Computing Galois groups of Fano problems

Thomas Yahl thomasjyahl@tamu.edu Texas A&M University

Ohio State University Algebraic Geometry Seminar September 2022

arXiv:2209.07010

- Cayley and Salmon showed there are 27 distinct lines that lie on a smooth cubic surface.
- Schläfli determined these lines lie in a "remarkable configuration"

Remark: In the image above, all 27 lines are real!

- The Grassmanian G(r, Pⁿ) is the space of r-planes in Pⁿ, a projective variety of dimension (r + 1)(n − r).
- The <u>Fano scheme</u> of X is the subscheme of the Grassmanian formed by the *r*-planes on X.
- Example: The Fano scheme of lines in P³ on a smooth cubic surface consists of 27 points in G(1, P³).

We consider Fano schemes where $X \subseteq \mathbb{P}^n$ is a complete intersection and classify them by their type.

- If codim X = s, X is defined by homogeneous polynomials
 F = (f₁,..., f_s) of degrees d_• = (d₁,..., d_s).
- The Fano scheme of *r*-planes on X has type (r, n, d_{\bullet}) .
- Example: The Fano scheme of lines in \mathbb{P}^3 on a cubic surface has type (1, 3, (3)).

We study the family of Fano schemes of a given type.

Write $\underline{\mathbb{C}^{(r,n,d_{\bullet})}}$ for the space of homogeneous polynomials $F = (f_1, \ldots, f_s)$ in n + 1 variables of degrees $d_{\bullet} = (d_1, \ldots, d_s)$, parameterizing Fano schemes of type (r, n, d_{\bullet}) .

- For F ∈ C^(r,n,d_•), write V_r(F) for the Fano scheme of r-planes on the zero set of F.
- A Fano scheme is general if it is determined by a general system $F \in \mathbb{C}^{(r,n,d_{\bullet})}$.

Many properties of general Fano schemes are determined entirely by their type.

Note that $\ell \in \mathcal{V}_r(F)$ iff $F|_{\ell} = 0$. If $\ell \in \mathcal{V}_r(F)$ then..

- $f_i|_\ell = 0$
- *f_i*|ℓ is a polynomial of degree *d_i* in *r* variables (after choosing coordinates).
- all $\binom{d_i+r}{r}$ coefficients vanish.

The expected dimension of a Fano scheme of type (r, n, d_{\bullet}) is

$$\delta(r, n, d_{\bullet}) = (r+1)(n-r) - \sum_{i=1}^{s} \binom{d_i+r}{r}.$$

Theorem (Debarre, Manivel)

A general Fano scheme of type (r, n, d_{\bullet}) has dimension $\delta(r, n, d_{\bullet})$ if $\delta(r, n, d_{\bullet}) \ge 0$ and $2r \le n - s$, and is empty otherwise.

A Fano problem is a tuple (r, n, d_{\bullet}) such that a general Fano scheme of type (r, n, d_{\bullet}) is finite.

For a Fano problem (r, n, d_{\bullet}) , the general Fano scheme has a fixed cardinality called the degree of the Fano problem, deg (r, n, d_{\bullet}) .

Debarre and Manivel give explicit formulas for this degree via techniques from intersection theory.

All Fano problems with less than 1000 solutions are listed below.

r	п	d∙	$\deg(r, n, d_{\bullet})$
1	4	(2,2)	16
1	3	(3)	27
2	6	(2,2)	64
3	8	(2,2)	256
1	7	(2, 2, 2, 2)	512
1	6	(2, 2, 3)	720

There is an incidence correspondence.

$$\Gamma = \{ (F, \ell) \in \mathbb{C}^{(r, n, d_{\bullet})} \times \mathbb{G}(r, \mathbb{P}^{n}) : F|_{\ell} = 0 \}$$

$$\underbrace{\frac{\pi_{(r, n, d_{\bullet})}}{\mathbb{C}^{(r, n, d_{\bullet})}} \qquad \mathbb{G}(r, \mathbb{P}^{n})$$

- Γ is a smooth, irreducible variety of dimension dim $\mathbb{C}^{(r,n,d_{\bullet})}$.
- For $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ the fiber $\pi_{(r,n,d_{\bullet})}^{-1}(F)$ is the Fano scheme $\mathcal{V}_{r}(F)$.
- $\pi_{(r,n,d_{\bullet})}$ is a smooth covering space over a Zariski open set U.

The <u>Galois group</u> $\mathcal{G}_{(r,n,d_{\bullet})}$, of the Fano problem (r, n, d_{\bullet}) is the monodromy group of $\pi_{(r,n,d_{\bullet})}$.

- The monodromy group of π_(r,n,d_•) is defined by lifting loops in U based at a fixed point F ∈ U.
- The monodromy group is defined up to isomorphism.

Question: Why are these called Galois groups?

Answer: Jordan first defined them algebraically!

- π_(r,n,d_•) is dominant and induces a reverse inclusion of function fields.
- $\mathcal{G}_{(r,n,d_{\bullet})}$ is isomorphic to the Galois group $\operatorname{Gal}_{\mathbb{C}(\mathbb{C}^{(r,n,d_{\bullet})})}(\overline{\mathbb{C}(\Gamma)}).$

 $\begin{array}{c} \mathsf{F} & \mathbb{C}(\mathsf{F}) \\ \downarrow & \uparrow \\ \mathbb{C}^{(r,n,d_{\bullet})} & \mathbb{C}(\mathbb{C}^{(r,n,d_{\bullet})}) \end{array}$

Equivalence of these definitions was shown by Harris, but the result traces back to Hermite.

A complete classification of Galois groups of Fano problems is close!

- $\mathcal{G}_{(1,3,(3))} = E_6$ [Jordan],[Harris].
- $\mathcal{G}_{(1,n,(2n-3))}$ is the symmetric group for $n \ge 4$ [Harris].
- $\mathcal{G}_{(r,2r+2,(2,2))} = D_{2r+3}$ for $r \ge 1$ [Hashimoto,Kadets].
- If (r, n, d_●) is a Fano problem not equal to (1, 3, (3)) or (r, 2r + 2, (2, 2)) for r ≥ 1, then G_(r,n,d_●) contains the alternating group [Hashimoto,Kadets].

<u>Goal</u>: Prove that for Fano problems not equal to (1, 3, (3)) or (r, 2r + 2, (2, 2)) for $r \ge 1$, the Galois group is the symmetric group.

<u>Plan:</u> Extend Harris' method of proof by using computational tools.

To show $\mathcal{G}_{(1,n,(2n-3))}$ contains a simple transposition, Harris exhibited $F \in \mathbb{C}^{(1,n,(2n-3))}$ such that:

- 1. $\mathcal{V}_r(F)$ contains a unique double point.
- 2. $\mathcal{V}_r(F)$ contains deg(1, n, (2n 3)) 2 smooth points.

More specific plan: Find such systems for other Fano problems using computational tools.

We prescribe a subscheme of $\mathcal{V}_r(F)$ to choose $F \in \mathbb{C}^{(r,n,d_{\bullet})}$.

- Fix $\ell \in \mathbb{G}(r, \mathbb{P}^n)$ to lie in $\mathcal{V}_r(F)$.
- Fix a tangent vector at $\ell \in \mathcal{V}_r(F)$, $v \in T_\ell \mathcal{V}_r(F)$.

Choose $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ general satisfying these conditions.

How do we check Harris' conditions?

Choose your favorite coordinates on $\mathbb{G}(r, \mathbb{P}^n)$ to describe $\mathcal{V}_r(F)$ as the zeros of a square polynomial system.

- Use symbolic computation to verify ℓ ∈ V_r(F) is an isolated point of multiplicity 2.
- Use numerical certification to isolate deg(r, n, d_●) 2 other points of V_r(F).

<u>Note</u>: By isolating deg $(r, n, d_{\bullet}) - 2$ points of $\mathcal{V}_r(F)$ other than ℓ , the other points are necessarily smooth!

A point $x \in \mathbb{C}^m$ is a simple double zero of a square polynomial system G if G(x) = 0, ker $DG(x) = \langle v \rangle$ for $v \neq 0$, and

 $D^2G(x)(v,v) \notin \operatorname{im} DG(x).$

By work of Shub, simple double zeros are isolated zeros of multiplicity 2.

<u>Note:</u> We can choose $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ (and hence G) to have complex rational coefficients. The above can be checked symbolically.

Smale defined quantities $\alpha(G, x)$, $\beta(G, x)$, and $\gamma(G, x)$ to a square system G and a point $x \in \mathbb{C}^m$.

Theorem (Smale et al.) If *G* and *x* are such that

$$\alpha(G,x) < \frac{13 - 3\sqrt{17}}{4},$$

then x converges under iterations of the Newton operator to a solution ξ of G. Further, $||x - \xi|| \le 2\beta(G, x)$.

• alphaCertified will verify these inequalities for you!

The Krawczyk operator $K_{G,x,Y}$ acts on the space of complex intervals, given a square system $G, x \in \mathbb{C}^m$, and $Y \in GL_m(\mathbb{C})$.

Theorem (Krawczyk)

If G, x, Y, and I are such that

 $K_{G,x,Y}(I) \subseteq I$,

then I contains a zero of G.

• HomotopyContinuation.jl can find such complex intervals!

Theorem (Y.)

The Fano problems not equal to (1, 3, (3)) or (r, 2r + 2, (2, 2)) for $r \ge 1$ and with less than 75,000 solutions have Galois group equal to the symmetric group.

• This determines the Galois group of 12 Fano problems which were previously unknown.

Data and code verifying this result is available at:

github.com/tjyahl/FanoGaloisGroups

Timings are reported for verifying the simple double point and certifying the remaining solutions is given below. (alphaCertified,HomotopyContinuation.jl)

r	п	d	$\deg(r,n,d_{\bullet})$	alCer (h)	HomCo (s)
1	7	(2, 2, 2, 2)	512	2.66	.61
1	6	(2, 2, 3)	720	2.88	.87
2	8	(2,2,2)	1024	27.32	1.57
1	5	(3,3)	1053	2.69	.32
1	5	(2,4)	1280	6.09	.73
1	10	(2,2,2,2,2,2)	20480	-	15.44
1	9	(2,2,2,2,3)	27648	-	25.97
2	10	(2,2,2,2)	32768	-	36.67

There is more to do!

- (In progress) Generate and verify data for larger Fano problems. Current bottlenecks are memory and time!
- Turn this into a proof for ALL Fano problems not equal to (1,3,(3)) or (r,2r+2,(2,2)) for $r \ge 1$.
- Explore using numerical certification to prove more about Galois groups and beyond.

Thank you all for your time!

P. Breiding and S. Timme.

HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia.

In *International Congress on Mathematical Software*, pages 458–465. Springer, 2018.

O. Debarre and L. Manivel.

Sur la variété des espaces linéaires contenus dans une intersection complète.

Mathematische Annalen, 312:549–574, 1998.

J. Harris.

Galois groups of enumerative problems.

Duke Math. Journal, 46(4):685-724, 1979.

References ii

S. Hashimoto and B. Kadets. 38406501359372282063949 and all that: Monodromy of Fano problems.

International Mathematics Research Notices, 2020. rnaa275, arxiv:2002.04580.

 J. Hauenstein and F. Sottile.
 Algorithm 921: alphaCertified: Certifying solutions to polynomial systems.

ACM Trans. Math. Softw., 38(4):28, 2012.

📔 C. Jordan.

Traité des Substitutions et des Équations algébriques. Gauthier-Villars, Paris, 1870.

[1, 2, 3, 4, 5, 6]

r	n	d•	$\deg(r, n, d_{\bullet})$	alCer (h)	HomCo (s)
1	7	(2, 2, 2, 2)	512	2.66	.61
1	6	(2, 2, 3)	720	2.88	.87
2	8	(2, 2, 2)	1024	27.32	1.57
1	5	(3,3)	1053	2.69	.32
1	5	(2,4)	1280	6.09	.73
1	10	(2,2,2,2,2,2)	20480	-	15.44
1	9	(2,2,2,2,3)	27648	-	25.97
2	10	(2,2,2,2)	32768	-	36.67
1	8	(2,2,3,3)	37584	-	38.23
1	8	(2,2,2,4)	47104	-	111.88
1	7	(3,3,3)	51759	-	42.86
1	7	(2,3,4)	64512	-	125.63