at which it vanishes and it follows that \(F(s) \geq 0 \) for all \(s \in [0,1] \) and we deduce (5.19).

Finally we need to show (5.22). We can (by density argument) assume that \(x \) and \(a \) as well as \(y \) and \(b \) are linear independent as two-dimensional
5.5. THE HAAR BASIS IS UNCONDITIONAL IN $L_p[0, 1], 1 < P < \infty$

Vectors over \mathbb{R}. This implies that $|x + ta|$ and $|y + tb|$ can never vanish, and, thus, that the function

$$G : \mathbb{R} \rightarrow \mathbb{R}, \quad t \mapsto t = u(x + ta, y + tb),$$

is infinitely often differentiable.

We compute the second derivative of G at 0, getting

$$G''(0) = \alpha_p \left[-p(p - 1) \left(|a|^2 - |b|^2 \right) (|x| + |y|)^{p-2}
- p(p - 2) \left(|b|^2 - 1 \right) \frac{x}{|y|} (|x| + |y|)^{p-1}
- p(p - 1)(p - 2) \frac{x}{|y|} \left(\Re \left(\frac{x}{|y|}, a \right) \right) \right].$$

Inspecting each term we deduce (recall that $|a| \geq |b|$) from the Cauchy inequality that $G''(0) < 0$. Since for $t \neq 0$ it follows that $G''(t) = G''(0)$ where

$$\tilde{G}(s) : \mathbb{R} \rightarrow \mathbb{R}, \quad s \mapsto u(x + ta + sa, y + tb + sb),$$

we deduce that $G''(t) \leq 0$ for all $t \in \mathbb{R}$. Thus, G is a concave function which yields

$$\frac{1}{2} [u(x + a, y + b) + u(x - a, y - b)] = \frac{1}{2} [G(1) + G(-1)] \leq G(0) = u(x, y),$$

which proves (5.22).

Proof of Theorem 5.5.1. Assume that \tilde{h}_n is normalized in L_∞ so that $h_n = \tilde{h}_n/\|\tilde{h}_n\|_p$ is a linear reordering of $(h_t^{(p)})_t \in T$ which is compatible with the order on T. For $n \in \mathbb{N}$ let $f_n = \sum_{i=1}^{n} a_i \tilde{h}_i$ and $g_n = \sum_{i=1}^{n} b_i \tilde{h}_i$, where $(a_i)_{i=1}^{n}$, $(b_i)_{i=1}^{n}$ in \mathbb{R}, with $|a_j| \geq |b_j|$, for $j = 1, 2 \ldots n$, we need to show that $\|g_n\|_p \leq (1 - p^*) \|f_n\|$. The fact that we are considering the normalization in $L_\infty[0, 1]$ instead of the normalization in $L_p[0, 1]$ (i.e. \tilde{h}_n instead of h_n) will not effect the outcome. We deduce from (5.19) that

$$\|g_n\|^p - (p - 1)^p \|f_n\|^p = \int_0^1 v(f_n(t), g_n(t)) \, dt \leq \int_0^1 u(f_n(t), g_n(t)) \, dt.$$

Let $A = \text{supp}(\tilde{h}_n)$, $A^+ = A \cap \{ \tilde{h}_n > 0 \}$ and $A^- = A \cap \{ \tilde{h}_n < 0 \}$. Since f_{n-1} and g_{n-1} are constant on A we deduce

$$\int_0^1 u(f_n(t), g_n(t)) \, dt$$
\[
= \int_{[0,1]\setminus A} u(f_{n-1}(t), g_{n-1}(t)) \, dt \\
+ \int_{A^+} u(f_{n-1}(t) + a_n, g_{n-1}(t) + b_n) \, dt \\
+ \int_{A^-} u(f_{n-1}(t) - a_n, g_{n-1}(t) - b_n) \, dt \\
= \int_{[0,1]\setminus A} u(f_{n-1}(t), g_{n-1}(t)) \, dt \\
+ \frac{1}{2} \int_{A} u(f_{n-1}(t) + a_n, g_{n-1}(t) + b_n) + u(f_{n-1}(t) - a_n, g_{n-1}(t) - b_n) \, dt \\
\leq \int_{[0,1]\setminus A} u(f_{n-1}(t), g_{n-1}(t)) \, dt + \int_{A} u(f_{n-1}(t), g_{n-1}(t)) \, dt \\
[\text{By (5.22)}] \\
= \int_{0}^{1} u(f_{n-1}(t), g_{n-1}(t)) \, dt \\
\]

Iterating this argument yields

\[
\int_{0}^{1} u(f_n(t), g_n(t)) \, dt \leq \int_{0}^{1} u(f_1(t), g_1(t)) \, dt \\
= u(a_1, b_1) \\
= \frac{1}{2}(u(a_1, b_1) + u(-a_1, -b_1)) \quad [\text{By (5.20)}] \\
\leq u(0, 0) = 0 \quad [\text{By (5.21) and (5.22)}],
\]

which implies our claim that \(\|g_n\| \leq (p - 1)\|f_n\| \).

From the unconditionality of the Haar basis and Khintchine’s Theorem we now can deduce the following equivalent representation of the norm on \(L_p \).

Theorem 5.5.3 (The square-function norm). Let \(1 < p < \infty \) and let \((f_n) \) be an unconditional basic sequence in \(L_p[0,1] \). For example \((f_n) \) could be a linear ordering of the Haar basis. Then there is a constant \(C \geq 1 \), only depending on the unconditionality constant of \((f_i) \) and the constants \(A_p \) and \(B_p \) in Khintchine’s Inequality (Lemma 5.3.3) so that for any \(g = \sum_{i=1}^{\infty} a_i f_i \in \text{span}(f_i : i \in \mathbb{N}) \) it follows that

\[
\frac{1}{C} \left\| \sum_{i=1}^{\infty} \left(|a_i|^2 |f_i|^2 \right)^{1/2} \right\|_p \leq \|g\|_p \leq C \left\| \sum_{i=1}^{\infty} \left(|a_i|^2 |f_i|^2 \right)^{1/2} \right\|_p,
\]
5.5. **THE HAAR BASIS IS UNCONDITIONAL IN** \(L_p[0, 1] \), \(1 < P < \infty \)

which means that \(\| \cdot \|_p \) is on \(\text{span}(f_i : i \in \mathbb{N}) \) equivalent to the norm

\[
\| f \| = \left\| \sum_{i=1}^{\infty} (|a_i|^2 |f_i|^2)^{1/2} \right\|_p = \left\| \sum_{i=1}^{\infty} |a_i|^2 |f_i|^2 \right\|_{p/2}^{1/2}.
\]

Proof. For two positive numbers \(A \) and \(B \) and \(c > 0 \) we write: \(A \sim_c B \) if \(\frac{1}{c} A \leq B \leq cA \). Let \(K_p \) be the Khintchine constant for \(L_p \), i.e the smallest number so that for the Rademacher sequence \((r_n) \)

\[
\left\| \sum_{i=1}^{\infty} a_i r_i \right\|_p \sim_{K_p} \left(\sum_{i=1}^{\infty} |a_i|^2 \right)^{1/2} \text{ for } (a_i) \subset \mathbb{K},
\]

and let \(b_u \) be the unconditionality constant of \((f_i) \), i.e.

\[
\left\| \sum_{i=1}^{\infty} \sigma_i a_i f_i \right\|_p \sim_{b_u} \left\| \sum_{i=1}^{\infty} a_i f_i \right\|_p \text{ for } (a_i) \subset \mathbb{K} \text{ and } (\sigma_i) \subset \{ \pm 1 \}.
\]

We consider \(L_p[0, 1] \) in a natural way as subspace of \(L_p[0, 1]^2 \), with \(\tilde{f}(s, t) := f(s) \) for \(f \in L_p[0, 1] \). Then let \(r_n(t) = r_n(s, t) \) be the \(n \)-th Rademacher function action on the second coordinate, i.e.

\[
r_n(s, t) = \text{sign}(\sin(2^n \pi t)), \ (s, t) \in [0, 1]^2.
\]

It follows from the \(b_u \)-unconditionality for any \((a_j)_{j=1}^{m} \subset \mathbb{K} \), that

\[
\left\| \sum_{j=1}^{m} a_j f_j(\cdot) \right\|_p^p \sim_{b_u} \left\| \sum_{j=1}^{m} a_j f_j(\cdot) r_j(t) \right\|_p^p
\]

\[
= \int_0^1 \left(\sum_{j=1}^{m} a_j f_j(s) r_j(t) \right)^p ds \text{ for all } t \in [0, 1],
\]

and integrating over all \(t \in [0, 1] \) implies

\[
\left\| \sum_{j=1}^{m} a_j f_j(\cdot) \right\|_p^p \sim_{b_u} \int_0^1 \int_0^1 \left(\sum_{j=1}^{m} a_j f_j(s) r_j(t) \right)^p dt ds
\]

\[
= \int_0^1 \int_0^1 \left(\sum_{j=1}^{m} a_j f_j(s) r_j(t) \right)^p dt ds \text{ (By Theorem of Fubini)}
\]

\[
= \int_0^1 \left\| \sum_{j=1}^{m} a_j f_j(s) r_j(\cdot) \right\|_p^p ds
\]
\[\sim K_p^p \int_0^1 \left(\sum_{j=1}^m |a_j f_j(s)|^2 \right)^{p/2} \, ds = \left\| \left(\sum_{j=1}^m |a_j f_j|^2 \right)^{1/2} \right\|_p, \]

which proves our claim using $C = K_p b_u$. \qed
Bibliography

[So] Sobczyk, A. Projection of the space m on its subspace c_0, Bull. Amer. Math. Soc. 47 (1941), 938 – 947.