Computing Galois groups of Fano problems

Thomas Yahl
thomasjyahl@tamu.edu
Texas A\&M University
Ohio State University Algebraic Geometry Seminar
September 2022
arXiv:2209.07010

Lines in \mathbb{P}^{3} on a cubic surface

- Cayley and Salmon showed there are 27 distinct lines that lie on a smooth cubic surface.
- Schläfli determined these lines lie in a "remarkable configuration"

Remark: In the image above, all 27 lines are real!

Fano problems

- The Grassmanian $\mathbb{G}\left(r, \mathbb{P}^{n}\right)$ is the space of r-planes in \mathbb{P}^{n}, a projective variety of dimension $(r+1)(n-r)$.
- The Fano scheme of X is the subscheme of the Grassmanian formed by the r-planes on X.
- Example: The Fano scheme of lines in \mathbb{P}^{3} on a smooth cubic surface consists of 27 points in $\mathbb{G}\left(1, \mathbb{P}^{3}\right)$.

Fano problems

We consider Fano schemes where $X \subseteq \mathbb{P}^{n}$ is a complete intersection and classify them by their type.

- If $\operatorname{codim} X=s, X$ is defined by homogeneous polynomials $F=\left(f_{1}, \ldots, f_{s}\right)$ of degrees $d_{\bullet}=\left(d_{1}, \ldots, d_{s}\right)$.
- The Fano scheme of r-planes on X has type $\left(r, n, d_{0}\right)$.
- Example: The Fano scheme of lines in \mathbb{P}^{3} on a cubic surface has type (1, 3, (3)).

We study the family of Fano schemes of a given type.

Fano problems

Write $\mathbb{C}^{\left(r, n, d_{\bullet}\right)}$ for the space of homogeneous polynomials $F=\left(f_{1}, \ldots, f_{s}\right)$ in $n+1$ variables of degrees $d_{\bullet}=\left(d_{1}, \ldots, d_{s}\right)$, parameterizing Fano schemes of type $\left(r, n, d_{\bullet}\right)$.

- For $F \in \mathbb{C}^{\left(r, n, d_{\bullet}\right)}$, write $\mathcal{V}_{r}(F)$ for the Fano scheme of r-planes on the zero set of F.
- A Fano scheme is general if it is determined by a general system $F \in \mathbb{C}^{\left(r, n, d_{0}\right)}$.

Many properties of general Fano schemes are determined entirely by their type.

Fano problems

Note that $\ell \in \mathcal{V}_{r}(F)$ iff $\left.F\right|_{\ell}=0$. If $\ell \in \mathcal{V}_{r}(F)$ then..

- $\left.f_{i}\right|_{\ell}=0$
- $f_{i} \mid \ell$ is a polynomial of degree d_{i} in r variables (after choosing coordinates).
- all $\left(\underset{r}{d_{i}+r}\right)$ coefficients vanish.

The expected dimension of a Fano scheme of type $\left(r, n, d_{\mathbf{0}}\right)$ is

$$
\delta\left(r, n, d_{\bullet}\right)=(r+1)(n-r)-\sum_{i=1}^{s}\binom{d_{i}+r}{r}
$$

Fano problems

Theorem (Debarre, Manivel)
A general Fano scheme of type $\left(r, n, d_{\mathbf{0}}\right)$ has dimension $\delta\left(r, n, d_{\mathbf{0}}\right)$ if $\delta\left(r, n, d_{0}\right) \geq 0$ and $2 r \leq n-s$, and is empty otherwise.

A Fano problem is a tuple $\left(r, n, d_{\mathbf{0}}\right)$ such that a general Fano scheme of type $\left(r, n, d_{\bullet}\right)$ is finite.

For a Fano problem $\left(r, n, d_{0}\right)$, the general Fano scheme has a fixed cardinality called the degree of the Fano problem, $\operatorname{deg}\left(r, n, d_{0}\right)$.

Examples

Debarre and Manivel give explicit formulas for this degree via techniques from intersection theory.

All Fano problems with less than 1000 solutions are listed below.

r	n	d_{\bullet}	$\operatorname{deg}\left(r, n, d_{\bullet}\right)$
1	4	$(2,2)$	16
1	3	(3)	27
2	6	$(2,2)$	64
3	8	$(2,2)$	256
1	7	$(2,2,2,2)$	512
1	6	$(2,2,3)$	720

Galois groups of Fano problems

There is an incidence correspondence.

$$
\Gamma=\left\{(F, \ell) \in \mathbb{C}^{\left(r, n, d_{\bullet}\right)} \times \mathbb{G}\left(r, \mathbb{P}^{n}\right):\left.F\right|_{\ell}=0\right\}
$$

- Γ is a smooth, irreducible variety of dimension $\operatorname{dim} \mathbb{C}^{\left(r, n, d_{\bullet}\right)}$.
- For $F \in \mathbb{C}^{\left(r, n, d_{\bullet}\right)}$ the fiber $\pi_{\left(r, n, d_{\bullet}\right)}^{-1}(F)$ is the Fano scheme $\mathcal{V}_{r}(F)$.
- $\pi_{\left(r, n, d_{\bullet}\right)}$ is a smooth covering space over a Zariski open set U.

Galois groups of Fano problems

The Galois group $\mathcal{G}_{\left(r, n, d_{\bullet}\right)}$, of the Fano problem $\left(r, n, d_{\mathbf{\bullet}}\right)$ is the monodromy group of $\pi_{\left(r, n, d_{\mathbf{e}}\right)}$.

- The monodromy group of $\pi_{\left(r, n, d_{\bullet}\right)}$ is defined by lifting loops in U based at a fixed point $F \in U$.
- The monodromy group is defined up to isomorphism.

Galois groups of Fano problems

Question: Why are these called Galois groups?
Answer: Jordan first defined them algebraically!

- $\pi_{\left(r, n, d_{\bullet}\right)}$ is dominant and induces a reverse inclusion of function fields.
- $\mathcal{G}_{\left(r, n, d_{\bullet}\right)}$ is isomorphic to the Galois group $\mathrm{Gal}_{\mathbb{C}\left(\mathbb{C}^{\left(r, n, d_{\bullet}\right)}\right)}(\overline{\mathbb{C}(\Gamma)})$.

Equivalence of these definitions was shown by Harris, but the result traces back to Hermite.

Galois groups of Fano problems

A complete classification of Galois groups of Fano problems is close!

- $\mathcal{G}_{(1,3,(3))}=E_{6}$ [Jordan],[Harris].
- $\mathcal{G}_{(1, n,(2 n-3))}$ is the symmetric group for $n \geq 4$ [Harris].
- $\mathcal{G}_{(r, 2 r+2,(2,2))}=D_{2 r+3}$ for $r \geq 1$ [Hashimoto,Kadets].
- If $\left(r, n, d_{\bullet}\right)$ is a Fano problem not equal to $(1,3,(3))$ or $(r, 2 r+2,(2,2))$ for $r \geq 1$, then $\mathcal{G}_{\left(r, n, d_{\bullet}\right)}$ contains the alternating group [Hashimoto,Kadets].

Galois groups of Fano problems

Goal: Prove that for Fano problems not equal to $(1,3,(3))$ or $(r, 2 r+2,(2,2))$ for $r \geq 1$, the Galois group is the symmetric group.

Plan: Extend Harris' method of proof by using computational tools.

Using Harris' method

To show $\mathcal{G}_{(1, n,(2 n-3))}$ contains a simple transposition, Harris exhibited $F \in \mathbb{C}^{(1, n,(2 n-3))}$ such that:

1. $\mathcal{V}_{r}(F)$ contains a unique double point.
2. $\mathcal{V}_{r}(F)$ contains $\operatorname{deg}(1, n,(2 n-3))-2$ smooth points.

More specific plan: Find such systems for other Fano problems using computational tools.

Using Harris' method

We prescribe a subscheme of $\mathcal{V}_{r}(F)$ to choose $F \in \mathbb{C}^{\left(r, n, d_{\bullet}\right)}$.

- Fix $\ell \in \mathbb{G}\left(r, \mathbb{P}^{n}\right)$ to lie in $\mathcal{V}_{r}(F)$.
- Fix a tangent vector at $\ell \in \mathcal{V}_{r}(F), v \in T_{\ell} \mathcal{V}_{r}(F)$.

Choose $F \in \mathbb{C}^{\left(r, n, d_{0}\right)}$ general satisfying these conditions.

How do we check Harris' conditions?

Using Harris' method

Choose your favorite coordinates on $\mathbb{G}\left(r, \mathbb{P}^{n}\right)$ to describe $\mathcal{V}_{r}(F)$ as the zeros of a square polynomial system.

- Use symbolic computation to verify $\ell \in \mathcal{V}_{r}(F)$ is an isolated point of multiplicity 2.
- Use numerical certification to isolate $\operatorname{deg}\left(r, n, d_{\mathbf{0}}\right)-2$ other points of $\mathcal{V}_{r}(F)$.

Note: By isolating $\operatorname{deg}\left(r, n, d_{\mathbf{0}}\right)-2$ points of $\mathcal{V}_{r}(F)$ other than ℓ, the other points are necessarily smooth!

Using Harris' method

A point $x \in \mathbb{C}^{m}$ is a simple double zero of a square polynomial system G if $G(x)=0$, $\operatorname{ker} D G(x)=\langle v\rangle$ for $v \neq 0$, and

$$
D^{2} G(x)(v, v) \notin \operatorname{im} D G(x)
$$

By work of Shub, simple double zeros are isolated zeros of multiplicity 2.

Note: We can choose $F \in \mathbb{C}^{\left(r, n, d_{\bullet}\right)}$ (and hence G) to have complex rational coefficients. The above can be checked symbolically.

Using Harris' method

Smale defined quantities $\alpha(G, x), \beta(G, x)$, and $\gamma(G, x)$ to a square system G and a point $x \in \mathbb{C}^{m}$.

Theorem (Smale et al.)
If G and x are such that

$$
\alpha(G, x)<\frac{13-3 \sqrt{17}}{4}
$$

then x converges under iterations of the Newton operator to a solution ξ of G. Further, $\|x-\xi\| \leq 2 \beta(G, x)$.

- alphaCertified will verify these inequalities for you!

Using Harris' method

The Krawczyk operator $K_{G, x, Y}$ acts on the space of complex intervals, given a square system $G, x \in \mathbb{C}^{m}$, and $Y \in \mathrm{GL}_{m}(\mathbb{C})$.

Theorem (Krawczyk)
If G, x, Y, and I are such that

$$
K_{G, x, Y}(I) \subseteq I,
$$

then I contains a zero of G.

- HomotopyContinuation.jl can find such complex intervals!

Results

Theorem (Y.)

The Fano problems not equal to $(1,3,(3))$ or $(r, 2 r+2,(2,2))$ for $r \geq 1$ and with less than 75,000 solutions have Galois group equal to the symmetric group.

- This determines the Galois group of 12 Fano problems which were previously unknown.

Data and code verifying this result is available at:
github.com/tjyahl/FanoGaloisGroups

Results

Timings are reported for verifying the simple double point and certifying the remaining solutions is given below. (alphaCertified,HomotopyContinuation.jl)

r	n	d_{\bullet}	$\operatorname{deg}\left(r, n, d_{\bullet}\right)$	alCer (h)	HomCo (s)
1	7	$(2,2,2,2)$	512	2.66	.61
1	6	$(2,2,3)$	720	2.88	.87
2	8	$(2,2,2)$	1024	27.32	1.57
1	5	$(3,3)$	1053	2.69	.32
1	5	$(2,4)$	1280	6.09	.73
1	10	$(2,2,2,2,2,2)$	20480	-	15.44
1	9	$(2,2,2,2,3)$	27648	-	25.97
2	10	$(2,2,2,2)$	32768	-	36.67

Moving forward

There is more to do!

- (In progress) Generate and verify data for larger Fano problems. Current bottlenecks are memory and time!
- Turn this into a proof for ALL Fano problems not equal to $(1,3,(3))$ or $(r, 2 r+2,(2,2))$ for $r \geq 1$.
- Explore using numerical certification to prove more about Galois groups and beyond.

References i

Thank you all for your time!

(P. Breiding and S. Timme.
HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia.
In International Congress on Mathematical Software, pages 458-465. Springer, 2018.
O. Debarre and L. Manivel.

Sur la variété des espaces linéaires contenus dans une intersection complète.
Mathematische Annalen, 312:549-574, 1998.
J. Harris.

Galois groups of enumerative problems.
Duke Math. Journal, 46(4):685-724, 1979.

References if

(S. Hashimoto and B. Kadets.
38406501359372282063949 and all that: Monodromy of Fano problems.
International Mathematics Research Notices, 2020.
rnaa275, arxiv:2002.04580.
J. Hauenstein and F. Sottile.

Algorithm 921: alphaCertified: Certifying solutions to polynomial systems.
ACM Trans. Math. Softw., 38(4):28, 2012.
冨 C. Jordan.
Traité des Substitutions et des Équations algébriques. Gauthier-Villars, Paris, 1870.
$[1,2,3,4,5,6]$

r	n	d_{\bullet}	$\operatorname{deg}\left(r, n, d_{\bullet}\right)$	alCer (h)	HomCo (s)
1	7	$(2,2,2,2)$	512	2.66	.61
1	6	$(2,2,3)$	720	2.88	.87
2	8	$(2,2,2)$	1024	27.32	1.57
1	5	$(3,3)$	1053	2.69	.32
1	5	$(2,4)$	1280	6.09	.73
1	10	$(2,2,2,2,2,2)$	20480	-	15.44
1	9	$(2,2,2,2,3)$	27648	-	25.97
2	10	$(2,2,2,2)$	32768	-	36.67
1	8	$(2,2,3,3)$	37584	-	38.23
1	8	$(2,2,2,4)$	47104	-	111.88
1	7	$(3,3,3)$	51759	-	42.86
1	7	$(2,3,4)$	64512	-	125.63

