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Chapter 1

1. Let A be a ring and x ∈ A be nilpotent. Let n > 0 be such that xn = 0 and notice

(1 + x)

(
n−1∑
i=0

(−1)ixi

)
= 1 + xn = 1.

Therefore, 1 + x is a unit.

For any unit a ∈ A, we may write a+ x = a(1 + a−1x) where a is a unit and 1 + a−1x is a unit since a−1x is
nilpotent ((a−1x)n = a−nxn = 0). Since the product of units is a unit, a+ x is then a unit for any unit a ∈ A.

2a. Let A be a ring and

f(x) =

n∑
i=0

aix
i ∈ A[x].

Assume a0 is a unit and ai is nilpotent for i ≥ 1. Since aix
i is nilpotent and the sum of nilpotents is nilpotent,∑n

i=1 aix
i is nilpotent. Therefore,

f(x) = a0 +

n∑
i=1

aix
i

is the sum of a unit and a nilpotent. Therefore, f(x) is a unit.

Assume now that f(x) is a unit. Let

g(x) =

m∑
j=0

bjx
j ∈ A[x]

be such that f(x)g(x) = 1. We must have

1 =

(
n∑
i=0

aix
i

) m∑
j=0

bjx
j

 =

n+m∑
k=0

ckx
k, ck =

∑
i+j=k

aibj .

Immediately from this, a0b0 = c0 = 1 so a0 is a unit. Now it will be shown that when f(x) is nonconstant, the
leading term is nilpotent. By (strong) induction, it will be shown that ar+1

n bm−r = 0. The base case follows
immediately considering the term anbm = cn+m = 0. Assuming the above for all values up to r, we have

arn
∑

i+j=n+m−r
aibj = arncn+m−r = 0.

Notice now that each term with i 6= n can be written as

arnaibj = arnaibm−(r−n+i) = aia
n−i−1
n (ar−n+i+1

n bm−(r−n+i)) = 0

by our (strong) inductive assumption. Therefore, it follows that ar+1
n bm−r = 0 (the term where i = n) and our

induction is complete. When r = m, am+1
n b0 = 0. Multiplying both sides by b−1

0 , am+1
n = 0. Therefore, an is

nilpotent and so anx
n is nilpotent.

1



Notice now that

f(x)− anxn

is a unit since f(x) is a unit and −anxn is nilpotent. Following the above proceedure, an−1 is nilpotent and
an−1x

n−1 is nilpotent. Continuing this, we see that ai is nilpotent for i ≥ 1. (Formally, use induction)

2b. Let f(x) now be nilpotent. Let n > 0 be such that (f(x))n = 0. The constant term of (f(x))n is exactly an0 so
that a0 is nilpotent. Notice that 1 + f(x) is a unit so that ai is necessarily nilpotent for i ≥ 1 from the above.

Let a0, . . . , an be nilpotent. Since aix
i is nilpotent for each 0 ≤ i ≤ n and the sum of nilpotents are nilpotent,

we have

f(x) =

n∑
i=0

aix
i

is nilpotent.

2c. If there exists a ∈ A not equal to zero such that af(x) = 0, then f(x) is, by definition, a zero divisor.

Suppose that f(x) ∈ A[x] is a zero divisor. Let

g(x) =

m∑
j=0

bjx
j

be of minimal degree such that f(x)g(x) = 0. By (strong) induction is will be shown that an−rg(x) = 0. For
the base case, consider ang(x). Since anbm = cn+m = 0, we have that deg(ang(x)) = m−1 and f(x)(ang(x)) =
anf(x)g(x) = 0. Since g was of minimal degree, this implies that ang(x) = 0. Assume now that an−ig(x) for
0 ≤ i ≤ r. Notice ∑

i+j=m+n−r−1

aibj = cm+n−r−1 = 0.

For i > n−r−1, aibj = 0 by our inductive assumption. There are no terms with i < n−r−1 so that we must have
an−r−1bm = 0. Therefore, an−r−1g(x) has degree m−1 and satisfies f(x)(an−r−1g(x)) = an−r−1f(x)g(x) = 0.
By minimality of g(x), we must again have an−r−1g(x) = 0. This completes our induction. Since aig(x) = 0
for all 0 ≤ i ≤ n, we necessarily have aib0 = 0 for all 0 ≤ i ≤ n (or any coefficient from g(x)).

2d. Let f(x), g(x) ∈ A[x]. If f(x) is not primitive, then (a0, . . . , an) ⊂ (1). The coefficients of f(x)g(x) are given
by the sums

ck =
∑
i+j=k

aibj ∈ (a0, . . . , an).

Therefore, (c0, . . . , cn+m) ⊆ (a0, . . . , an) ⊂ (1). This implies that f(x)g(x) is not primitive.

Assume now that f(x) and g(x) are both primitive, that is, (a0, . . . , an) = (b0, . . . , bm) = (1). If f(x)g(x) is not
primitive, (c0, . . . , cn+m) 6= (1). Since every proper ideal is contained in a maximal ideal, (c0, . . . , cn+m) ⊆ M
where M is a maximal ideal of A. Let i0 and j0 be minimal such that ai0 6∈ M and bj0 6∈ M (they cannot all
be in M since it is not equal to (1)). Consider∑

i+j=i0+j0

aibj = ci0+j0 ∈ (c0, . . . , cn+m) ⊆M.

For indices such that i > i0, j < j0 and so aibj ∈ (c0, . . . , cn+m) ⊆ M . Similarly, for indices such that i < i0,
aibj ∈ (c0, . . . , cn+m) ⊆M . Therefore, we have

ai0bj0 = ci0+j0 −
∑

i+j=i0+j0
i 6=i0,j 6=j0

aibj ∈M.

Since M is maximal, it is prime. This is a contradiction because it implies that either ai0 ∈ M or bj0 ∈ M .
This implies that f(x)g(x) is necessarily primitive as well.
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3. By induction on n, it will be shown that the above results carry over to the polynomial ring A[x1, . . . , xn].
The base case is exactly the last problem, so assume the above for a fixed n and consider A[x1, . . . , xn+1] =
A[x1, . . . , xn][xn+1].

From the previous problem, any unit f(x1, . . . , xn+1) ∈ A[x1, . . . , xn][xn+1] necessarily has coefficients ai ∈
A[x1, . . . , xn] such that a0 is a unit and ai is nilpotent for i ≥ 1. By our inductive hypothesis, a0 then has unit
constant term and nilpotent coefficients otherwise and ai has all nilpotent coefficients. Therefore,

f(x1, . . . , xn) =
∑
i

ai(x1, . . . , xn)xin+1

has a unit constant coefficient and all nilpotent coefficients otherwise. Conversely, if the constant coefficient of
f(x1, . . . , xn+1) is a unit a ∈ A and the rest are nilpotent, the first problem lets us build

f(x1, . . . , xn+1) = a+
∑

i1,...,in+1

ai1,...,in+1
xi11 . . . x

in+1

n+1

as the sum of a unit and nilpotent, which is then a unit.

Following the same process as above, a nilpotent f(x1, . . . , xn+1) ∈ A[x1, . . . , xn][xn+1] then has all nilpotent
coefficients. Similarly, if all the coefficients are nilpotent, each monomial is nilpotent, and so f(x1, . . . , xn+1)
is nilpotent.

If there is an a ∈ A such that af(x1, . . . , xn+1) = 0, then f(x1, . . . , xn+1) is a zero divisor. Conversely, if

f(x) =
∑
i

ai(x1, . . . , xn)xin+1

is a zero divisor, there is an element g(x1, . . . , xn) ∈ A[x1, . . . , xn] such that

ai(x1, . . . , xn)g(x1, . . . , xn) = 0.

Therefore, each ai ∈ A[x1, . . . , xn] is a zero divisor. By our inductive hypothesis, there exists bi ∈ A such that
biai(x1, . . . , xn) = 0. The product b =

∐
i bi then satisfies bf(x1, . . . , xn+1) = 0.

This completes the use of induction.

For the last part of the problem, the proof follows almost verbatim, with obvious modifications. In the first
part, each ci is a linear combination of the coefficients of f and so the ideal they generate is a still a subset
of the ideal formed by the coefficients of f . For the other direction, the idea of the proof is the same, it just
amounts to check indices.

4. The nilradical, N, is always a subset of the Jacobson radical, J, by the alternative definitions (a ∈ N iff a is
nilpotent and a ∈ J iff 1− ba is a unit for all b ∈ A). For the opposite inclusion, let f(x) ∈ A[x] be such that
f(x) ∈ J. Since 1 + xf(x) is a unit, the coefficients of the nonconstant terms are necessarily nilpotent. Since
the coefficients of the nonconstant terms of 1 + xf(x) are the coefficients of f(x), the coefficients of f(x) are
nilpotent. This then implies that f(x) is nilpotent, that is, f(x) ∈ N. This shows the opposite inclusion holds
and so N = J.

5a. Let A[[x]] be the ring of formal power series. Let f(x) ∈ A[[x]] be a unit. Let g(x) ∈ A[[x]] be such that
f(x)g(x) = 1. Writing out f(x) and g(x) in terms of coefficeints, the constant term of the product is exactly
the product of the constant terms and is equal to 1. Therefore, the constant term of f(x) is a unit.

Conversely, let

f(x) =
∑
i

aix
i ∈ A[[x]]

be such that a0 is a unit. Define b0 = a−1
0 and recursively define

bk = −a−1
0

k−1∑
i=0

ak−ibi, k ≥ 1.

3



Let

g(x) =
∑
j

bjx
j ∈ A[[x]]

and notice that by definition

a0b0 = 1,
∑
i+j=k

aibj = 0.

Therefore,

f(x)g(x) =
∑
k

ckx
k = 1

and so f(x) ∈ A[[x]] is a unit.

5b. Let f(x) ∈ A[[x]] be nilpotent (with coefficients ai). The claim is that the coefficient of the lowest degree term
is nilpotent. This follows immediately from considering powers of f(x) and looking at the term of lowest degree.
It is exactly the term of lowest degree in f(x) raised to the same power. Therefore, if f(x) is nilpotent, so is
the term of lowest degree. Since xk is not a zero divisor for any k ≥ 0 (consider the evaluation map x 7→ 1), it
must be that the coefficient is zero and so is nilpotent.

With the above in mind, it is easy to prove by induction that every coefficient of f(x) is nilpotent. The base
case, the constant coefficient of f(x), follows exactly from the above. Assume that the first k coefficients of

f(x) are nilpotent. Then
∑k−1
i=0 aix

i ∈ A[[x]] is nilpotent and so

f(x)−
k−1∑
i=0

aix
i =

∑
i≥k

aix
i

is nilpotent. Using the above, ak is then nilpotent as well. Therefore, ai is nilpotent for i ≥ 0.

(Note: This proof works in A[x] as well, but it not the most efficient)

5c. Let f(x) ∈ A[[x]] be such that f(x) ∈ J. Then for all b ∈ A, 1− bf(x) is a unit (in A[[x]]) and so the constant
term 1− ba0 is a unit in A. This implies that a0 ∈ J.

Assume now that a0 ∈ J. For all g(x) ∈ A[[x]], 1 − f(x)g(x) has constant term given by one minus the
product of a0 and the constant term of g(x). Since a0 ∈ J, this implies that the constant term is a unit and so
1− f(x)g(x) is a unit as well. Therefore, f(x) ∈ J.

5d. Let m ⊂ A[[x]] be a maximal ideal and mc ⊆ A be its contraction under the inclusion map i : A ↪→ A[[x]].
Notice first that (x) ⊆ m since otherwise, m ⊂ m + (x) ⊂ (1). The latter inclusion can be seen to be proper by
writing 1 = m(x) + xf(x) with m(x) ∈ M and f(x) ∈ (x). This implies the constant term of m(x) is 1 and
so any element of A[[x]] can be written with coefficients in M by solving a triangular system of equations. In
particular, if

m(x) = 1 +
∑
i≥1

mix
i, f(x) =

∑
i≥0

aix
i ∈ A[[x]],

we may write

f(x) = m(x)
∑
j≥0

cjx
j ∈ m, c0 = a0, ck+1 = ak+1 −

k∑
j=0

cjmk−j+1.

This follows from the fact that

∑
i+j=n

micj =

n∑
i=0

micn−i = cn +

n∑
i=1

micn−i = an −
n−1∑
j=0

cjmn−j +

n∑
i=1

micn−i = an.
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This implies m = A[[x]] and contradicts the maximality of M . Therefore, (x) ⊆ m. Now define the map
ϕ : A[[x]] 7→ A/mc by ϕ(

∑
i aix

i) = [a0]. The kernel of this map is given by

kerϕ =

∑
i≥0

aix
i ∈ A[[x]] : a0 ∈ mc = i−1(m)

 .

If i(a0) ∈ m then (x) ⊆ m implies we have
∑
i aix

i ∈ m so that kerϕ ⊆ m. Similarly, for any
∑
i aix

i ∈ m, we
may write

a0 +
∑
i≥1

aix
i =

∑
i≥0

aix
i ∈ m =⇒ a0 ∈ m =⇒ a0 ∈ mc.

Therefore, the opposite inclusion holds as well and so we have that kerϕ = m. By the first isomorphism
theorem, A[[x]]/m ' A/mc as rings. Since A[[x]]/m is a field, this implies that A/mc is a field and so mc is
maximal.

Clearly, (mc, x) ⊆ m (considering mc = i(mc)). Conversely, for any element∑
i≥0

aix
i = a0 + x

∑
i≥1

aix
i−1 ∈ m,

since kerϕ = m from above, we have exactly that a0 ∈ mc and so the above is an element of (mc, x). Therefore,
we have m = (mc, x).

5e. Consider the map π : A[[x]] 7→ A and let P ⊆ A be a prime ideal. Let π−1(P ) be a prime ideal of A[[x]] and
notice

(π−1(P ))c = i−1(π−1(P )) = (π ◦ i)−1(P ) = P.

Therefore, every prime ideal P ⊆ A is a contraction of a prime ideal of A[[x]].

6. Let A be a ring such that every ideal not contained in the nilradical N contains a nonzero idempotent element.
As in one of the previous problems, the nilradical is always a subset of the Jacobson radical (x nilpotent implies
1− xy a unit for all y). Assume that equality does not hold. We then have that N ⊂ J and so by assumption,
there exists a nonzero idempotent e ∈ J. Note that since e ∈ J, 1− e is a unit. We then have

e(1− e) = e− e2 = e− e = 0 =⇒ e = 0

This contradiction implies that we must have N = J.

7. Let A be a ring such that for every x ∈ A, there exists n ≥ 1 such that xn = x and let P ⊆ A be a prime ideal.
Consider the quotient A/P , which is an integral domain since P is prime, and let [x] ∈ A/P be nonzero. For
n ≥ 1 such that xn = x, we see

[x]([x]n−1 − 1) = [xn − x] = 0.

Since [x] 6= 0, [x]n−1 = 1 and so [x][x]n−2 = 1. Therefore, every nonzero element of A/P is a unit. This implies
that A/P is a field and so P is maximal. Since P was arbitrary, every prime ideal of A is maximal.

8. Let A be a nonzero ring. Ordering the prime ideals of A under reverse inclusion, I ≤ J iff J ⊆ I, it suffices by
Zorn’s lemma to show that every chain of prime ideals I1 ≤ I2 ≤ . . . (that is, . . . ⊆ I2 ⊆ I1) has a maximal
element. Let I = ∩nIn be an ideal of A. Clearly, I ⊆ In so that In ≤ I and I is a maximal element if I is
prime.

Suppose that a, b ∈ A are such that ab ∈ I. If b 6∈ I, there exists n ≥ 1 such that b 6∈ In. Then since
ab ∈ I ⊆ In, this implies a ∈ In and a ∈ Ik for 1 ≤ k ≤ n (by inclusion). Since b 6∈ In, b 6∈ Ik for k ≥ n. Then
ab ∈ I ⊆ Ik implies a ∈ Ik for k ≥ n. Therefore, a ∈ Ik for k ≥ 1 and so a ∈ I. Therefore, I is prime so that
by Zorn’s lemma, the set of prime ideals has a maximal element under reverse inclusion, that is, a minimal
element under inclusion.
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9. Assume a is the intersection of prime ideals pi. If xn ∈ a, then xn ∈ pi for all i so that x ∈ p for all i and so
x ∈ ∩pi = a. That is, r(a) = a.

Conversely, let r(a) = a. If π : A 7→ A/a is the projection map, we may write r(a) = π−1(N) where N is the
nilradical. Since N is the intersection of all prime ideals in A/a, which is in a one to one correspondence with
the prime ideals of A that contain a (via p↔ π−1(p)), we have that

a = r(a) =
⋂

p prime
a⊆p

p.

10. (i) =⇒ (ii) Let p be the unique prime ideal of A and a ∈ A. If a is not a unit, then (a) is a proper ideal
and is so contained in a maximal ideal, which is then prime and hence, p. Therefore, a ∈ p. Since N is the
intersection of all prime ideals of A, N = p and so every non-unit of A is nilpotent.

(ii) =⇒ (iii) Let [a] ∈ A/N be nonzero. Since any representative a ∈ A is a unit, we have

[a][a−1] = [aa−1] = [1].

Therefore, [a] is a unit. Since [a] was arbitrary, this implies that A/N is a field.

(iii) =⇒ (i) If there is more than one prime ideal, N is properly contained in some prime ideal. Then A/N is
not a field since the prime ideals of A containing N are in a one-to-one correspondence with the ideals of A/N
(and there is some prime ideal containing N so there are nontrivial ideals of A/N).

11a. Let A be a Boolean ring and x ∈ A. Notice

x+ 1 = (x+ 1)2 = x2 + 2x+ 1 = (x+ 1) + 2x =⇒ 2x = 0.

11b. Let p be a prime ideal of A and consider A/p. For any x ∈ A/p, x 6= 0, we see

0 = x2 − x = x(x− 1) =⇒ x = 1.

Therefore, there are only two elements of A/p, 0 and 1. Since every nonzero element is a unit, A/p is a field
and so p is maximal. (Note: One can use a previous problem to show that p is maximal)

11c. Let a = (a0, . . . , an) be a finitely generated ideal of A. First, we will find a more appropriate generating set for
a. Define v1 = a1 and

vj = aj + aj

j−1∑
i=1

vi, 1 < j ≤ n.

Clearly, vj ∈ a so that (v1, . . . , vn) ⊆ a. Similarly, a1 ∈ (v1, . . . , vn) and

aj = vj − aj
j−1∑
i=1

vi ∈ (v1, . . . , vn)

for 1 < j ≤ n. Therefore, a ⊆ (v1, . . . , vn) so that a = (v1, . . . , vn). The utility of this new generating set will
now be shown. It will be shown by induction on j that for i < j, vivj = 0. The base case, j = 1, is trivial since
there are no indices less than 1. Assume that for a fixed j, vivj = 0 for i < j. For i < j + 1, we see

vivj+1 = vi

(
aj+1 + aj+1

j∑
k=1

vk

)

= viaj+1 + aj+1

j∑
k=1

vivk

= viaj+1 + v2
i aj+1 + aj+1

∑
k<i

vivk + aj+1

∑
i<k

vivk

= 2viaj+1 = 0.
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Using this, we then have that vivj = δijvj . Let v =
∑
vi. Clearly, v ∈ (v1, . . . , vn) = a and

vi =

n∑
j=1

vivj = viv ∈ (v).

Therefore, a = (v1, . . . , vn) ⊆ (v). Combining these inclusions, we have that a = (v).

12. Let A be a local ring and e ∈ A be an idempotent such that e 6= 1. Since 0 = e(1− e), e cannot be a unit, since
this would imply e = 1. Therefore, e is contained in the unique maximal ideal of A, which is necessarily equal
to the Jacobson radical J. Therefore, 1 − e is necessarily a unit and the above equation implies that e = 0.
Therefore, the only idempotents of a local ring are e = 0, 1.

13. Let K be a field and Σ be the set of irreducible, monic polynomials in one variable and coefficients in K. Let
A be the ring of polynomials in indeterminants xf indexed by f ∈ Σ and a be the ideal of A generated by
polynomials of the form gf ((xh)h∈Σ) = f(xf ) for f ∈ Σ. Assume there exists gfi ∈ A such that

1 =

n∑
i=1

gfi .

Since each element of the right hand side is nonconstant, degfi gfi > 1. Since degfi gfj = 0 for i 6= j, the right
hand side has degree degfi gfi as a polynomial in fi. Since the left hand side is constant, this is a contradiction.
Therefore, 1 6∈ a. Therefore, a is contained in some maximal ideal m. Let K ′ = A/m. Notice that K is a
subfield of K ′ via K ↪→ A → A/m, which is injective since it is nontrivial (1 doesn’t map to 0). For any
f ∈ Σ, f([xf ]) = [f(xf )] = [0] so that every irreducible, monic polynomial in K[x] factors over K ′. Since every
polynomial can be uniquely written as a product of irreducible, monic factors, every polynomial of K[x] factors
over K ′.

Let K(1) = K ′ and K(n+1) = (K(n))′. Let L = ∪K(n). L is a field since for any x, y ∈ L, x, y ∈ K(n) for n
sufficiently large so that x ± y, xy, x/y are in L. For a polynomial F ∈ L[x], the coefficients are in K(n) for
some sufficiently large n. Then F factors over K(n+1) into factors of lesser degree. For k sufficiently large,
F then factors into linear factors over K(n+k) and hence, over L. Therefore, every polynomial in L[x] splits
into linear factors over L. Let K ⊆ L be the set of elements of L that are algebraic over K. Since algebraic
extensions of algebraic extensions are algebraic, K is an algebraic extension of K. For any polynomial with
coefficients in K, it splits into linear factors over L and since each root is then algebraic over K, it is algebraic
over K and hence, in K. Therefore, K is an algebraic closure of K.

14. Let A be a ring and Σ be the set of ideals whose elements are all zero-divisors. By Zorn’s lemma, it suffices to
show that any chain

a1 ⊆ a2 ⊆ . . .

of elements in Σ has an upper bound. Let a = ∪ai. It is easy to see that a is an ideal and every element is an
element of ai for i sufficiently large and hence a zero divisor in A. Since ai ⊆ a, a is an upper bound of this
chain and by Zorn’s lemma, maximal elements of Σ under inclusion exist. Let b be a maximal element of Σ
under inclusion and ab ∈ b. Then there exists c ∈ A such that abc = 0. If a 6∈ b, then a(bc) = 0 implies that
bc = 0 so that b is a zero divisor. By maximality, b ∈ b since otherwise, b ⊂ (b, b). Therefore, b is prime.

The union of all maximal elements of Σ is the set of all zero-divisors of A and a union of prime ideals. This
completes the proof.

15a. Let A be a ring and X be the set of all prime ideals of X and for a subset E ⊆ A, define V (E) to be the set
of prime ideals containing E. Let a be the ideal generated by a set E. Since E ⊆ a, any ideal containing a
contains E so that V (a) ⊆ V (E). Conversely, any ideal containing E necessarily contains a (as the smallest
ideal containing E). Therefore, V (E) ⊆ V (a). Therefore, V (E) = V (a).

Similar to above, since a ⊆ r(a), V (r(a)) ⊆ V (a). Conversely, since r(a) is the intersection of all prime ideals
containing a, it is contained in every prime ideal that contains a. That is, V (a) ⊆ V (r(a)). Together, we have
that V (r(a)) = V (a).

15b. Clearly, every prime ideal contains 0 so V (0) = X. Since no prime ideal is all of A, V (1) = ∅.
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15c. Let {Ei}i∈I be any family of subsets of A. Notice that for P ∈ X such that ∪Ei ⊆ P , Ei ⊆ P for each P so that
P ∈ ∩V (Ei). Conversely, for P ∈ ∩V (Ei), Ei ⊆ P for each i ∈ I so that ∪Ei ⊆ P . Therefore, P ∈ V (∪Ei).
Combining these, we have that

V

(⋃
i∈I

Ei

)
=
⋂
i∈I

V (Ei).

15d. Notice that xm ∈ a ∩ b if and only if xm ∈ a and xm ∈ b. That is, r(a ∩ b) = r(a) ∩ r(b). Now ab ⊆ a ∩ b
implies r(ab) ⊆ r(a ∩ b). For xm ∈ a ∩ b, x2m ∈ ab so that x ∈ r(ab). Therefore, the opposite inclusion holds
and

r(ab) = r(a ∩ b) = r(a) ∩ r(b).

Using that V (a) = V (r(a)), we then have that

V (a ∩ b) = V (ab).

Any ideal that contains a or b contains ab. Therefore,

V (a) ∪ V (b) ⊆ V (ab) = V (a ∩ b).

Conversely, let P ∈ X be such that a ∩ b ⊆ P . If a 6⊆ P and b 6⊆ P , we may take an element of each not in P
and multiply them. The result is in a∩ b, but not in P (by primality). Therefore, either a ⊆ P or b ⊆ P . This
implies that the opposite inclusion holds as well and so we have

V (a ∩ b) = V (a) ∪ V (b).

17a. For f ∈ A, let Xf ⊆ X be the complement of V ((f)). These are open sets of X (since from the above, the
sets V (E) satisfy the axioms of closed sets for a topology). Note that from the above, any open set U can be
written as the complement of V (E) for some subset E ⊆ A. For any f ∈ E, we then have that V (E) ⊆ V ((f))
so that Xf ⊆ U . For any two open sets Xf and Xg, Xf ∩Xg = Xfg from below. With these two properties,
the sets of the form Xf constitute a base for the Zariski topology on X.

Let f, g ∈ A. Xf ∩ Xg = Xfg amounts to showing that V ((fg)) = V ((f)(g)) = V ((f)) ∪ V ((g)), but this
follows exactly from the fact that

V (ab) = V (a ∩ b) = V (a) ∪ V (b).

Therefore, Xf ∩Xg = Xfg.

17b. If f is nilpotent, f is contained in every prime ideal and hence, V ((f)) = X and Xf = ∅. Conversely, if Xf = ∅
and V ((f)) = X, then f is contained in every prime ideal and hence, in the nilradical. Therefore, f is nilpotent.

17c. If f is a unit, then V ((f)) = ∅ so that Xf = X. Conversely, if f is not a unit, then (f) is a proper ideal and
hence, contained in some maximal (and therefore, prime) ideal. This implies that V ((f)) 6= ∅ so that Xf 6= X.

17d. If r((f)) = r((g)), we immediately have that V ((f)) = V ((g)) and Xf = Xg. If Xf = Xg, then V ((f)) = V ((g))
and a prime ideal P ∈ X contains f if and only if it contains g. Since r((f)) is the intersection of all prime
ideals that contain (f), we may then say that r((f)) = r((g)).

17e. Since {Xf}f∈A is a basis of the Zariski topology on X, it suffices to show that any open cover by sets of this
form has a finite subcover (since every open set contains a set of this form). Let {Xfi}i∈I be an open cover of
X by elements of our basis. We then have

∅ =
⋂
i∈I

V ((fi)) = V

(⋃
i∈I

(fi)

)
= V

((⋃
i∈I

(fi)

))
= V ((fi)i∈I).

Therefore, we must have that (fi)i∈I = (1) (since otherwise, it is proper and contained in some maximal and
hence, prime, ideal). We may then write

1 =

k∑
j=1

gjfij , gf ∈ A.
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This implies that (fij )
k
j=1 = (1) and so

∅ = V ((fij )
k
j=1) = V

(⋃
i∈I

(fi)

)
=
⋂
i∈I

V ((fij )).

Therefore, X = ∪Xfij
and so there is a finite refinement of this open cover. Therefore, X is quasi-compact.

17f. Let f ∈ A and Xf be an open set. Let {Xfi}i∈I be an open cover as above. We see

Xf ⊆
⋃
i∈I

Xfi ⇐⇒ V ((fi)i∈I) ⊆ V ((f)).

That is, every prime ideal containing (fi)i∈I contains (f). This implies r((f)) ⊆ r((fi)i∈I). Then f ∈ r((f)) ⊆
r((fi)i∈I) so that

fn =

k∑
j=1

gjfij , gj ∈ A.

Therefore, f ∈ r((fij )kj=1) so that V ((fij )
k
j=1) ⊆ V ((f)) and so Xf ⊆ ∪Xfij

. Therefore, Xf is quasi-compact.

17g. If U = ∪Xfi is a finite union of open, quasi-compact sets, then U is open and quasi-compact (from basic
topology). Conversely, if U is an open, quasi-compact set, U can be written as a union of Xfi , U = ∪Xfi since
these sets form a basis for the Zariski topology. Letting {Xfi} be our open cover, we get a finite refinement of
this open cover, of which contains U and is a subset of U . Therefore, U is this finite union of Xfij

.

18a. If p ∈ X is maximal, clearly, V (p) = {p} is a closed subset of X. Conversely, if p is not maximal, it is contained
in some prime ideal. Since every closed set has the form V (E) for some subset E ⊆ A, we then have that every
closed set containing p contains this prime ideal containing p. Therefore, {p} is not closed.

18b. Clearly, any closed set containing p necessarily contains all prime ideals that contain p. Therefore, V (p) ⊆ {p}.
Conversely, V (p) is a closed set containing p. Therefore, {p} ⊆ V (p). Therefore, we have that {p} = V (p).

18c. q ∈ {p} ⇐⇒ p ⊆ q Clearly, if p ⊆ q, then every closed set containing p contains q so that q ∈ {p}. Conversely,
if q ∈ {p}, then q is contained in every closed set that contains p. In particular, q ∈ V (p), which implies that
p ⊆ q.

18d. Let p, q ∈ X be distinct. If there are no neighborhoods of X that contain one of these ideals and not the other,
then all open and closed sets that contain one contain the other. In particular, q ∈ {p} and p ∈ {q}. This
imply that p ⊆ q ⊆ p so that p = q. This contradiction shows that some separating neighborhood necessarily
exists for either p or q so that the Zariski topology is a T0 space.

19. Let A be a ring, X = Spec(A) and N be the nilradical of A. Assume N ∈ X and let U and V be nonempty
open subsets of X. If U = V = X, then they intersect. Otherwise, the complement of the open set U ∩ V is a
nonempty closed set and so has the form V (E) for some E ⊆ A. Since V (E) 6= X, there is some prime ideal
that does not contain E. Therefore, E 6⊆ N. This implies that N ∈ U ∩ V and so the intersection is nonempty
and X is irreducible.

Conversely, assume that N is not prime. Then there exists a, b ∈ A such that ab ∈ N, but a, b 6∈ N. Since
a, b 6∈ N, we have that V (a) 6= X 6= V (b). Notice that V (a) 6= V (b) since V (a) = V (b) implies

V (a) = V ((a)) ∩ V ((b)) = V ((a)(b)) = V (ab) = X

since ab ∈ N. However, this contradicts a 6∈ N. From this, it follows that Xa, Xb 6= ∅, Xa 6= Xb, and

Xa ∩Xb = Xab = ∅.

Therefore, X is not irreducible.

20a. Let X be a topological space and Y an irreducible subspace. Consider Y . For any nonempty, open sets
U, V ⊆ Y , there exists open sets Ũ , Ṽ ⊆ X such that U = Ũ ∩ Y and V = Ṽ ∩ Y . Then, U ′ = Ũ ∩ Y and
V ′ = Ṽ ∩ Y are open subsets of Y . They are easily checked to be nonempty (for any point x ∈ U every
neighborhood intersects Y since x ∈ Y . Then the points of this neighborhood in Y are in U ′ also). Then there
exists an element of U ′ ∩ V ′, but this element is also then in U ∩ V as desired.
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20b. By Zorn’s lemma, it suffices to show that for an ascending chain of irreducible subspaces

Y1 ⊆ Y2 ⊆ . . . ,

that Y = ∪Yi is an irreducible subspace as well. Let U, V ⊆ Y . For sufficiently large n, we have that U, V ⊆ Yn
so that U ∩ V 6= ∅ since Yn is irreducible. The result then follows.

20c. From the first part, if Y is a maximal irreducible subspace, Y is an irreducible subspace so that by maximality
Y ⊆ Y which implies Y = Y and Y is closed. By repeating the previous part with ascending chains of
irreducible subspaces containing a point x ∈ X, we see that every point x ∈ X is contained in a maximal
irreducible subspace.

If X is Hausdorff, singletons are closed (and of course, irreducible). If a subset Y ⊆ X has more than one
point, there exists disjoint neighborhoods of any two points, which implies that Y is not irreducible. Therefore,
the irreducible subspaces are exactly the singletons. Since there are no inclusions among singletons, these are
exactly the maximal irreducible subspaces as well.

20d. Let A be a ring and X = Spec(A). Let p be a minimal prime ideal and consider V (p). For any two nonempty
open sets U1, U2 ⊆ V (p), we may write

Ui = V (p) \ V (Ei)

for some subset Ei ⊆ A. Notice that p 6∈ V (E1)∪V (E2) since p ∈ V (Ei) implies that V (p) ⊆ V (Ei) so that Ui
is empty. Therefore,

p ∈ V (p) \ (V (E1) ∪ V (E2)) = U ∩ V.

Therefore, V (p) is an irreducible subspace of X.

Assume that V (p) ⊂ Y for some subspace Y ⊆ X. Then there exists some ideal q ∈ Y \ V (p). That is, p 6⊆ q.
Notice

V

⋂
q∈Z
p6⊆q

q

 ∪ V (p) = V

⋂
q∈Z

q

 = Z.

Here, we have written Z as the union of two distinct (not hard to see since neither is the whole space) closed
sets. Taking the complement, we get two open sets with empty intersection. Therefore, Y is not irreducible.
This implies that V (p) is maximal and that the irreducible components of X are V (p) for minimal prime ideals
p.

Conversely, if Y is a maximal irreducible closed subspace, Y = V (a) = Spec(A/a) for some ideal a which is
irreducible if and only if NA/a is prime. This ideal is prime if and only if its contraction is prime, but its
contraction is exactly r(a), which is prime if and only if a is prime. Then Y = V (a) = V (r(a) = V (p) for some
prime p. It is clear that this is maximal if and only if p is minimal.

21a. Let φ : A 7→ B be a ring homomorphism, X = Spec(A), and Y = Spec(B). Let φ∗ : Y 7→ X be the map
φ∗(p) = φ−1(p). Fix f ∈ A. Notice that for p ∈ Yφ(f) = Y \ V (φ(f)), φ(f) 6∈ p implies f 6∈ φ−1(p) = φ∗(p).
Therefore, φ∗(p) ∈ Xf so that p ∈ (φ∗)−1(Xf ). Conversely, for p ∈ (φ∗)−1(Xf ), φ∗(p) ∈ Xf implies f 6∈
φ∗(p) = φ−1(p). Therefore, φ(f) 6∈ p and p ∈ Yφ(f). Combining inclusions, we get that

(φ∗)−1(Xf ) = Yφ(f).

Since the open sets Xf form a basis for the topology on Y and their preimages are open in X, φ∗ is continuous.

21b. Let a be an ideal of A. For b ∈ (φ∗)−1(V (a)), φ−1(b) = φ∗(b) ⊇ a implies that b ⊇ ae so that b ∈ V (ae). That
is, (φ∗)−1(V (a)) ⊆ V (ae). Conversely, let b ∈ V (ae), that is, b ⊇ ae. This implies

φ∗(b) = bc ⊇ aec ⊇ a =⇒ b ∈ (φ∗)−1(V (a)).

Therefore, V (ae) ⊆ (φ∗)−1(V (a)). Combining inclusions, we get the result.
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21c. Let b be an ideal of B. Clearly, φ∗(V (b)) ⊆ V (bc) so that φ∗(V (b)) ⊆ V (bc). For the opposite inclusion, let
φ∗(V (b)) ⊆ V (a). This implies that a ⊆ φ−1(q) for every q ∈ Y such that b ⊆ q. That is,

a ⊆
⋂
q∈Y
b⊆q

φ−1(q).

Therefore,

V

⋂
q∈Y
b⊆q

φ−1(q)

 ⊆ V (a).

However,

V (bc) = V (r(φ−1(b))) = V (φ−1(r(b))) = V

φ−1

⋂
q∈Y
b⊆q

q


 = V

⋂
q∈Y
b⊆q

φ−1(q)

 .

From this, V (bc) is contained in the closure φ∗(V (b)). Therefore, the result holds.

21d. Assume now that φ : A 7→ B is surjective. Consider the induced map φ∗ : Y 7→ X. For every b ∈ Y ,
φ∗(b) = φ−1(b) ⊇ kerφ so that φ∗(b) ∈ V (kerφ) so that we may consider φ∗ as a map φ∗ : Y 7→ V (kerφ). As
noted in a previous problem, this map is continuous.

Define a map ϕ : V (kerφ) 7→ Y by ϕ(a) = ae = φ(a) (because φ is surjective, this is in fact an ideal). To show
that this actually maps a prime ideal a ∈ V (kerφ) to an element of Y , let b1 = φ(a1) and b2 = φ(a2) be such
that φ(a1a2) = b1b2 = φ(a3) ∈ ae = φ(a). This implies a1a2 = a3 + k for some k ∈ kerφ, but kerφ ⊆ a so this
implies a1a2 ∈ a. Since a is prime, this implies that either a1 ∈ a or a2 ∈ a so that either b1 = φ(a1) ∈ ae or
b2 = φ(a2) ∈ ae. Therefore, ae is prime. It is easy to see that since φ is surjective, aec = a and bce = b, so that
ϕ−1 = φ∗.

All that remains is to show that ϕ is continuous, it will be shown that the preimage of a closed set is closed.
Let V (b) ⊆ Y be closed. Notice

ϕ−1(V (b)) = φ∗(V (b)) = {pc : b ⊆ p} = V (bc).

Therefore, ϕ is continuous and so φ∗ : Y 7→ V (kerφ) is a homeomorphism. In particular, if π : A 7→ A/N is
the quotient map, π∗ : Spec(A/N) 7→ Spec(A) is a homeomorphism.

21e. Notice the following.

φ∗(Y ) = φ∗(V ({0})) = V ({0}c) = V (kerφ).

In the case that kerφ ⊆ N (in particular, if φ is injective), then φ∗(Y ) = V (kerφ) = V (N) = X. Therefore,
φ∗(Y ) is dense in X. Conversely, if V (kerφ) = φ∗(Y ) = X, then every prime ideal contains kerφ. Taking the
intersection over all of them, we have kerφ ⊆ N.

21f. This follows immediately from the definition since for two maps φ : A 7→ B, ψ : B 7→ C, and element p ∈ C,

(ψ ◦ φ)∗(p) = (ψ ◦ φ)−1(p) = φ−1(ψ−1(p)) = (φ∗ ◦ ψ∗)(p).

21g. Let A be an integral domain with one non-zero prime ideal p (which is then maximal as well), K be the field
of fractions of A, B = (A/p)×K, and φ : A 7→ B be defined by

φ(x) = (x, x).

From our description of A, we have that Spec(A) = {{0}, p}. It is clear (since A/p and K are fields) that the
only ideals of B are 〈(1, 0)〉 and 〈(0, 1)〉. Since their respective quotients are fields, they are both maximal and
hence, prime. Therefore, Spec(B) = {〈(1, 0)〉, 〈(0, 1)〉}. We see

φ∗(〈(1, 0)〉) = {0}, φ∗(〈(0, 1)〉) = p.
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From this and the preceding problems, φ∗ is clearly a bijective continuous map. To show that φ∗ is not a
homeomorphism, it suffices to show that φ∗ is not an open map. Since 〈(1, 0)〉 is maximal, V (〈(1, 0)〉) = {〈(1, 0)}
and its complement {〈(0, 1)〉} is therefore open. We see

φ∗({〈(0, 1)〉}) = {p}.

To show that this set is not open, notice that {0} ∩ {p} = ∅. However, Spec(A) is irreducible since A is an
integral domain (N = {0} is a prime ideal). If {p} were open, we should then reach a contradiction. Therefore,
φ∗ is not a homeomorphism.

22. Let A =
∏n
i=1Ai, πi : A 7→ Ai be the projection map onto the i-th coordinate, and ei = (0, . . . , 1, . . . , 0).

Notice that for every prime ideal p of A, there exists i such that ei 6∈ p (since otherwise, p = A is not prime).
Therefore, ej ∈ p for each j 6= i since eiej = 0 ∈ p. Therefore, kerπi = A1 × . . . {0} × . . . An ⊆ p. That is,
p ⊆ V (kerπi) for some i.

Let X = Spec(A), Xi = V (kerπi), and Yi = Spec(Ai). From a previous problem, we know that the map
π∗i : Yi 7→ Xi is a homeomorphism, so the Xi are canonically isomorphic to Yi = Spec(Ai). From the remarks
above, we know that X = ∪Xi. It is easy to see that V (kerπi) ∩ V (kerπj) = ∅ for i 6= j since any prime ideal
containing both kerπi and kerπj is necessarily all of A and so not prime. Each Xi is closed, but also,

Xi = X \

⋃
j 6=i

Xj


is open (since the union is finite and so closed). Therefore, each Xi is a connected component of X.

(ii) =⇒ (i) Obvious from the above.

(ii) =⇒ (iii) Take e = (1, 0).

(iii) =⇒ (ii) Let e 6= 0, 1 be an idempotent of A so that 1 − e is another idempotent. Define a map
φ : A 7→ (A/(e)) × (A/(1 − e)) by φ(a) = (a, a). Since (e) + (1 − e) = 1, by the Chinese remainder theorem,
this map is surjective with kernel kerφ = (e) ∩ (1 − e) = (e)(1 − e) = {0}. Therefore, this map is injective as
well. Therefore, A ' (A/(e))× (A/(1− e)).
(i) =⇒ (iii) If X = V (a)∪ V (b) = V (a∩ b) = V (ab), then no prime ideal contains a and b. This implies that
a+ b = 1 (otherwise, find a maximal (prime) ideal that contains it). We also have that all prime ideals contain
ab so that ab ⊆ N. Since a+ b = 1, there exists a ∈ a and b ∈ b such that a+ b = 1. Since ab ∈ ab, there exists
n such that (ab)n = 0. Since r((a)n) = (a) and r((b)n) = (b) are coprime, (a)n + (b)n = 1. Then let e ∈ (a)n

and 1 − e ∈ (b)n. We have e(1 − e) ∈ (abn) = 0. If e = 1, then 1 ∈ (a)n implies 1 ∈ (a) is a contradiction.
Similarly, if e = 0, 1 ∈ (b)n implies 1 ∈ (b) is a contradiction. Therefore, nontrivial idempotents exist.

23a. Let A be a Boolean ring and X = Spec(A). If Xf = ∅, it is open and closed. If Xf 6= 0, by definition, the set
Xf = X \ V (f) is open. To show that it is also closed, notice that Xf = X/V (f) = V (1− f). This is because
V (f) ∪ V (1− f) = V (f(1− f)) = V (0) = X and V (f) ∩ V (1− f) = V ((f, 1− f)) = V (1) = ∅.

23b. Let f1, . . . , fn ∈ A. Notice

Xf1 ∪ . . . ∪Xfn = X/(V (f1) ∩ . . . ∩ V (fn)) = X/V ((f1, . . . , fn)).

From problem 12, every finitely generated ideal of a Boolean ring is principal. Therefore, there exists f ∈ X
such that (f1, . . . , fn) = (f) and V ((f1, . . . , fn)) = V (f). Then the above becomes

Xf1
∪ . . . ∪Xfn = Xf .

23c. Let Y ⊆ X be open and closed. Since Y is open, it can be written as Y = ∪iXfi for some fi ∈ A. Since X is
quasi-compact and Y is closed, Y is quasi-compact (from the standard argument in topology). Therefore, in
the union above, we may take finitely many sets Xfi . That is, Y = ∪ni=1Xfi . From the previous problem, we
have that Y = Xf for some f ∈ A. Therefore, the sets Xf are the only open and closed subsets of X.

23d. Let p, q ∈ X be such that p 6= q. Without loss of generality, there then exists f ∈ p and f 6∈ q. That is,
p ∈ V (f) = X1−f and q ∈ X \ V (f) = Xf . Notice Xf ∩ X1−f = Xf(1−f) = ∅. Therefore, we have disjoint
neighborhoods of p and q in X, so X is Hausdorff. Since X is quasi-compact, this implies that X is a compact
Hausdorff space.
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24. I don’t know much/any lattice theory, but the first problem is just a scramble of notation, and the result is
well-known.

25. For a Boolean lattice L, consider X = Spec(A(L)). From problem 23, the open-and-closed subsets are exactly
the sets Xf , for f ∈ A. These of course are in correspondence with the elements of A, which are in correspon-
dence with the elements of the lattice, as desired. All that remains is to show that the map induced by this
correspondence preserves the lattice structure of the subsets of X. For Xf , Xg, we see

Xf ∩Xg = Xfg ↔ fg = f ∧ g
Xf ∪Xg = Xf+g+fg ↔ f + g + fg = f ∨ g,

where Xf ∪Xg = Xf+g+fg is shown in problem 11c (the ideal (f, g) is finitely generated and so is principal.
Its generator can be easily computed to be f + g + fg). The result follows.

26a. Let m ∈ Max(C(X)) and let V (m) = {x ∈ X : ∀f ∈ m, f(x) = 0}. If V (m) = ∅, then for every x ∈ X, there
exists fx ∈ m such that fx(x) 6= 0 and hence, fx(t) 6= 0 in some neighborhood Ux of x. By compactness, there
exists a finite cover of X by the sets Ux, say X = ∪ni=1Uxi . Consider

f(t) =

n∑
i=1

f2
xi(t).

It is clear that f does not vanish on all of X so that f is a unit in m, contradicting maximality. Therefore,
V (m) is nonempty.

For any x ∈ V (m), m ⊆ mx. By maximality, we then necessarily have that m = mx so that the map φ : X 7→
Max(C(X)) that sends x 7→ mx is surjective.

26b. It is well known that any compact Hausdorff space is normal. From this, Urysohn’s lemma applies to X.
Therefore, any two points may be separated by a continuous function. That is, for x 6= y, we may find a
function f ∈ C(X) such that f(x) = 0 and f(y) = 1. Therefore, mx 6= my. Therefore, φ : X 7→ Max(C(X)) is
injective.

26c. For f ∈ C(X), define

Uf = {x ∈ X : f(x) 6= 0}, Uf = {m ∈ Max(C(X)) : f 6∈ m}.

Notice

φ(Uf ) = {mx ∈ Max(C(X)) : f(x) 6= 0}.

Since every m ∈ Max(C(X)) has the form mx for some x ∈ X, we may then write

φ(Uf ) = {m ∈ Max(C(X)) : f 6∈ m} = Uf .

These are open sets in X and Max(C(X)) respectively (the latter because it is the complement of V (f) in
Max(C(X))). By Urysohn’s lemma, the sets Uf constitute a basis for the topology on X and so φ is an open
map. Therefore, the set-theoretic inverse of φ is continuous and so φ is a homeomorphism.

27. Let k be an algebraically closed field and

fα(t1, . . . , tn) = 0

be a system of polynomial equations with solution set X. Let I(X) be the set of polynomials who vanish
identically on X and P [x] = k[t1, . . . , tn]/I(X). Since constant functions are in P [x], the map px : P [x] 7→ k
defined by px(f) = f(x) is surjective and so the kernel mx is maximal so we have a mapping φ : X 7→ Max(P [x])
as before sending x 7→ mx.

To see that φ is injective, let x 6= y. Then xi 6= yi for some coordinate ti and so the polynomial f(t1, . . . , tn) =
ti − xi vanishes at xi but not at yi. Therefore, mx 6= my.
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28. Let f1, . . . , fm ∈ k[t1, . . . , tn] and let f : kn 7→ km be defined by f(x) = (f1(x), . . . , fm(x)). For affine algebraic
varieties X ⊆ kn and Y ⊆ km, if f restricted to X maps into Y , we have a regular map f : X 7→ Y . The
induced map φ∗ : P [Y ] 7→ P [X] is defined by φ∗(f) = f ◦ φ.

For a regular map φ : X 7→ Y , the induced map is easily seen to be a k-algebra homomorphism. For a k-algebra
homomorphism η : P [Y ] 7→ P [X] and s1, . . . , sm the coordinate functions of km, η(si) ∈ P [x] necessarily agrees
with some polynomial ηi ∈ k[t1, . . . , tn] (and the choice does not matter). Then consider the map φ : X 7→ Y
defined by φ(x) = (η1(x), . . . , ηm(x)). To see that this maps into Y , let fα ∈ k[s1, . . . , sm] be any set of defining
functions for Y . Notice

fα(φ(x)) = fα(η1(x), . . . , ηm(x)) = (η ◦ fα)(s1(x), . . . , sm(x)) = η(0) = 0.

The third to last equality is because η is a k-algebra homomorphism and so its value at fα is determined on
the coordinate functions si. fα(s1(x), . . . , sm(x)) = 0 because (s1(x), . . . , sm(x)) ∈ Y . Notice that in the same
vein of proof, for f ∈ P [Y ],

φ∗(f)(x) = f(φ(x)) = η(f)(x).

Chapter 2

1. Let n,m ∈ Z>0 and define a map ϕ : Z 7→ Zn ⊗ Zm by

ϕ(1) = [1]n ⊗ [1]m.

By Bezout’s lemma, there exists α, β ∈ Z such that

gcd(n,m) = αn+ βm.

We then have

ϕ(gcd(n,m)) = αn([1]n ⊗ [1]m) + βm([1]n ⊗ [1]m) = α([n]n ⊗ [1]m) + β([1]n ⊗ [m]m) = 0.

Therefore, (gcd(n,m)) ⊆ kerϕ and so there is an induced map ϕ̃ : Zgcd(n,m) 7→ Zn ⊗ Zm defined by

ϕ̃([1]gcd(n,m)) = ([1]n ⊗ [1]m).

Define another map φ : Zn ⊗ Zm 7→ Zgcd(n,m) by

φ([a]n ⊗ [b]m) = [ab]gcd(n,m).

It is easy to check that this map is well-defined (that is, it is determined by a middle-linear map). It is simple
to check that this map is an inverse to ϕ̃ so that ϕ̃ is an isomorphism.

In the case that gcd(n,m) = 1, we have that Zn ⊗ Zm ' {0}.

2. Let a ⊆ A be an ideal and M an A-module. Consider the exact sequence

0→ a
i−→ A

π−→ A/a→ 0.

Since the tensor functor is right exact, we have that the following sequence is exact.

a⊗M i⊗Id−−−→ A⊗M π⊗Id−−−→ (A/a)⊗M → 0

In particular, there is a canonical isomorphism A⊗M 7→M defined by a⊗m 7→ am so that we may consider
this as an exact sequence

a⊗M →M → (A/a)⊗M.

Notice that the image of the first map (after the identification of A ⊗M with M) is exactly aM . Since the
latter map is surjective, we have the following from the isomorphism theorem.

M/aM ' (A/a)⊗M
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3. Let A be a local ring with (unique) maximal ideal m and quotient k = A/m and M,N be a A-modules such
that M ⊗A N = {0}. We then have

Mk ⊗k Nk = (k ⊗AM)⊗k (k ⊗A N)

= (M ⊗A k)⊗k (k ⊗A N)

= M ⊗A (k ⊗k k)⊗A N
= k ⊗A (M ⊗A N) = k ⊗A {0} = {0}.

Since Mk and Nk are vector spaces, this implies that either Mk = 0 or Nk = 0 (since the tensor product of free
modules is free of rank equal to the product of their ranks). Without loss of generality, assume that Mk = {0}.
We see

M/aM ' (A/a)⊗AM = k ⊗AM = Mk = 0 =⇒ aM = M.

Since a = J (it is the only maximal ideal) Nakayama’s lemma implies that M = 0.

4. It is simple to check that

0→ Ai
fi−→ Bi

gi−→ Ci → 0

is exact if and only if

0→ ⊕Ai
f−→ ⊕Bi

g−→ ⊕Ci → 0

is exact, where f = (fi)i∈I and g = (gi)i∈I . From this and the fact that

A⊗ (⊕i∈IMi) = ⊕i∈I(A⊗Mi),

the result follows immediately.

5. As an A-module, A[x] ' ⊕∞i=1A and so from the previous problem, it is flat as an A-module. For any short
exact sequence of A-algebras

0→M1
f−→M2

g−→M3 → 0,

we may regard them as A-modules and get the following exact sequence of A-modules.

0→M1 ⊗A[x]
f⊗Id−−−→M2 ⊗A[x]

g⊗Id−−−→M3 ⊗A[x]→ 0

It is clear (since f and g are A-algebra homomorphisms) that f ⊗ Id and g ⊗ Id are in fact A-algebra homo-
morphisms as well.

6. For an A-module M , it is clear that M [x] inherits an A[x]-module structure where multiplication by an element
of A[x] is given exactly by their respective polynomials in A[x] (since the coefficients of the product will stay
in M , this works).

Define a map ϕ : A[x]⊗AM 7→M [x] of A[x]-algebras by

ϕ

((
n∑
i=0

aix
i

)
⊗A m

)
=

n∑
i=0

aimx
i.

This map is well-defined since the corresponding map A[x] ×M 7→ M [x] is A[x]-linear and also a ring homo-
morphism. Define another map φ : M [x] 7→ A[x]⊗AM by

φ

(
n∑
i=0

mix
i

)
=

n∑
i=0

xi ⊗A mi.

This map is also easily verified to be A[x]-linear and also a ring homomorphism. It is then checked that these
maps are inverses of one another so that A[x]⊗AM 'M [x] as A[x]-algebras.
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7. Simply notice that A[x]/p[x] ' (A/p)[x] is an integral domain since A/p is an integral domain. Therefore, p[x]
is a prime ideal of A[x].

This does not hold for maximal ideals. For instance, let (2) be a maximal ideal of Z. The ideal (2)[x] ⊆ (2, x)
is not maximal.

8a. From the definition of flatness of a module, for any exact sequence, we may tensor first by M and then by N ,
preserving exactness. The result is the same as tensoring by M ⊗A N .

8b. Since N is exact as a B-module, tensoring with respect to B preserves exact sequences. Considering these
maps as maps from/to the tensor product with respect to A gives the desired exact sequence (since the modules
themselves don’t change, the exactness conditions remain. They are easily A-linear).

9. Let

0→ A
f−→ B

g−→ C → 0

be an exact sequence of R-modules where A and C are finitely generated by (ai)
n
i=1 and (cj)

m
j=1 respectively.

The claim is that B is generated by (f(ai), bj)i,j where bj ∈ g−1(cj) is any element. Let b ∈ B. Since

g(b) =

m∑
j=1

rjcj ,

we may write

b =

m∑
j=1

rjbj + k, k ∈ ker g = Im f.

Since f is injective, we may write g = f(a) for some a ∈ A where

a =

n∑
i=1

siai.

Then we have that

b =

m∑
j=1

rjbJ +

n∑
i=1

sif(ai).

Since this set of generators is finite, B is finitely generated.

10. Let a ⊆ J be an ideal of A and M,N be A-modules where N is finitely generated. If u : M 7→ N is such that
the induced map u : M/aM 7→ N/aN is surjective, then the composition M →M/aM → N/aN is surjective.
By definition of the induced map, the composition above is equal to the composition M → N → N/aN , and
so this composition is surjective. This implies that N = aN + u(M). Since a ⊆ J, Nakayama’s lemma implies
that u(M) = N and so u is surjective.

11. Let A be a non-zero ring. If φ : An 7→ Am is an isomorphism, let m be a maximal ideal of A and consider the
induced map

Id⊗ φ : (A/m)⊗A An 7→ (A/m)⊗A Am.

It is clear that this map is a bijective A-module homomorphism with inverse Id⊗ φ−1 (by the composition of
such maps). This map preserves the A/m-module structure of each as well and so gives a linear transformation
of (A/m)⊗A An to (A/m)⊗A Am as A/m-vector spaces.

All that remains now is to compute the dimension of (A/m) ⊗A An. Consider {1 ⊗ ei}ni=1. These are clearly
linearly independent and span and so constitute a basis. Therefore, dim((A/m) ⊗A An) = n and the result
follows from the result for vector spaces.

If φ : An 7→ Am is surjective, since the tensor functor is right exact, Id⊗ φ : (A/m)⊗A An 7→ (A/m)⊗A Am is
also surjective. From our knowledge of vector spaces, this implies that n ≥ m.

It is proven with a bit of work in Hungerford’s text that every commutative ring with identity has the invariant
dimension property. For an injective map φ : An 7→ Am, φ induces an isomorphism of An with a submodule of
Am. By isomorphism invariance of dimension and monotonicity of dimension, we necessarily have that n ≤ m.
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12. Let M be a finitely generated A-module and φ : M 7→ An be surjective. We may write {ei}ni=1 as a generating
set for An and {ui}ni=1 such that φ(ui) = ei. Let (ui)

n
i=1 be the submodule of M generated by the ui and

N = kerφ⊕ (ui)
n
i=1. Consider the following diagram with rows exact and ϕ defined by ϕ(k, u) = k + u.

0→ kerφ
i′−→ N

φ◦π−−→ An → 0

↓ Id ↓ ϕ ↓ Id

0→ kerφ
i−→M

φ−−→ An → 0

By the five lemma, the map ϕ is then an isomorphism so that M ' kerφ⊕ (ui)
n
i=1. If we consider the surjective

projection map onto kerφ, the images of the ui then generate kerφ. Therefore, kerφ is finitely generated.

13. Let f : A 7→ B be a ring homomorphism and N a B-module considered as an A-module (via f). Consider
NB = B ⊗A N and g : N 7→ NB defined by g(y) = 1 ⊗ y. To see that this is injective, define a new map
p : NB 7→ N defined by p(b ⊗ y) = by (well-defined is easy to see). Notice that p ◦ g = IdN so that g has a
left-inverse. This immediately implies that g is injective. Now consider the short exact sequence

0→ ker p
i−→ NB

g◦p−−→ Im g → 0.

The latter map is surjective since p is surjective. Notice that this short exact sequence is actually split exact with
the map from Im(g) 7→ NB being just the inclusion map (since g ◦p◦ i = IdIm g). Therefore, NB ' ker p⊕ Im g.

14. There isn’t really anything to do for this problem.

15. Let π : ⊕Mi 7→ limMi = M be the projection map. For x ∈M , we may write

x = π

(∑
i∈I

xi

)
,

where xi ∈ Mi (considering Mi as part of the direct sum of the Mi) only finitely many xi 6= 0. Let j ∈ I be
such that i ≤ j for every i ∈ I such that xi 6= 0. We then have

x = π

∑
i≤j

xi

 = π

∑
i≤j

µij(xi)

 = µj

∑
i≤j

µij(xi)

 ,

since the difference ∑
i≤j

xi −
∑
i≤j

µij(xi) =
∑
i≤j

(xi − µij(xi)) ∈ D = kerπ

and
∑
i≤j µij(xi) ∈Mj .

If µi(x) = 0, then x ∈ kerµi = D ∩Mi. Written as an element of D ⊆ ⊕Mi, we have

x =

n∑
k=1

(xik − µikjk(xik)).

Here, we consider various reductions. The easiest being, we may assume that xik 6= 0 for each index ik and
jk 6= ik for any k. We may assume that each ik 6= il for k 6= l since we may add them together otherwise.
We may assume that i ≤ ik for each k. To see this, consider the set of minimal elements il in {ik} (since this
set is finite, they exist). Since x ∈ Mi, the Mil component must vanish for il 6= i, but the only way this is
possible is if xil = 0 since each il appears in the sum only once and il is minimal, there are no elements of the
form xik − µikil(xik). Therefore, i is the only minimal element, which implies that i ≤ ik for each index ik
(otherwise, consider a maximal descending chain. It must end since there are finitely many ik. i must be the
minimal elelment and so i ≤ ik). At this point, we can reduce to the case that ik = i for all k. For this, consider
{ik}ik 6=i and the minimal elements of this set as before. If il is minimal in this set, since the il coordinate
vanishes, either xil = 0 or xil = µiil(xi) (since i ≤ il is the only one less than il), in which case, we may write
the following.

xil − µiljl(xil) = µiil(xi)− µijl(xi) = (xi − µijl(xi))− (xi − µiil(xi))
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Since the indexing set is finite and there is always minimal elements of the set above, this process is finite and
so terminates. Therefore, we can change the sum so that ik = i for all k. We now have

x =

n∑
k=1

(xi − µijk(xi)).

Since each jk appears only once and the jk component must vanish, we then have that µijk(xi) = 0 for each k
in the sum. In particular, x = nxi so that for any j = jk, we have

µij(x) = nµij(xi) = 0.

16. Let (Mi, µij) be a directed system as in the previous problems, M = limMi be the direct limit, and N be an
module such that for all indices i, there exists αi : Mi 7→ N such that αi = αj ◦ µij . By the universal property
of the direct sum, there exists a unique homomorphism φ : ⊕Mi 7→ N defined by

φ((mi)i∈I) =
∑
i∈I

αi(mi).

Notice for xi ∈Mi and i ≤ j,

φ(xi − µij(xi)) = αi(xi)− (αj ◦ µij)(xi) = αi(xi)− αi(xi) = 0.

Therefore, D ⊆ kerφ (where D = kerπ and π : ⊕Mi 7→ M) and so there is an induced map α : M =
(⊕Mi)/D 7→ N . This map makes the following diagram commute for each index i.

⊕Mi N

Mi

M

φ

ιi

π

αi

α

Since µi = π ◦ ιi, we have that αi = α ◦ µi as desired. For uniqueness, assume there exists another map
β : M 7→ N such that αi = β ◦ µi for every index i ∈ I. Since every element of M can be written in the form
µi(xi) for some index i ∈ I, it is easy to see that for every m ∈M , m = µi(xi),

α(m) = (α ◦ µi)(xi) = αi(xi) = (β ◦ µi)(xi) = β(m).

Therefore, uniqueness follows. From this, our definition of the direct limit satisfies this condition.

Let N be another module satisfying the above condition (which implicitly includes maps ηi : Mi 7→ N). Since
there are maps µi : Mi 7→M and ηi : Mi 7→ N , there are induced maps φ : N 7→M and ϕ : M 7→ N such that
for all i ∈ I,

µi = φ ◦ ηi, ηi = ϕ ◦ µi.

Consider the maps µi : Mi 7→M . By the universal property, there is a map IdM : M 7→M , that satisfies

µi = IdM ◦ µi.

However, using the relations above, µi = φ ◦ϕ ◦µi. Therefore, φ ◦ϕ = IdM . Similarly, ϕ ◦φ = IdN . Therefore,
M ' N as desired.

17. Let {Mi}i∈I be a collection of submodules of some A-module with I ordered by i ≤ j if Mi ⊆ Mj , in which
case, let µij : Mi 7→ Mj is the inclusion map. Assume for every i, j ∈ I, there exists k such that i ≤ k and
j ≤ k so that I is directed upwards. Then define M = limMi. Let αi : Mi 7→

∑
Mi be the inclusion map.
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Clearly, αi = αj ◦µij and so by the universal property of direct limits, there exists a map α : M 7→
∑
Mi such

that αi = α ◦ µi. From the description above, α is defined exactly by

α ([(mi)i∈I ]) =
∑
i∈I

αi(mi) =
∑
i∈I

mi.

Define another map φ :
∑
Mi 7→M by

φ

(∑
i∈S

mi

)
=
∑
i∈S

µi(mi),

where S ⊆ I is finite and mi ∈ Mi. To see that this is well-defined, let
∑
i∈Smi =

∑
j∈T nj where both

indexing sets are finite and mi ∈Mi and nj ∈Mj . Take an index k ∈ I such that S, T ≤ k and notice

∑
i∈S

µi(mi) =
∑
i∈S

µk(µik(mi)) = µk

(∑
i∈S

µik(mi)

)
= µk

(∑
i∈S

mi

)
= µk

∑
j∈T

nj


= µk

∑
j∈T

µjk(nj)

 =
∑
j∈T

µk(µjk(nj)) =
∑
j∈T

µj(nj).

It’s easy to see that φ is a homomorphism and that these maps are inverses and so α is an isomorphism. As
for the latter equality, notice first that ∪Mi ⊆

∑
Mi. Conversely, for a finite subset S ⊆ I and

m =
∑
i∈S

mi ∈
∑

Mi, mi ∈Mi,

there exists some upper bound S ≤ j so that
∑
i∈SMi ⊆ Mj (by induction on |S|). Then m ∈ Mj ⊆ ∪Mi so

that
∑
Mi ⊆ ∪Mi. Combining inclusions, we have that

∑
Mi = ∪Mi.

18. Let (Mi, µij) and (Ni, νij) be two directed systems over the directed set I with limits M = limMi and
N = limNi. Let Φ : M 7→ N be a family of homomorphisms φi : Mi 7→ Ni such that φj ◦ µij = νij ◦ φi.
Consider the maps αi = νi ◦ φi : Mi 7→ N . The satisfy

αj ◦ µij = νj ◦ φj ◦ µij = νj ◦ νij ◦ φi = νi ◦ φi = αi.

Therefore, there is an induced map φ : M 7→ N that satisfies αi = φ ◦ µi. That is,

νi ◦ φi = φ ◦ µi.

Uniqueness again follows similar to uniqueness of the universal property of direct limits. If there are two such
functions, they take the same values since the range of the family of maps µi covers M .

19. Let (Mi, µij), (Ni, νij), and (Pi, ωij) be directed systems over the same directed set I, fi : Mi 7→ Ni and
gi : Ni 7→ Pi be module homomorphisms such that fj ◦ µij = νij ◦ fi and gj ◦ νij = ωij ◦ gi, and

0→Mi
fi−→ Ni

gi−→ Pi → 0

be exact for every i ∈ I. From the previous problem, there are induced module homomorphisms f : M 7→ N
and g : N 7→ P , where M = limMi, N = limNi, and P = limPi. Notice that for every i ∈ I, these maps
satisfy

g ◦ f ◦ µi = g ◦ νi ◦ fi = ωi ◦ gi ◦ fi = 0.

Since the range of the family of maps µi covers M , we necessarily have that g ◦ f = 0, so that Im f ⊆ ker g. To
show that this is in fact an equality, let (ni)i∈I ∈ ker g. We may write (ni)i∈I = νi(ni) for some ni ∈Mi. Then

0 = g((ni)i∈I) = (g ◦ νi)(ni) = (ωi ◦ gi)(ni) = ωi(gi(ni)).

This implies there exists i ≤ j such that

0 = ωij(gi(ni)) = (ωij ◦ gi)(ni) = (gj ◦ νij)(ni) = gj(νij(ni)).

19



Therefore, νij(ni) ∈ ker gj = Im fj . From this, we may write νij(ni) = fj(mj) for some mj ∈Mj . We see

f(µj(mj)) = (νj ◦ fj)(mj) = νj(νij(ni)) = νi(ni) = (ni)i∈I .

Therefore, (ni)i∈I ∈ Im f and so Im f = ker g as desired. Therefore, the induced sequence

M
f−→ N

g−→ P

is exact as well.

20. Let (Mi, µij) be a directed system over I with limit M = limMi. Consider the new system (Mi×N,µij × Id).
If there are maps αi : Mi ×N 7→ Q, then define α : M ×N 7→ Q by

α((mi)i∈S , n) =
∑
i∈S

αi(mi, n).

This map is easily verified to be a module homomorphism. Notice that αi = α ◦ (µi × Id) so that M × N '
lim(Mi ×N) by the universal property.

Now consider the directed system (Mi ⊗ N,µij ⊗ Id) with limit P = lim(Mi ⊗ N). By the family of maps
µi ⊗ Id : Mi ⊗N 7→M ⊗N , there is an induced homomorphism φ : P 7→M ⊗N defined by

φ([(mi ⊗ ni)i∈S ]) =
∑
i∈S

µi(mi)⊗ ni.

Consider the maps gi : Mi ×N 7→Mi ⊗N simply defined by gi(mi, n) = mi ⊗ n. Since

(µij ⊗ Id) ◦ gi = gj ◦ (µij × Id),

there is an induced map of limits g : M ×N 7→ P defined on by

g([(mi)i∈I ], n) = [(mi ⊗ n)i∈I ] .

This map is A-bilinear and so induces a A-module homomorphism ϕ : M ⊗ N 7→ P defined on elementary
tensors by

ϕ([(mi)i∈I ]⊗ n) = [(mi ⊗ n)i∈I ] .

We see for an elementary tensor

(φ ◦ ϕ)([(mi)i∈S ]⊗ n) = φ ([(mi ⊗ n)i∈S ]) =
∑
i∈S

µi(mi)⊗ n = [(mi)i∈S ]⊗ n.

Therefore, φ ◦ ϕ = Id. Similarly,

(ϕ ◦ φ)([mi ⊗ ni]i∈S) = ϕ

(∑
i∈S

µi(mi)⊗ ni

)
=
∑
i∈S

[(µi(mi)⊗ ni)i∈I ] = [mi ⊗ ni]i∈S .

Therefore, ϕ ◦ φ = Id and so P 'M ⊗N . That is,

lim
→

(Mi ⊗N) =
(

lim
→
Mi

)
⊗N.

21. Let (Ai, αij) be a family of rings indexed by the directed set I. As Z-modules, we may form the limit Z-module
A = limAi. Define multiplication on A as follows. For (ai)i∈I and (bi)i∈I , there exists i, j ∈ I and ai ∈ Ai and
bj ∈ Aj such that (ai)i∈I = αi(ai) and (bi)i∈I = αj(bj). Define

(ai)i∈I · (bi)i∈I = αk(αik(ai)αjk(bj))

for any i, j ≤ k. To see that this is well-defined, assume αi(ai) = αk(ak) and αj(bj) = αl(bl). We would like to
show

αm(αim(ai)αjm(bj)) = αn(αkn(ak)αln(bl)).
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Using that αc = αd ◦ αcd and that αcd is a ring homomorphism for all c, d ∈ I, we may find an upper bound
m,n ≤ p to reduce to showing that

αp(αip(ai)αjp(bj)) = αp(αkp(ak)αlp(bl)).

Notice that similar to above, we can find an upper bound i, k ≤ e so that αe(αie(ai)) = αe(αke(ak)), which
implies that αe(αie(ai) − αke(ak)) = 0. Then there exists an index f such that αif (ai) = αkf (ak). Similarly,
we can find an index g such that αjg(bj) = αlg(bl). Using the reduction above and finding an upper bound of
f and g, the result follows immediately.

This turns A into a commutative ring with identity αi(1) (for any i, since αi(1) = αj(1) (since ring maps
preserve the identity by definition)). It is clear that

αi(a1a2) = αi(a1)αi(a2)

by definition of multiplication (with upper bound i). Therefore, the maps αi : Ai 7→ A are ring homomorphisms.

Now assume that A = 0. Then the identity αi(1) = 0, which implies there exists i ≤ j such that αij(1) = 0.
Since αij is a ring homomorphism, 0 ∈ Aj is the identity, which implies that Aj = 0.

22. Let (Ai, αij) be a directed system of rings over I, Ni ⊆ Ai be the nilradical of each ring, and N ⊆ A be the
nilradical of the limit. It is clear that limNi ⊆ N since if we write an element in the form αi(ai), it is clear
that it is nilpotent and so is in N. Conversely, for (ai)i∈I ∈ N, we may write (ai)i∈I = αi(ai) for some index
i ∈ I and ai ∈ Ai. Since this is nilpotent, for some n > 0, we have

0 = ((ai)i∈I)
n = (αi(ai))

n = αi(a
n
i ).

Then there exists i ≤ j such that 0 = αij(a
n
i ) = (αij(ai))

n. Therefore, αij(ai) ∈ Nj and αi(ai) = αj(αij(ai)) ∈
limNi. Therefore, N = limNi.

Assume Ai is an integral domain for each i ∈ I. Let αi(ai)αj(aj) = 0 for some i, j ∈ I and ai ∈ Ai and aj ∈ Aj .
By definition of multiplication in A, for i, j ≤ k,

0 = αi(ai)αj(aj) = αk(αik(ai)αjk(aj)).

Therefore, there exists an index l ∈ I such that

0 = αkl(αik(ai)αjk(aj)) = αil(ai)αjl(aj).

Since Al is an integral domain, without loss of generality, we may assume that αil(ai) = 0. This then implies
that

αi(ai) = αl(αil(ai)) = 0.

Therefore, A is an integral domain as well.

23. Let (Bλ)λ∈Λ be a family of A-algebras with respective maps fλ : A 7→ Bλ. For a finite subset J ⊆ Λ, let BJ
denote the tensor product of Bλ for λ ∈ J . Then (BJ , iJJ ′)J⊆Λ is a directed system of rings (where iJJ ′ is the
inclusion map iJJ ′ : BJ 7→ BJ′). Let B = limBJ be the direct limit of this system (it is the tensor product of
the family (Bλ)λ∈Λ). From the preceding problems, B is a ring and there are maps iJ : BJ 7→ B that are ring
homomorphisms. Define an A-algebra structure on B as follows. Any element of B can be written in the form
iJ((⊗bλ)λ∈J) for some index J . For a ∈ A, let a act on iJ((⊗bλ)λ∈J) as follows.

aiJ((⊗bλ)λ∈J) = iJ(a(⊗bλ)λ∈J)

That is, a acts on an element of B by considering them elements of BJ and acting on BJ in the normal way
as the tensor product of A-algebras. This is well-defined since for iJ((⊗bλ)λ∈J) and iJ′((⊗bλ)λ∈J′), we may
do the normal thing and find an upper bound J, J ′ ⊆ K, in which case, the action of A coincides and so is
well-defined. Now, it is clear that the maps iJ : BJ 7→ B are A-algebra homomorphisms by definition of the
action.
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24. (i) =⇒ (ii) Let M be a flat A-module. Consider a free (projective) resolution

. . .→ Pn → Pn−1 → . . .→ P1 → P0 → N → 0.

Since M is flat and the tensor functor is right exact, tensoring this exact sequence with M results in another
exact sequence,

. . .→ Pn ⊗M → Pn−1 ⊗M → . . .→ P1 ⊗M → P0 ⊗M → N ⊗M → 0.

Since the torsion modules Tor)i(M,N) are equal to the homology modules of this sequence, they are all zero
since this sequence is exact.

(ii) =⇒ (iii) This is immediate.

(iii) =⇒ (i) Let M be such that for all A-modules N , Tor1(M,N) = 0. Consider a short exact sequence

0→ N ′ 7→ N → N ′′ → 0.

Tensoring this sequence with modules from a free (projective) resolution of M , we get a complex of short exact
sequences. By the snake lemma, there is the induced long exact sequence

. . .→ Tori+1(M,N ′′)→ Tori(M,N ′)→ Tori(M,N)→ Tori(M,N ′′)→ . . . .

Since Tor0(M,N) = M ⊗N , we then have an exact sequence

Tor1(M,N ′′)→M ⊗N ′ →M ⊗N →M ⊗N ′′ → 0.

Since Tor1(M,N ′′) = 0, it follows that the sequence obtained by tensoring the original exact sequence with M
is exact. Since N,N ′, N ′′ were arbitrary, it follows that M is flat.

25. Let

0→ N ′ → N → N ′′ → 0

be an exact sequence with N ′′ flat. From the Tor exact sequence, the following sequence is exact (since we can
take the tensor product on either side, the Tor exact sequence can come from either Tor(M,−) or Tor(−,M)).

Tor2(N ′′,M)→ Tor1(N ′,M)→ Tor1(N,M)→ Tor1(N ′′,M).

Since N ′′ is flat, Tori(N
′′,M) = 0 for all A-modules M . The above then becomes

0→ Tor1(N ′,M)→ Tor1(N,M)→ 0

for any A-module M . From this, if N is flat, Tor1(N,M) = 0 and so from above, Tor1(N ′,M) = 0 so that N ′

is flat. Similarly, if N ′ is flat, then N is flat.

26. Let N be a A-module. From the previous problems, if N is flat, then Tor1(A/a, N) = 0 for all finitely generated
ideals a of A (since Tor1(M,N) = 0 for all A-modules M).

Assume now that Tor1(A/a, N) = 0 for all finitely generated ideals a of A. It suffices to show that Tor1(M,N) =
0 for all finitely generated A-modules M . To see this, take an injective map f : M ′ 7→ M , this a short exact
sequence

0→M ′ →M →M ′′ = M/Im f → 0.

From the Tor exact sequence, we have

Tor1(M ′′, N)→M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0

is exact. Since Tor1(M ′′, N) = 0, the induced map f ⊗ Id : M ′ ⊗N 7→ M ⊗N is injective. Since M and M ′

were arbitrary, this would imply that N is flat.

It further suffices to show that Tor1(M,N) = 0 for all cyclic A-modules M . To see this, let M be a finitely
generated A-module generated by (xi)

n
i=1 and let Mj = (xi)

j
i=1. Without loss of generality, we may assume
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that xi+1 6∈ Mi by changing our generating set. Clearly, [xi+1] generates Mi+1/Mi so this module is cyclic.
Consider the exact sequence

0→Mi−1 →Mi →Mi/Mi−1 → 0.

The Tor exact sequence induces the exact sequence

Tor1(Mi−1, N)→ Tor1(Mi, N)→ Tor1(Mi/Mi−1, N).

Assuming that Tor1(Mi/Mi−1, N) = 0, we can use induction to show that Tor1(Mi, N) = 0 (since clearly,
Tor1(M1, N) = 0 in this case). Letting i = n, we have that Tor1(M,N) = 0. Since M was an arbitrary finitely
generated A-module, from the above, it follows that N is flat.

Before anything else, a small result. Let (Mi, µij) be the collection of finitely generated submodules of M
ordered under inclusion with maps µij : Mi 7→Mj inclusion maps. Assume the maps φi : Mi 7→ N are injective
and satisfy φi = φj ◦ µij . There is then an induced map φ : M = limMi 7→ N . Any element of M can be
written as µi(mi) for some i ∈ I and mi ∈ Mi. If 0 = φ(µi(mi)) = φi(µi(mi)), then µi(mi) = 0 so that φ is
injective.

Now let a be an ideal of A such that A/a is cyclic. Consider the directed system (ai, µij) of finitely generated
submodules (sub-ideals) of a under inclusion as above and the new direct system (ai ⊗N,µij ⊗ Id). The maps
ai ⊗N ↪→ A ⊗N are injective since the sequence 0 → a → A → A/a → 0 induces the following from the Tor
exact sequence.

Tor1(A/a)→ ai ⊗N → A⊗N

Therefore, the induced map a⊗N = lim(ai ⊗N) 7→ A⊗N is injective as well. The exact sequence 0 → a →
A→ A/a→ 0 then induces an exact sequence

Tor1(A/a, N)→ a⊗N → A⊗N.

Since the latter map is injective, we must have that Tor1(A/a, N) = 0. Therefore, Tor1(M,N) = 0 for all cyclic
A-modules M , which implies that N is flat.

27. (i) =⇒ (ii) Let A be absolutely flat and (x) be a principal ideal of A. Consider the diagram

A A/(x)

(x)⊗A (x)⊗A/(x)

π

γ α

β

where γ(x′⊗a) = x′a, β = Id⊗π, and α is defined as follows. Consider the injective function i : (x)→ A. Since
A/(x) is a flat A-module, the function α = i⊗ Id : (x)⊗A/(x)→ A⊗A/(x) = A/(x) is injective as well. It is
easy to see that this diagram commutes since π is a ring homomorphism and so respects multiplication (or just
write it all out, the compositions are equal to zero). Since the composition π ◦γ = 0, the composition α◦β = 0
as well. Since α is injective, this implies that β = 0. Since π is surjective, β = Id ◦ π is surjective and equal to
zero. Therefore, (x) ⊗ A/(x) = 0 identically. Again consider the exact sequence 0 → (x) → A → A/(x) → 0.
Tensoring with (x), we get the exact sequence

0→ (x)⊗ (x)→ (x)⊗A→ (x)⊗A/(x)→ 0.

Since (x)⊗A/(x) = 0, this is equivalent to the exact sequence

0→ (x)⊗ (x)→ (x)⊗A→ 0.

Therefore, the induced map φ = Id ◦ i : (x) ⊗ (x) 7→ (x) ⊗ A is an isomorphism. Consider the composition
(x)⊗(x)→ (x)⊗A→ (x). Each map is an isomorphism, so the resulting map (x)⊗(x)→ (x) is an isomorphism,
but this map is defined exactly by φ(x1⊗x2) = x1x2 ∈ (x2). In particular, this map is surjective, which implies
that x ∈ (x2) so that (x) = (x2).
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(ii) =⇒ (iii) Let a = (a1, . . . , an) be a finitely generated ideal of A. Note that for each 1 ≤ i ≤ n, there exists
bi such that ai = bia

2
i . From this, we have a new generating set a = (b1a1, . . . , bnan), where each element of

the generating set is idempotent. Write ei = biai so that a = (e1, . . . , en) (and each ei is idempotent. Notice
that we may decrease the number of generators as follows, a = (e1, . . . , en−2, en−1 + en − en−1en). It is clear
that this is still a generating set because each ei is idempotent. We may further assume that this new element
en−1 + en − en−1en is idempotent from the above process. Therefore, a = (e) is principal and generated by an
idempotent. Since A = (1) = (e) + (1− e) where (e) ∩ (1− e) = {0}, we may write A = a⊕ (1− e).
(iii) =⇒ (i) Let A be such that every finitely generated ideal of A is a direct summand of A for some
decomposition of A and let N be an arbitrary A-module. We need only show that N is flat. From the previous
problem, this amounts to showing that for all finitely generated ideals a of A, Tor1(A/a, N) = 0. For any such
finitely generated ideal, the quotient A/a is isomorphic to the other summand. That is, A = a⊕A/a. Consider
part of the Tor exact sequence corresponding to 0→ a→ A→ A/a→ 0.

Tor1(A/a, N)→ a⊗N → A⊗N = (a⊕A/a)⊗N = (a⊗N)⊕ (A/a⊗N)

The latter map is exactly the inclusion map a ⊗ N ↪→ (a ⊗ N) ⊕ (A/a ⊗ N). Since this is injective and the
above sequence is exact, we have that Tor1(A/a, N) = 0. Therefore, N is flat and so A is absolutely flat.

28. In a Boolean ring, every element is idempotent so that every principal ideal is idempotent. If A is a ring such
that for every x ∈ A there exists n > 1 such that xn = x, then x = xn−2x2 ∈ (x2) implies that (x) = (x2) so
that every principal ideal is idempotent and therefore, A is absolutely flat. If A is absolutely flat, φ : A 7→ B
is surjective, and x ∈ B, there exists y ∈ A such that φ(y) = x and a ∈ A such that y = ay2. Then
x = φ(y) = φ(a)φ(y)2 = φ(a)x2 so that (x) = (x2) and so A is absolutely flat. If A is a local ring that is
absolutely flat, then for every x ∈ A, x = ax2 for some a ∈ A. Therefore, ax is idempotent, which implies that
either ax = 0 or ax = 1. If ax = 0, then x = ax2 = 0. Otherwise, x is invertible. Therefore, A is a field.

Let A be absolutely flat and x ∈ A be a non-unit. Since x(1 − ax) = 0 for some a ∈ A and ax 6= 1, we have
that x is a zero-divisor.

Chapter 3

1. For any A-module M , if there exists s ∈ S such that sM = 0, then S−1M = 0 since for any m/r ∈ S−1M ,

m

r
=
ms

rs
=

0

rs
= 0.

Conversely, if M = (x1, . . . , xn) is finitely generated and S−1M = 0, then xi/1 = 0 implies there exists si ∈ S
such that xisi = 0. Let s =

∏n
i=1 si. We have

xis = (xisi)
∏
j 6=i

sj = 0.

Since these elements generate M , we have that sM = 0.

2. Let a be an ideal of A and S = 1 + a. For any maximal ideal m of S−1A, m = be = S−1b for some ideal b of A.
Since this ideal is not equal to all of S−1A, b ∩ S = b ∩ (1 + a) = ∅. This implies that (a + b) ∩ (1 + a) = ∅ so
that S−1a + S−1b = S−1(a + b) 6= (1). By maximality of S−1b = m, we then necessarily have that S−1a ⊆ m.
Since m was arbitrary, this implies that S−1a ⊆ J.

Let M be a finitely generated A-module and a an ideal of A such that aM = M . Let S = 1 + a as above and
notice

S−1M = S−1(aM) = (S−1a)(S−1M).

From the above, S−1a is contained in the Jacobson radical so that from Nakayama’s lemma, we have that
S−1M = 0. From the first problem, this implies there exists 1 + a ∈ S = 1 + a such that (1 + a)M = 0. In this
case, 1 + a ≡ 1 mod a as desired.

3. Let S and T be two multiplicatively closed subsets of A, ST be the product set (which is also multiplicative),
and U be the image of T under the inclusion map i : A 7→ S−1A. Consider the map φ : S−1A 7→ (ST )−1A
defined by

φ(a/s) = a/(s1).
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It is very easy to check that this map is a ring homomorphism. For t/1 ∈ U , we have that φ(t/1) = t/1 is a
unit since 1/t ∈ (ST )−1A. If

φ(a/s) = a/(s1) = 0,

then there exists s′t′ ∈ ST such that as′t′ = 0. From this, we have

(a/s)(t′/1) = at′/s = 0,

since as′t′ = 0. Therefore, there exists t′/1 ∈ U such that (a/s)(t′/1) = 0. Finally, for a/(st) ∈ (ST )−1A, we
may write

a/(st) = (a/s)(t/1)−1 = φ(a/s)(φ(t/1))−1.

From this, the induced map φ̃ : U−1(S−1A) 7→ (ST )−1A defined by

φ̃((a/s)/(t/1)) = φ(a/s)(φ(t/1))−1 = a/st

is an isomorphism.

4. Let f : A 7→ B be a ring homomorphism, S ⊆ A a multiplicatively closed subset, and T = f(S) (which is
also multiplicatively closed). First, B is an A-module with scalar multiplication given by a · b = f(a)b. Then
S−1B is an S−1A-module with multiplication given by (a/s) · (b/s′) = (f(a)b)/(ss′). Similarly, T−1B is an
S−1A-module with multiplication given by (a/s) · (b/f(s′)) = (f(a)b)/f(ss′). Define a map φ : S−1B 7→ T−1B
defined by

φ(b/s) = b/f(s).

This is well-defined since for b/s = b′/s′ ∈ S−1B, there exists s ∈ S such that (bs′ − b′s)s = (bf(s′) −
b′f(s))f(s) = 0. It is easily verified to be an S−1A-linear map. If φ(b/s) = 0, then there exists f(s′) ∈ T such
that bf(s′) = bs′ = 0. But this implies that b/s = 0 so φ is injective. It is clear that this map is surjective (by
finding a common denominator). Therefore, φ is an isomorphism.

5. Let A be a ring such that for every prime ideal p, the nilradical of Ap is trivial. Since S−1(r(a)) = r(S−1a)
and the nilradical is literally the radical of the zero ideal, we have that the nilradical of Ap is the localization of
the nilradical of A. That is, Np is the nilradical of Ap. Since Np = 0 for all prime ideals p, N = 0 (considering
it as an A-module).

Consider the ring A = Z/6Z. This ring has exactly two prime ideals, (2) and (3). Notice

A(2) = {m/n : m ∈ A, n ∈ {1, 3, 5}}.

It is easy to see that m/n = 0 iff m ∈ {0, 2, 4}. If m1/n1,m2/n2 6= 0 are such that m1m2/n1n2 = 0, then
m1m2 ∈ {0, 2, 4}, but m1,m2 ∈ {1, 3, 5}. This is not possible. Therefore, A(2) is an integral domain. Similarly,

A(3) = {m/n : m ∈ A, n ∈ {1, 2, 4, 5}}.

m/n = 0 iff m ∈ {0, 3}. If m1/n1,m2/n2 6= 0 are such that their product is zero, then m1m2 ∈ {0, 3}, but
m ∈ {1, 2, 4, 5}. This is also impossible. Therefore, A(3) is an integral domain. Since Ap is an integral domain
for every prime ideal p of A, but A isn’t an integral domain, the result does not hold.

6. Let A be a nonzero ring and Σ the set of multiplicatively closed subsets of A such that 0 6∈ S ordered under
inclusion. By Zorn’s lemma, to show there are maximal elements of Σ, it suffices to show any increasing chain
has an upper bound. Let S1 ⊆ S2 ⊆ . . . and let S = ∪Si. Since 1 ∈ Si for all i, 1 ∈ S. For a, b ∈ S, there is an
index i sufficiently large so that a, b ∈ Si. Then ab ∈ Si ⊆ S so that ab ∈ S. Therefore S is multiplicative and
an upper bound of this increasing chain. By Zorn’s lemma, maximal elements of Σ exist.

Let S ∈ Σ be maximal and p = A\S. If a+ b = s ∈ S, consider the multiplicative sets S(an)n≥0 and S(bn)n≥0.
If 0 ∈ S(an)n≥0 ∩ S(bn)n≥0, then there exists s1, s2 ∈ S and n,m ≥ 0 such that

s1a
n = s2b

m = 0.
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We then have that

0 = s1s2(a+ b)n+m = s1s2s
n+m ∈ S.

This is a contradiction. Therefore, without loss of generality, 0 6∈ S(an)n≥0. By maximality of S, this then
implies that S(an)n≥0 = S so that a ∈ S. That is, a+b ∈ S implies either a ∈ S or b ∈ S. The contrapositive of
this is that a, b ∈ p implies a+ b ∈ p. Similarly, let a ∈ p be such that there exists r ∈ A such that ra = s ∈ S.
If 0 ∈ S(an)n≥0 then there exists s1 ∈ S and n ≥ 0 such that s1a

n = 0. Then

0 = s1r
nan = s1s

n ∈ S.

This is a contradiction. Therefore, again by maximality, a ∈ S. The contrapositive of this is that if a ∈ p,
then ra ∈ p for all r ∈ A. Combining these, we have that p is an ideal of A. The contrapositive of the
x, y ∈ S =⇒ xy ∈ S exactly states that p is a prime ideal. Clearly, if p is not a minimal prime ideal, then
S = A \ p is not maximal. Therefore, A \ S = p is a minimal prime ideal.

Conversely, assume that A\S = p is a minimal prime ideal of A. Then S is contained in some maximal S′ ∈ Σ.
From the above, A \ S′ = q for some minimal prime ideal q of A. Since S ⊆ S′, q ⊆ p. By minimality of p,
q = p so that S = S′ and S is maximal.

7a. If A \ S is a union of prime ideals, ∪pi, then the requirement for saturation is given via contrapositives by

xy ∈
⋃

pi ⇐⇒ x ∈
⋃

pi or y ∈
⋃

pi.

Both directions are fairly immediate. If xy ∈ ∪pi, then xy ∈ pi for some i, which implies, without loss of
generality, that x ∈ pi ⊆ ∪pi. Conversely, if x ∈ ∪pi, then x ∈ pi for some i. Since pi is an ideal, xy ∈ pi ⊆ ∪pi.
Therefore, S is saturated.

If S is saturated and x 6∈ S, then rx 6∈ S for all r ∈ A. This implies that (x) ∩ S 6= ∅ so that S−1(x) 6= (1).
This implies that S−1(x) ⊆ p for some prime ideal p. Then (x) ⊆ (S−1(x))c ⊆ pc where pc is prime. By the
correspondence of ideals of A with S−1A, pc ∩ S = ∅. Therefore, pc ⊆ A \ S. Since every element of A \ S is
contained in some prime ideal which is contained in A \ S, we may write A \ S as the union of these prime
ideals.

7b. Let S be a multiplicatively closed subset of A. From the above, if {pi} is the set of prime ideals such that
pi ∩ S = ∅, then

S = A \
(⋃

pi

)
=
⋂

(A \ pi)

is saturated and S ⊆ S. If there is another saturated set S′ such that S ⊆ S′, then we may write A \ S′ = ∪qi
for some prime ideals qi. Since S ⊆ S′, A \ S′ ⊆ A \ S implies that qi ∩ S = ∅ for each i. Therefore,
A \ S′ = ∪qi ⊆ ∪pi = A \ S. This then implies that S ⊆ S′ so that S is minimal.

8. (i) =⇒ (ii) If φ is bijective, there exists a/s ∈ S−1A such that φ(a/s) = 1/t. Then φ(a/s)φ(t/1) = 1 implies
that (a/s)(t/1) = 1 (by injectivity). Therefore, t/1 is a unit in S−1A for all t ∈ T .

(ii) =⇒ (i) Let a/t ∈ T−1A. Since t/1 is a unit in S−1A, there exists a′/s ∈ S−1A such that (a′/s)(t/1) = 1.
Then φ(a′/s)φ(t/1) = 1 implies that φ(a′/s) = 1/t. Therefore, φ(aa′/s) = φ(a/1)φ(a′/s) = a/t. Therefore, φ
is surjective. If φ(a/s) = 0, there exists t ∈ T such that at = 0. This implies that (a/s)(t/1) = 0. Since t/1 is
a unit, a/s = 0 so φ is injective.

(ii) =⇒ (iii) (a/s)(t/1) = 1 implies there exists s′ ∈ S such that as′t = ss′ ∈ S. Let x = as′.

(iii) =⇒ (ii) If xt = s for some x ∈ A and s ∈ S, then (x/s)(t/1) = 1 so t/1 is a unit in S−1A.

(iii) =⇒ (iv) For t ∈ T , let x ∈ A be such that xt ∈ S ⊆ S. Then t ∈ S since S is saturated. Therefore,
T ⊆ S.

(iv) =⇒ (ii) If T ⊆ S and t ∈ T , then t/1 ∈ S−1A is not in any prime ideal since

∅ = (A \ S) ∩ T =

 ⋃
p⊆A prime

p∩S=∅

p

 ∩ T =

 ⋃
p⊆S−1A prime

pc

 ∩ T.
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Therefore, t/1 is a unit.

(iv) =⇒ (v) If T ⊆ S, then T ⊆ S and A \ S ⊆ A \ T . Writing these sets as their respective union of prime
ideals, this shows that for a prime ideal p, p ∩ S = ∅ =⇒ p ∩ T = ∅. The contrapositive of this is exactly
p ∩ T 6= ∅ =⇒ p ∩ S 6= ∅.
(v) =⇒ (iv) From above, the contrapositive of (v) is p ∩ S = ∅ =⇒ p ∩ T = ∅. Therefore, the set of
prime ideals that do not intersect S is a subset of the set of prime ideals that do not intersect T . That is,
A \ S ⊆ A \ T . This is equivalent to T ⊆ S. Then T ⊆ T ⊆ S.

9a. As shown in a previous problem, the set of zero-divisors is a union of prime ideals. Therefore, its complement
S0 of non-zero-divisors is a saturated multiplicative set. For any s ∈ S0, (sn0 )n≥0 is a multiplicative set and
hence, for any maximal multiplicative set S = A \ p for some prime ideal p, 0 ∈ S(sn0 )n≥0 or S(sn0 )n≥0 = S so
that s0 ∈ S = A \ p. If 0 ∈ S(sn0 )n≥0, there exists a ∈ S = A \ p and n ≥ 0 such that 0 = asn0 = (asn−1

0 )s0,
which would imply that s0 ∈ D, but s0 ∈ S. So we must have that s0 ∈ A\p. Since p was an arbitrary minimal
prime ideal, we have that

S0 ⊆
⋂

p minimal

(A \ p) = A \

 ⋃
p minimal

p

 .

Taking complements, we have that every minimal prime ideal is contained in D.

Let i : A 7→ S−1
0 A be the inclusion map and i(a) = a/1 = 0. Then there exists s ∈ S0 such that as = 0. Since

s is not a zero-divisor, this immediately implies that a = 0 so that i is injective.

Assume that S0 ⊂ S then there exists some zero-divisor η ∈ S. Let µ ∈ A be such that ηµ = 0. We have

i(µ) =
µ

1
=
µη

η
=

0

η
= 0.

Therefore, i : A 7→ S−1A is not injective. This shows that S0 is maximal in this respect.

9b. It is easy to see that a/s0 = 0 ∈ S−1
0 A if and only if a = 0. Therefore, a/s0 ∈ S−1

0 A is a zero-divisor if and
only if a ∈ A is a zero-divisor. If a ∈ A is not a zero-divisor, then a ∈ S0 so that a/s ∈ S−1

0 A is a unit (with
inverse s/a).

9c. Let A be a ring such that every non-unit is a zero-divisor. Then S0 is exactly the set of units. Any element
of S−1

0 A can be written as a/s = as−1/1. The map φ(as−1/1) = as−1 is an inverse to the inclusion map
i : A 7→ S−1

0 A (it is easily seen to be a ring homomorphism). Therefore, A ' S−1
0 A in this case.

10a. Let A be absolutely flat and S any multiplicative subset. Consider a principal ideal (x/s) of S−1A. Since
x ∈ A, x = ax2 for some a ∈ A (since (x) = (x2)). Therefore,

x

s
=
ax2

s
=
(as

1

)(x
s

)2

.

This implies that (x/s) = ((x/s)2). Since x/s was arbitrary, this implies that S−1A is absolutely flat.

10b. If A is absolutely flat and m is a maximal ideal, then from the previous problem, Am is absolutely flat as well.
Since Am is a local ring, from a previous problem, this implies that Am is a field.

Assume Am is a field for every maximal ideal m. For any A-module M , Mm is a Am module. Since Am is a
field, Mm is isomorphic to a direct sum of copies of Am and is therefore flat by a previous problem.

11. (i) =⇒ (ii) IfA/N is absolutely flat. Since N ⊆ p for all prime ideals p, there is an induced map π̃ : A/N 7→ A/p
(that is surjective). Since the image of an absolutely flat ring is absolutely flat, A/p is absolutely flat. Therefore,
every element of A/p is a non-unit is a zero-divisor. Since A/p is an integral domain, this then implies every
nonzero element is a unit so that A/p is a field and so p is maximal.

(ii) =⇒ (i) (This was taken from the internet) Notice first that if every prime ideal of A is maximal, every
prime ideal of A/N is maximal. Therefore, A′ = A/N is a ring with no nilpotents such that every prime ideal
is maximal. Fix x ∈ A′ and define S = {xn(1 + ax) : n ≥ 0, a ∈ A′}. If 0 6∈ S, then we can compute S−1A′

and find some prime ideal of it. Then it is of the form S−1p for some prime ideal p∩ S = ∅. Since either x ∈ p
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or 1− ax ∈ p by maximality of p, we have a contradiction. Therefore, 0 ∈ S. Therefore, there exists n ≥ 0 and
a ∈ A′ such that

xn(1− ax) = 0.

Therefore, x(1− ax) is nilpotent and equal to zero. This shows that (x) = (x2) so that A′ is absolutely flat.

(ii) =⇒ (iii) This is immediate. For every p ∈ Spec(A), we have

{p} = V (p) = {p}.

(iii) =⇒ (ii) This is also immediate. For every p ∈ Spec(A),

{p} = {p} = V (p).

Therefore, p is maximal.

(i) =⇒ (iv) Since Spec(A) is homeomorphic to Spec(A/N), it suffices to show that X = Spec(A/N) is
Hausdorff. Let p, q ∈ X be distinct. Since they are distinct, without loss of generality, there exists x ∈ p
and x 6∈ q. Then there exists a ∈ A/N such that x = ax2. This implies that a 6∈ q since otherwise, x ∈ q.
Therefore, we may replace x by ax and the above holds. That is, we may assume that x is idempotent. Notice
that x(1 − x) = 0 so that 1 − x ∈ q (since x 6∈ q). Similarly, both cannot lie in the same prime ideal, since
x+ (1− x) = 1. Therefore, p ∈ X1−x, q ∈ Xx and X1−x ∩Xx = Xx(1−x) = ∅. Therefore, X and Spec(A) are
Hausdorff.

(iv) =⇒ (iii) This is immediate by definition.

If the above hold, then Spec(A) is Hausdorff and quasi-compact and so is compact. To see that Spec(A)
is totally disconnected, it suffices to show that Spec(A/N) is totally disconnected. Using the notation from
(iii) =⇒ (iv), we have that x(1− x) = 0 so that every prime ideal contains either x or (1− x), but not both.
That is, every prime ideal is in either Xx or X1−x. Then for any open set with at least two elements, we can
find a separation of this set in this way. Therefore, the only connected sets are singletons.

12a. Let A be an integral domain and M an A-module. It is easy to check that T (M) is a submodule of M (since A
is an integral domain, ann(x)∩ ann(y) 6= {0} for ann(x) 6= {0} 6= ann(y)). Consider the quotient M/T (M) and
let x + T (M) ∈ M/T (M). If there exists a ∈ A such that a(x + T (M)) = ax + T (M) = 0, then ax ∈ T (M),
which implies there exists b ∈ M such that b(ax) = (ba)x = 0. Therefore, x ∈ T (M) and so M/T (M) has no
torsion elements.

12b. Let f : M 7→ N be a module homomorphism. For x ∈ T (M), there exists a ∈ A such that ax = 0. Then
f(a)f(x) = f(ax) = 0 implies that f(x) ∈ T (N). Therefore, f(T (M)) ⊆ T (N).

12c. Let

0→M ′
f−→M

g−→M ′′ → 0

be exact and consider the induced sequence

0→ T (M ′)
f̃−→ T (M)

g̃−→ T (M ′′).

Since f̃ and g̃ are restrictions of the original functions, we have that f̃ is injective and g̃ ◦ f̃ = 0 so that
Im f̃ ⊆ ker g̃. Let m ∈ ker g̃. Considered as an element of M , m ∈ ker g so that m ∈ Im f . That is, m = f(m′)
for some m′ ∈M ′. Let a ∈ A be such that am = 0. Then

0 = am = af(m′) = f(am′).

By injectivity of f , we have that am′ = 0 so that m′ ∈ T (M ′) and so m ∈ Im f̃ . Therefore, the induced
sequence is exact.

12d. Let φ : M 7→ k ⊗A M be the map φ(x) = 1 ⊗ x, where k = (A \ {0})−1A. There is an isomorphism
k ⊗A M 7→ (A \ {0})−1M defined by a/s ⊗ m = am/s. Then the kernel of the composition is exactly the
kernel of the original map since the latter is an isomorphism. The composition is given exactly by m 7→ m/1.
Therefore, m ∈ kerφ iff there exists s ∈ A \ {0} such that sm = 0. That is, if m ∈ T (M). Conversely, it is easy
to see that T (M) ⊆ kerφ. Therefore, kerφ = T (M).
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13. First, it is easy to consider both S−1(T (M)) and T (S−1M) as A-submodules of S−1M . For m/s ∈ T (S−1M),
there exists a ∈ A such that (a/1)(m/s) = 0. That is, there exists s′ ∈ S such that s′am = 0 and so m ∈ T (M)
so that m/s ∈ S−1(T (M)). Conversely, for m/s ∈ S−1(T (M)), there exists a ∈ A such that am = 0 so that
(a/1)(m/s) = 0. Therefore, m/s ∈ T (S−1M). Combining inclusions, we have that S−1(T (M)) = T (S−1M).

(i) =⇒ (ii) This is immediate from the above. If T (M) = {0}, then T (Mp) = (T (M))p = 0.

(ii) =⇒ (iii) This is even more immediate.

(iii) =⇒ (i) If Mm is torsion-free for every maximal ideal m of A, then

(T (M))m = T (Mm) = 0

for all maximal ideals m of A. Since being equal to zero is a local property, we have that T (M) = 0.

14. Let M be an A-module and a an ideal of A such that Mm = 0 for all maximal ideals a ⊆ m. For such maximal
ideals, we have

(M/aM)m 'Mm/(aM)m = 0.

For a maximal ideal m such that a 6⊆ m, there exists a ∈ a such that a 6∈ m. For any (m+ aM)/s ∈ (M/aM)m,
we have

m+ aM

s
=
a

a

m+ aM

s
=
am+ aM

as
= 0.

Therefore, (M/aM)m = 0 for all maximal ideals m. This implies that M/aM = 0 and so M = aM .

15. Let A be a ring, F = An, (e1, . . . , en) be the canonical basis of F , and (x1, . . . , xn) be a generating set of F .
Define a map φ : F 7→ F defined by φ(ei) = xi and extend linearly so that φ is surjective. To show that φ is
injective, it suffices to consider the case that A is a local ring, since then φm : Fm 7→ Fm is injective for every
maximal ideal m of A and hence, φ itself is injective. Let N = kerφ, m be the unique maximal ideal of A, and
k = A/m. Consider the exact sequence

0→ N
i−→ F

φ−→ F → 0.

Since the tensor functor is right exact,

k ⊗N Id⊗i−−−→ k ⊗ F Id⊗φ−−−→ k ⊗ F → 0

is exact as well. These maps then may be considered as k-module homomorphisms so that the latter map is a
surjective map between vector spaces of dimension k and is therefore injective. This implies that k ⊗N = 0.
By previous problems, N is finitely-generated and k ⊗N ' N/mN = 0. Since A is local, m ⊆ J (in fact, equal
to) and so by Nakayama’s lemma, we have that N = 0. Therefore, φ is injective and hence, an isomorphism.

If k < n and x1, . . . , xk ∈ F , then extend this set by adjoining e1, . . . if necessary to get a generating set
(ei1 , . . . , ein−k , x1, . . . , xk) with n elements. Then φ : F 7→ F defined above is an isomorphism. Notice that
φ(e1) = ei1 and φ is injective. Therefore, there is no element

φ

( ∑
i>n−k

aiei

)
=

k∑
i=1

aixi = ei1 .

Therefore, the xi do not span F .

16. (i) =⇒ (ii) this exactly proposition 3.16 from the text.

(ii) =⇒ (iii) For a maximal ideal m ⊆ A, write m = pc for some p ⊆ B prime. Then

me = pce ⊆ p ⊂ (1).

(iii) =⇒ (iv) For M a nonzero A-module, fix any x 6= 0 in M and let M ′ = Ax. Since the inclusion i : M ′ 7→M
is injective, the resulting A-module homomorphism Id ⊗ i : B ⊗A M ′ 7→ B ⊗A M is injective. This map can
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easily be regarded as a B-module homomorphism and so is a B-module homomorphism i′ : M ′B 7→MB . Since
i′ is injective, it suffices to show that M ′B 6= 0. Note that M ′ ' A/a where a = ann(x) 6= (1). Therefore,

M ′B = B ⊗A A/a ' B/aB = B/ae.

Since a ⊆ m for some maximal ideal m, ae ⊆ me ⊂ (1). Therefore, ae 6= B so that M ′B 6= 0. This implies that
MB 6= 0.

(iv) =⇒ (v) Let φ : M 7→MB be the inclusion map i(m) = 1⊗m (considering MB as an A-module). Consider
the exact sequence

0→ kerφ
i−→M

φ−→MB → 0.

Since B is flat, the induced sequence of B-modules is exact.

0→ (kerφ)B
i′−→MB

φ′−→ (MB)B → 0

From a previous problem, the inclusion map M 7→ MB is injective. Since B is flat, the induced map MB 7→
(MB)B is injective as well. This implies that (kerφ)B = 0. Using (iv), this implies that kerφ = 0 so that φ is
injective.

(v) =⇒ (i) Let a be an ideal of A and M = A/a. Then the map φ : M 7→MB is injective. That is, the map

A/a 7→ B ⊗A A/a ' B/aB = B/ae

is injective. Let a ∈ aec and consider the composition f : A 7→ A/a 7→ B/ae. Then f(a) ∈ aece = ae and so
f(a) = 0 so that a ∈ a. Therefore, aec = a. Since a was arbitrary, the result follows.

17. A ring homomorphism f : A 7→ B is flat if B with the corresponding A-algebra structure is flat (resp. faithfully
flat). Let

A
f−→ B

g−→ C

be ring homomorphisms such that g ◦ f is flat and g is faithfully flat. Let M and N be A-modules and
φ : M 7→ N be an A-module homomorphism. Since MB and NB are B-modules and C is a faithfully flat
B-module, we have the inclusion map MB 7→ (MB)C is injective. That is, the map

B ⊗AM → C ⊗B (B ⊗AM) = (C ⊗B B)⊗AM = C ⊗AM

is injective. This map is clearly given by g⊗ IdM . Similarly, the map g⊗ IdN : B⊗AN 7→ C⊗AN is injective.
Similarly, since C is a flat A-module, the map IdC ⊗ φ : C ⊗A M 7→ C ⊗A N is injective. Finally, we have a
map IdB ⊗ φ : B ⊗AM 7→ B ⊗A N . These maps clearly satisfy

(IdC ⊗ φ) ◦ (g ⊗ IdM ) = (g ⊗ IdN ) ◦ (IdB ⊗ φ).

Since the right hand side is the composition of injective maps, it is injective. Therefore, the right hand side is
injective, which implies that IdB ⊗ φ is injective. Therefore, B is a flat A-module and so the map f is flat.

18. If f : A 7→ B is a flat map, q ⊆ B prime and p = qc ⊆ A prime. Then B is a flat A-module so that Bp is
a flat Ap-module. Therefore, the map fp : Ap 7→ Bp is flat. From problem 12, Bp ' (f(A \ p))−1B where
f(A \ p) ⊆ A \ q so that we may consider Bp ⊆ Bq. Since q generates a prime ideal in Bq, it generates a prime
(maximal) ideal in Bp (consider the inclusion map between them). Localizing at this ideal, we get exactly Bq

so that Bq is a localization of Bp. From this, the map i : Bp 7→ Bq is flat (Bq is flat as a Bp-module since it
is a localization). It is easy to see that the composition of flat maps is flat. Therefore, Bq is a flat Ap-module.
The only maximal ideal of Ap is generated by p. We have that the extension of this ideal in Bq is contained
in the maximal ideal generated by q and therefore, not equal to (1). This implies that Bq is a faithfully flat
Ap-module so that the map Spec(B) 7→ Spec(A) is surjective.

19a. This is obvious from the fact that M = 0 if and only if Mp = 0 for every prime ideal p of A.
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19b. Notice for an ideal a of A and a prime ideal p,

(A/a)p = Ap ⊗A (A/a) ' Ap/aAp = Ap/a
e.

Therefore, if a ⊆ p, then ae ⊆ pe ⊂ (1). Therefore, the quotient above is nonzero and so p ∈ supp(A/a).
Conversely, if p ∈ supp(A/a), then the quotient above is nonzero so that ae ⊂ (1). Since ae is contained in
some maximal ideal and there is only one, ae ⊆ pe. Then a ⊆ aec ⊆ pec = p by the prime ideal correspondence
with localizations. Therefore, p ∈ V (a). Therefore, V (a) = supp(A/a).

19c. Let

0→M ′ →M →M ′′ → 0

be exact. Then the induced sequence

0→M ′p →Mp →M ′′p → 0

is exact as well. From this it is clear that Mp 6= 0 if and only if M ′p 6= 0 or M ′′p 6= 0 (that is, if they are both
zero, so is M and vice versa). Therefore, supp(M) = supp(M ′) ∪ supp(M ′′).

19d. Let M =
∑
Mi. If Mp 6= 0, then there exists some m ∈ M and s ∈ A \ p such that m/s 6= 0. We may write

m = mi1 + . . . + min for some mij ∈ Mij . Then at least one of mij/s is nonzero since otherwise, m/s = 0.
Therefore, (Mij )p 6= ∅. Conversely, if (Mij )p 6= 0 for some ij , then since the inclusion map Mij ↪→ M is
injective, so is the induced map (Mij )p ↪→ Mp. Therefore, Mp 6= 0. Combining these inclusions, we have that
supp(

∑
Mi) = ∪supp(Mi).

19e. If p is such that ann(M) 6⊆ p, then there exists a ∈ ann(M) such that a 6∈ p. Then in Mp,

m

s
=
am

as
= 0.

Therefore, Mp = 0. Conversely, if Mp = 0, then 1/1 = 0 in Mp. That is, there exists a ∈ A\p such that a1 = 0.
Then for all m ∈ M , am = a1m = 0. Therefore, a ∈ ann(M). That is, ann(M) 6⊆ p. Taking contrapositives,
we have that Mp 6= 0 if and only if ann(M) ⊆ p. That is, supp(M) = V (ann(M)).

19f. Let M and N be finitely generated. Let p be such that

(M ⊗A N)p = Mp ⊗Ap
Np = 0.

From a previous problem, if and only if Mp = 0 or Np = 0. Taking contrapositives, we have that (M ⊗N)p 6= 0
if and only if Mp 6= 0 and Np 6= 0. That is, supp(M ⊗N) = supp(M) ∩ supp(N).

19g. LetM be finitely generated and a a proper ideal of A. SinceM/aM = (A/a)⊗M , it is clear that supp(M/aM) ⊆
supp(A/a) ∩ supp(M) = V (a) ∩ supp(M). Conversely, If p ∈ V (a) ∩ supp(M), then Mp 6= 0 and (aM)p 6= Mp

since 1 6∈ (a)p. To see this, simply write 1 = am/s for s ∈ A \ p. Then there exists t ∈ A \ p such that
t(s− am) = 0, or st = atm ∈ p, but s, t 6∈ p. Now notice

(M/aM)p = Mp/(aM)p 6= 0.

Therefore, the other inclusion holds as well. Using that M is finitely generated, supp(M) = V (ann(M)). Then,

supp(M/aM) = V (a) ∩ V (ann(M)) = V (a ∪ ann(M)) = V (a + ann(M)).

19h. Let f : A 7→ B be a ring homomorphism and M a finitely generated A-module. Using S−1M = S−1A⊗AM ,
for q ⊆ B prime, we have

(B ⊗AM)q = Bq ⊗B (B ⊗AM) = (Bq ⊗B B)⊗AM = Bq ⊗AM.

If f(ann(M)) 6⊆ q, then there exists a ∈ A such that f(a) ∈ ann(M) and f(a) 6∈ q. Then for any element of
Bq ⊗M ,

b

s
⊗m =

f(a)b

f(a)s
⊗m =

(
a · b

f(a)s

)
⊗m =

b

f(a)s
⊗ am = 0.
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Therefore, Bq⊗M = 0. That is, supp(B⊗M) ⊆ V (ann(M)e). For the converse, let m1, . . . ,mn be a generating
set for M and notice

supp(B ⊗M) = supp
(∑

(B ⊗Ami)
)

=
⋃

supp(B ⊗Ami).

Similarly,

V (ann(M)) = (f∗)−1(supp(M)) = (f∗)−1
(⋃

supp(Ami)
)

=
⋃

(f∗)−1(supp(Ami)) =
⋃
V (ann(Ami)).

Therefore, it suffices to consider the case that M is cyclic and so equal to Ami = A/a, where a = ann(mi). We
see

(B ⊗AM)q = (B ⊗A A/a)q = (B/aB)q = Bq/(aB)q.

Now if (B ⊗A M)q = 0, then (aB)q = Bq so that there exists b ∈ B and s ∈ B \ q such that (a/1)(b/s) = 1.
Therefore, there exists t ∈ B \ q such that

t(as− b) = 0 =⇒ ast = bt 6∈ q.

Therefore, ast ∈ a and ast 6∈ q. The contrapositive is if a ⊆ q, then (B ⊗AM)q 6= 0. Since a = ann(mi), the
result follows.

20a. This is exactly the equivalence (i) ⇐⇒ (ii) from problem 16.

20b. Let f : A 7→ B be a ring homomorphism and f∗ : Spec(B) 7→ Spec(A) be the induced map. If every prime
ideal of B is an extended ideal, consider the map (not necessarily continuous or anything) φ : Im f 7→ Spec(B)
by f(p) = pe. This map actually sends elements of Im f to prime ideals of B since for any prime ideal q of B,
q = ae for some ideal a of A. Then f∗(q) = qc, and so φ(qc) = qce = aece = ae = q ∈ Spec(B). Note that this
computation also shows that φ is a (point-wise) left-inverse of f∗. Therefore, f∗ is injective.

21a. Let A be a ring, S ⊆ A a multiplicative subset, φ : A 7→ S−1A be the inclusion, and φ∗ : Y 7→ X be the
induced map where Y = Spec(S−1A) and X = Spec(A). It is clear that Imφ∗ = {p ∈ X : p ∩ S = ∅} and that
S−1 : Imφ∗ 7→ Y is a two-sided inverse. All that remains to be shown is that the map S−1 is continuous on
Imφ∗ in the subspace topology. One way of doing this is to show simply that φ∗ is an closed map. This is a
lot to write.

φ∗(V (b)) = φ∗(V (r(b))) = φ∗

V
⋂

q∈Y
b⊆q

q




=

φ−1(x) :
⋂
q∈Y
b⊆q

q ⊆ x


=

φ−1(x) :
⋂
q∈Y
b⊆q

φ−1(q) ⊆ φ−1(x)


=

x ∈ X :
⋂
q∈Y
b⊆q

φ−1(q) ⊆ x


⋂

Imφ∗

= V

φ−1

⋂
q∈Y
b⊆q

q


⋂ Imφ∗

= V (φ−1(r(b))) ∩ Imφ∗

= V (r(φ−1(b))) ∩ Imφ∗

= V (bc) ∩ Imφ∗.
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This set is closed in Imφ∗ and completes the proof. Note the use that φ is bijective is used in the third line.

If f ∈ A and S = (fn)n≥0, the image of Spec(Af ) is Xf since the image of Spec(Af ) is the set of all prime
ideals that do not contain f , by what was shown above.

21b. Let f : A 7→ B be a ring homomorphism, f∗ : Spec(B) 7→ Spec(A) its induced map, i1 : A 7→ S−1A and
i2 : B 7→ S−1B be inclusion maps, S−1f : S−1A 7→ S−1B another induced map, and (S−1f)∗ : Spec(S−1B) 7→
Spec(S−1A) its induced map. We have a commutative diagram.

S−1A S−1B

A B

S−1f

f

i1 i2

Applying the Spec functor, we get a new commutative diagram with arrows reversed.

Spec(S−1A) Spec(S−1B)

Spec(A) Spec(B)

i∗1 i∗2

(S−1f)∗

f∗

Since the maps i∗j are embeddings, we may consider Spec(S−1A) as its image in Spec(A) and Spec(S−1B)

as its image in Spec(B). With this identification, it is then clear that (S−1f)∗ is the restriction of f∗ to
Spec(S−1B). If f∗(q) ∈ Spec(S−1A) = i∗1(Spec(S−1A), then f∗(q) ∩ S = ∅. This is equivalent to q ∩ f(S) = ∅
so that S−1q ∈ Spec(S−1B) that maps to f∗(q) since the diagram above commutes. Therefore, Spec(S−1B) =
(f∗)−1(Spec(S−1A)).

21c. Let a be an ideal of A, b = ae be its extension in B, f : A/a 7→ B/b be the map induced by f and f
∗

:
Spec(B/b) 7→ Spec(A/a) be its induced map. Considering the quotient maps π1 : A 7→ A/a and π2 : B 7→ B/b,
we have a diagram as above. Since πi is surjective, π∗i is a homeomoprhism onto kerπi and so we may identify
(as above) Spec(A/a) with its image under π∗1 , V (a) ⊆ Spec(A) and similarly, Spec(B/b) with V (b) ⊆ Spec(B).

With this identification, it is clear that f
∗

is the restriction of f∗ to V (b).

21d. Let p ∈ Spec(A) and consider f∗ : Spec(Bp) 7→ Spec(Ap) from the second part. In this space, the preimage
of the restriction f∗ coincides with the preimage of f∗ itself, so we focus attention here only. Consider the
subspace V (p) in Spec(A/p). It is clearly the singleton {p}. The preimage of this subspace is exactly V (pe)
(if p ⊆ qc, then pe ⊆ qce ⊆ q so the preimage is contained in this set and clearly, this set maps into our set as
well), which can then be identified by Spec(Bp/p

e) = Spec(Bp/pBp). We have

(f∗)−1(p) = Spec(Bp/pBp) = Spec(A/p⊗Ap ⊗B) = Spec(k(p)⊗B).

22. Let A be a ring and p a prime ideal of A. The canonical image of Spec(Ap) is the set of prime ideals q such
that q ⊆ p (that is, they do not intersect A\p). Clearly, if U ⊆ Spec(A) is such that p ∈ U , then Spec(Ap) ⊆ U
since if q ⊆ p and q 6∈ U , then since Spec(A) \ U is closed,

p ∈ V (q) = {q} ⊆ Spec(A) \ U.

From this, Spec(Ap) ⊆ ∩p∈UU . Conversely, if q is in every open set that contains p, then p ∈ {q} = V (q) so
that q ⊆ p and therefore, q ∈ Spec(Ap).

23a. Let A be a ring, X = Spec(A), and U be a basic open set (U = Xf for some f ∈ A). If U = Xf = Xg, consider
the rings Af and Ag. Since Xf = Xg, then r((f)) = r((g)) and so there exists n,m > 0 and a, b ∈ A such that

fn = ag, gm = bf.
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Now let if : A 7→ Af and ig : A 7→ Ag. Since

f

1

b

gm
= 1 ∈ Ag,

ig(f
k) is a unit for each element of (fn)n≥0 and so there is an induced map φ : Af 7→ Ag such that ig = φ ◦ if .

Similarly, if (gk) is a unit for every element of (gn)n≥0 and so there is an induced map ϕ : Ag 7→ Af such that
if = ϕ ◦ ig. Finally, since if (fk) is a unit for every element of (fn)n≥0 there is a unique map Id : Af 7→ Af
such that if ◦ Id ◦ if . However,

if = ϕ ◦ ig = ϕ ◦ φ ◦ if =⇒ ϕ ◦ φ = Id.

Similarly, by replacing Af with Ag, φ ◦ ϕ = Id and so Af ' Ag. It is clear that with any choice of equation
used to define these maps, you get the same maps. Therefore, the assignment U 7→ A(U) = Af is well-defined.

23b. Let U = Xf and U ′ = Xg be such that U ′ ⊆ U . Then V (r(f)) ⊆ V (r(g)) which implies r(g) ⊆ r(f). That is,
g ∈ r(f) and so there exists n > 0 and u ∈ A such that gn = uf . Define ρ : A(U) 7→ A(U ′) by

ρ(a/fm) = aum/gnm.

This map is well-defined since if a/fm = b/f l, then there exists f i such that f i(af l−bfm) = af l+i−bfm+i = 0.
Multiplying through by ul+m+i, we get that

aumgn(l+i) − bulgn(m+i) = aul+m+if l+i − bul+m+ifm+i = 0.

That is, aunm/gm = bul/gnl. It is easy to check that this map is a ring homomorphism. It is easy to see that
for any other choice of equation gm = bf , that we obtain the same map. To see that this map depends only
on U and U ′, if we take A(U) = Af = Af ′ and A(U ′) = Ag = Ag′ , then any choice of defining functions makes
the box diagram commute (which is a mess of exponents to check, but not hard). With this, the map ρ is
well-defined up to the isomorphism classes A(U) and A(U ′) and hence, depends only on U and U ′.

23c. If U = U ′, where U = Xf and U ′ = Xg, then from the first part, Af ' Ag so that choosing both A(U) = Af
and A(U ′) = Af as a representative, the restriction homomorphism is the identity map (or, the equivalence
class of the identity map).

23d. This problem is a notation chase. It is similar to proving that the diagram from the second part commutes.
Choose any defining equation for the restriction homomorphism (they all define the same map) and show that
the compositions are equal.

23e. Let p ∈ Spec(A) = X. If p ∈ U = Xf , then f 6∈ p so that (fn)n≥0 ⊆ A \ p. That is, Af ⊆ Ap. Therefore, we
have injective maps if : Af 7→ Ap satisfying if = ig ◦ µfg where µfg : Af 7→ Ag (in the case that Xf ⊆ Xg.
Plug and chug to check). Therefore, there is an induced map φ : limA(U) 7→ Ap. This map is injective because
each of the inclusion maps if is injective. To see that it is surjective, let a/s ∈ Ap. Then s ∈ A \ p so that
p ∈ Xs(= A(U) for some p ∈ U) and

a/s = µs(a/s) = φ(a/s),

considering a/s ∈ limA(U). Therefore, φ is bijective and hence, an isomorphism.

*24.

25. Let f : A 7→ B and g : A 7→ C be ring homomorphisms and define h : A 7→ B ⊗A C to be the map

h(x) = x(1⊗A 1) = f(x)⊗A 1 = 1⊗A g(x).

For p ∈ Spec(A), we have (from a previous problem)

(h∗)−1(p) = Spec(k ⊗A (B ⊗A C)) = Spec((k ⊗A B)⊗k (k ⊗A C)),

where k = k(p) = Ap/pAp. Here, k ⊗A B and k ⊗A C are k-algebras and so of course k-vector spaces so their
tensor product is zero if and only if both are nonzero vector spaces. From this, p is in the image of h∗ if and
only if the tensor space (k ⊗A B) ⊗k (k ⊗A C) 6= 0 (if a ring has no prime ideal, it is the zero ring and vice
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versa). Again, since they are k-vector spaces, this tensor product is nonzero if and only if both are nonzero.
That is,

p ∈ h∗(Spec(B ⊗A C) ⇐⇒ k ⊗A B 6= 0 6= k ⊗A C.

Notice that (f∗)−1(p) = Spec(k ⊗A B) so that p ∈ f∗(Spec(B) if and only if k ⊗A B 6= 0 and similarly,
p ∈ g∗(Spec(C) if and only if k ⊗A C 6= 0. The above implications then give us

p ∈ h∗(Spec(B ⊗A C) ⇐⇒ p ∈ f∗(Spec(B)) and p ∈ g∗(Spec(C)).

That is,

h∗(Spec(B ⊗A C) = f∗(Spec(B)) ∩ g∗(Spec(C)).

26. Let (Bα, gαβ) be a directed system of rings over a directed set I and B = limBα. For each α ∈ I, let
fα : A 7→ Bα be a ring homomorphism such that for α ≤ β, gαβ ◦ fα = fβ . Then the maps fα induce a map
f : A 7→ B. For p ∈ Spec(A), notice

(f∗)−1(p) = Spec(k ⊗A B) = Spec
(

lim
→

(k ⊗A Bα)
)
,

since the tensor product commutes with direct limits (where k = k(p)). The spectrum of a ring is empty if and
only if the ring is the zero ring. Therefore,

p ∈ f∗(Spec(B)) ⇐⇒ lim
→

(k ⊗A Bα) 6= 0.

From a previous problem, the direct limit of rings nonzero if and only if each individual ring is nonzero. That
is,

p ∈ f∗(Spec(B)) ⇐⇒ ∀α ∈ I, k ⊗A Bα 6= 0.

Again, these rings are nonzero if and only if p ∈ f∗α(Spec(Bα)). Therefore,

p ∈ f∗(Spec(B)) ⇐⇒ ∀α ∈ I, p ∈ f∗α(Spec(Bα)).

Finally, we then have

f∗(Spec(B)) =
⋂
α∈I

f∗α(Spec(Bα)).

27a. Let fα : A 7→ Bα be a family of A-algebras indexed by I, (BJ , iJJ ′) be the directed system of tensor products
indexed by the directed set I ′ of finite subsets of I, and let B = limBJ be the tensor product of this family of
A-algebras. For each J ∈ I ′, there is an induced map fJ : A 7→ BJ defined by fJ(x) = x(1⊗ . . .⊗ 1) satisfying
iJJ ′ ◦ fJ = fJ′ . Therefore, there is an induced map f : A 7→ B. From the previous problem, we have

f∗(Spec(B)) =
⋂
J∈I′

f∗J (Spec(BJ)).

Now from the problem before that, we can extend the result to the finite case. In this case, the map fJ is
exactly the map h in the problem, so we have

f∗J (Spec(BJ)) =
⋂
α∈J

f∗α(Bα).

Therefore,

f∗(Spec(B)) =
⋂
J∈I′

f∗J (Spec(BJ)) =
⋂
J∈I′

⋂
α∈J

f∗α(Spec(Bα)) =
⋂
α∈I

f∗α(Spec(Bα)).
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27b. Let fα : A 7→ Bα, 1 ≤ i ≤ n, be a finite collection of A-algebras, B =
∏
Bα and f : A 7→ B be the map

f(x) = (fα(x)). For p ∈ Spec(A), we know (where k = k(p))

(f∗)−1(p) = Spec(k ⊗B).

Therefore, p ∈ f∗(Spec(B)) if and only if k ⊗A B 6= 0.

It will now be shown that k ⊗ B = 0 if and only if k ⊗ Bi for all i. Assuming that k ⊗ B = 0, consider the
projection maps πi : B 7→ Bi. Since the tensor functor is right exact (preserves surjective maps), the induced
map Id ◦ πi : k ⊗ B 7→ k ⊗ Bi is surjective. However, k ⊗ B = 0 then implies k ⊗ Bi = 0 for i. Conversely, if
k ⊗Bi = 0 for each index i, consider the right exact sequence

B1 → B →
∏
j>1

Bj → 0.

Again, applying the tensor functor to this sequence, we obtain the right exact sequence

k ⊗B1 → k ⊗B → k ⊗

∏
j>1

Bj

→ 0.

Since k ⊗ B1 = 0, we have that the induced map k ⊗ B 7→ k ⊗ (
∏
j>1Bj) is injective. Continuing considering

these sequences and applying the tensor functor, we continue to get a sequence of injective maps

k ⊗B → k ⊗

∏
j>1

Bj

→ k ⊗

∏
j>2

Bj

→ . . .→ k ⊗Bn = 0.

Since the composition is injective, this then implies that k ⊗ B = 0. Taking the contrapositive, we have that
k ⊗B 6= 0 if and only if k ⊗B1 6= 0 or k ⊗B2 6= 0.

In the notation from earlier, this says exactly that

p ∈ f∗(Spec(B)) ⇐⇒ ∃i, p ∈ f∗i (Spec(Bi)).

That is,

f∗(Spec(B)) =
⋃

1≤i≤n

f∗i (Spec(Bi)).

27c. From the above, the sets of the form f∗(Spec(B)) where f : A 7→ B is a ring homomorphism satisfy the axioms
determining closed sets of a topology on X = Spec(A). The topology is known as the constructible topology
on X and X in this topology is denoted XC . For any closed set V (a) of the Zariski topology, the projection
map f : A 7→ A/a has image exactly V (a) so that every closed (resp. open) set is closed (resp. open) in the
constructible topology. Therefore, the constructible topology is finer than the Zariski topology.

27d. As above, let XC be X = Spec(A) in the constructible topology and let {Uα}α∈I be an open cover of XC . This
is equivalent to ∩α∈ICα = ∅, where Cα = X \Uα. Since the Cα are closed, so we may write Cα = f∗α(Spec(Bα))
where f : A 7→ Bα is some ring homomorphism. From the first part, this closed set is equal to the spectrum
of the tensor product of this family of A-algebras. Since the spectrum is empty, this implies that the tensor
product is the zero ring. Since the tensor product is the direct limit of rings and is equal to zero, this implies
there exists some finite subset J ⊆ I (since these index the direct limit defining the tensor product) such that
BJ = 0. Writing fJ : A 7→ BJ , we see⋂

α∈J
Cα =

⋂
α∈J

= f∗α(Spec(Bα)) = f∗J (Spec(BJ)) = ∅.

Therefore, the complements of the sets Cα for α ∈ J have union equal to all of XC . Therefore, this finite open
cover has a finite subcover. That is, XC is quasi-compact.

28a. Fix g ∈ A. If g is nilpotent, then Xg = ∅ is open and closed. Assume now that g is not nilpotent. Since
Xg is open in the Zariski topology, Xg is open in the constructible topology. Since g is not nilpotent, the set
(gn)n≥0 is a multiplicatively closed subset of A not containing 0 wit localization Ag. There is an induced map
f : A 7→ Ag. The image f∗(Spec(Ag)) = Xg (this was done in problem 21). Therefore, Xg is closed as well.
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28b. Let XC′ denote X in the coarsest topology on X in which the sets Xg are both open and closed. If p, q ∈ X
are distinct, then without loss of generality, p 6⊆ q. That is, there exists f ∈ p and f 6∈ q. That is, p 6∈ Xf and
q ∈ Xf . In other words, p ∈ XC′ \Xf and q ∈ Xf . These sets are both open and disjoint. Therefore, XC′ is
Hausdorff.

28c. Let f : XC 7→ XC′ be the identity map. Clearly, it is bijective and continuous since the constructible topology
is finer than C ′. To see that f is a homeomorphism, it will be shown that f is a closed map. Let C ⊆ XC be
closed. Since XC is quasi-compact, this implies that C is quasi-compact. Then its image f(C) is quasi-compact.
Since Y is Hausdorff, the usual justification shows that f(C) is closed. Therefore, f is a homeomorphism.

28d. XC is Hausdorff since the sets Xf are open and closed and therefore, XC is compact. For any set S of two
or more elements, we can find a separation of this set of the form Xf and XC \ Xf (as in showing XC′ is
Hausdorff). Therefore, singletons are the only connected subsets of XC and so XC is totally disconnected.

29. Let f : A 7→ B be a ring homomorphism and consider Spec(A) and Spec(B) in the constructible topology.
To show that f∗ : Spec(B) 7→ Spec(A) is continuous, notice that the sets of the form Xg form a basis for the
constructible topology since they form a basis for C ′ (from the previous problem). Therefore, it suffices to
show that (f∗)−1(Xg) is open in Spec(B) in the constructible topology. Note that (f∗)−1(Xg) = Yf(g) is open
in Spec(B) in the constructible topology. Therefore, f∗ is continuous. The verification that f∗ is closed is the
same as showing that the map f : XC 7→ XC′ is closed (since Spec(B) is quasi-compact in the constructible
topology and Spec(A) is Hausdorff).

30. If the Zariski and constructible topologies coincide on Spec(A), then by Spec(A) is Hausdorff in the Zariski
topology. From a previous problem, this occurs if and only if A/N is absolutely flat. Conversely, if A/N is
absolutely flat, then Spec(A) is Hausdorff in the Zariski topology. Then the identity map f : Spec(A)C 7→
Spec(A) is a continuous bijection (since the Zariski topology is coarser than the constructible topology). Note
that Spec(A)C is (quasi-)compact and Spec(A) is Hausdorff in this case, so f is in fact a homeomorphism.
That is, the two topologies coincide.

Chapter 4

1. Let A be a ring and a be an ideal of A. The irreducible components of Spec(A/a) are exactly the minimal
ideals of Spec(A/a). These are in a bijective correspondence with the prime ideals r(qi) = pi, which is finite
and therefore, there are finitely many irreducible components of Spec(A/a).

2. If r(a) = a, then a is the intersection of all prime ideals that contain a. We then have

a =
⋂
i

pi

for some prime ideals pi. We may assume that this intersection is minimal in the sense that no factor is repeated
and there are no proper inclusions since they may be condensed. Then it is clear that pi 6⊆ pj for each pair of
indices 1 ≤ i, j ≤ n since then we could condense the intersection further.

3. Let A be absolutely flat and q be a primary ideal of A. For x ∈ A, we may write x(1− ax) = 0 for some a ∈ A.
If 1− ax 6∈ q, then xn ∈ q. Notice this implies

x = ax2 = a2x3 = . . . = an−1xn ∈ q.

Therefore, either x ∈ q or 1− ax ∈ q. That is, in A/q, either x = 0 or x is a unit. Therefore, A/q is a field and
so q is maximal.

4. Let m = (2, t) and a = (4, t) be ideals of Z[t]. It is easy to see that Z[t]/m ' Z/2Z so that m is maximal.
Similarly, Z[t]/a ' Z/4Z, whose only zero-divisors is 2, which is nilpotent. Therefore, a is primary. Notice
that a ⊂ m is a proper containment since 2 6∈ a. Notice that t ∈ a, but t 6∈ mk for k > 1 (by observation of
generators for mk for k > 1). Therefore, a is not equal to any power of m. Notice

r(a) = r((4) + (t)) = r(r((4)) + r((t)) = r((2) + (t)) = r(m) = m.

Therefore, a is m-primary.
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5. Let k be a field and consider the polynomial ring k[x, y, z], prime ideals p1 = (x, y), p2 = (x, z), maximal ideal
m = (x, y, z), and a = p1p2. Clearly, a ⊆ p1∩p2 and a ⊆ m2 so that a ⊆ p1∩p2∩m2. Conversely, by comparing
generators, we have the opposite inclusion so that a = p1∩p2∩m2. Since each of these ideals is primary, this is
a primary decomposition of a. p1 and p2 are prime, so these are automatically associated primes of a. Similarly,
r(m2) = m so that this is another associated prime of a. Then it is clear that p1 and p2 are minimal so these
are the isolated components and m is contained in both of these and so is the only embedded component.

6. Let X be an infinite compact Hausdorff space, and C(X) be the ring of real-valued continuous functions on X.
It will be shown that 0 does not have a primary decomposition (since X is infinite). Notice first that 0 has a
primary decomposition if and only if has a decomposition of the form

0 =

n⋂
i=1

pi

for some primes pi. The ”if” direction is obvious. For the ”only if” direction, take a primary decomposition
and take the radical of both sides. Use the fact that the nilradical NC(X) = 0 since R is a field to get a
decomposition of the form above (since radicals of primary ideals are prime). Assume such a decomposition
exists.

For x ∈ X, recall that mx = {f ∈ C(X) : f(x) = 0} is prime (since the quotient is R). Therefore,

n⋂
i=1

pi = 0 ⊆ mx.

From chapter 1, since this intersection is finite, this implies that pi ⊆ mx for some 1 ≤ i ≤ n. Since X is
infinite, there is necessarily some 1 ≤ i ≤ n such that pi ⊆ mx ∩ my for some x, y ∈ X. Since X is Hausdorff,
we may take disjoint neighborhoods Ux of x and Uy of y such that Ux ∩ Uy = ∅. By Urysohn’s lemma, there
exists a function f ∈ C(X) such that f(x) = 1 and supp(f) ⊆ Ux. Similarly, there exists g ∈ C(X) such that
g(y) = 1 and supp(g) ⊆ Uy. Then fg = 0 ∈ pi, but f 6∈ mx and g 6∈ my so that f 6∈ pi and g 6∈ pi. This
contradicts that pi is prime. Therefore, no such decomposition exists.

7a. Let A be a ring and a be an ideal. Notice that ae (the extension of a to A[x]) necessarily contains a[x] since
it contains all monomials with coefficients from a. Conversely, any ideal of A[x] that contains a necessarily
contains all monomials with coefficients from a and so necessarily contains a[x]. Therefore, ae = a[x].

7b. Let p be a prime ideal of A. Notice that

A[x]/p[x] ' (A/p)[x].

Since the latter is the polynomial ring over an integral domain, it is necessarily an integral domain as well
(from a previous problem in the first chapter).

7c. Let q be a p-primary ideal. We again have

A[x]/q[x] ' (A/q)[x].

If f ∈ (A/q)[x] is a nonzero zero divisor, then from the first chapter again, there exists a+ q ∈ A/q such that
(a+ q)f(x) ≡ 0. That is, each coefficient is a zero-divisor of A/q and so is nilpotent. From the same problem
from the first chapter, this then implies that f is nilpotent. Therefore, q[x] is a primary ideal. To see that
this ideal is p[x]-primary, again consider the quotient A[x]/q[x] ' (A/q)[x]. The radical r(q[x]) is equal to the
contraction of the nilradical of this quotient. From chapter 1, we know the nilradical of a polynomial ring is
the set of polynomials with nilpotent coefficients. That is, NA[x] = NA[x]. Since the nilradical of A/q is p/q
(since q is primary) we have

N(A/q)[x] = (p/q)[x] ' p[x]/q[x].

By the bijective correspondence of prime ideals of A[x] with (A/q)[x], this then implies that the contraction of
this nilradical is exactly p[x]. Therefore, r(q[x]) = p[x] and q[x] is p[x]-primary.
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7d. Let a be an ideal of A with minimal primary decomposition

a =

n⋂
i=1

qi.

It is clear by checking inclusions that

a[x] =

(
n⋂
i=1

qi

)
[x] =

n⋂
i=1

qi[x].

From the previous problem, each qi[x] is primary, so this is a primary decomposition of a. To see that this
decomposition is minimal, notice that since r(qi) = pi 6= pj = r(qj) for i 6= j, we have

r(qi[x]) = pi[x] 6= pj [x] = r(qj [x])

from the previous problem. Therefore, no associated prime ideal of a[x] is repeated. Similarly, since ∩j 6=iqj 6⊆ qi,
we have

⋂
j 6=i

qj [x] =

⋂
j 6=i

qj

 [x] 6⊆ pi[x].

Therefore, the primary decomposition above is minimal.

7e. If p is a minimal prime ideal associated to a, then from the previous problem, p[x] is associated to a[x] and is
of course minimal.

8. Let k be a field, k[x1, . . . , xn] be its polynomial ring, and pi = (x1, . . . , xi) for 1 ≤ i ≤ n. By looking at the
quotients, it is clear that each pi is prime. Since pn is maximal, it is clear that the powers of pn are primary.
For 1 ≤ i < n and k > 1, we may write

k[x1, . . . , xn]/pki ' (k[x1, . . . , xi]/p
k
i )[xi+1, . . . , xn].

From chapter 1, if an element g(x1, . . . , xn) ∈ (k[x1, . . . , xi]/p
k
i )[xi+1, . . . , xn] is a zero-divisor, there exists

f(x1, . . . , xi) ∈ k[x1, . . . , xi]/p
k
i such that f(x1, . . . , xi)g(x1, . . . , xn) = 0. That is, the coefficients of g are zero

divisors in k[x1, . . . , xi]/p
k
i . However, pi is maximal in k[x1, . . . , xi] as above so that pki is primary and the only

zero divisors are nilpotent. Therefore, the coefficients of g are all nilpotent so that g is nilpotent. Therefore,
pki is primary.

9. Let A be a ring and D(A) be the set of prime ideals p for which there exists a ∈ A such that p is minimal
in the set of primes containing (0 : a). If x ∈ A is a zero-divisor, then there exists y ∈ A such that xy = 0.
That is, x ∈ (0 : y). Let p be minimal in the set of prime ideals containing (0 : y). Then x ∈ (0 : y) ⊆ p for
p ∈ D(A). Conversely, if x ∈ p with p ∈ D(A), there exists a ∈ A such that (0 : a) ⊆ p and p is minimal in
the set of these ideals. Then p/(0 : a) is minimal in A/(0 : a) so that S = A/(0 : a) \ p/(0 : a) is a maximal
multiplicative subset not containing 0 + (0 : a). Since the set S(xn + (0 : a))n≥0 is multiplicative and contains
S, we necessarily have 0 + (0 : a) ∈ S(xn + (0 : a))n≥0 That is, there exists b+ (0 : a) ∈ S such that

0 + (0 : a) = (b+ (0 : a))(xn + (0 : a)) = bxn + (0 : a) =⇒ bxn ∈ (0 : a) =⇒ abxn = 0.

Therefore, x is a zero-divisor.

Let S be a multiplicative subset of A and let i : A 7→ S−1A be the inclusion map. If p ∈ D(A)∩i∗(Spec(S−1A)),
then p = qc for some prime ideal q of S−1A. For a ∈ A satisfying the requirement that p ∈ D(A), we have
(0 : a) = ann(a) = ann((a)) so that

(0 : a/1) = ann(S−1(a)) = S−1(ann(a)) ⊆ S−1p = q

by the prime ideal correspondence for localization. To see that q is minimal, assume there is a prime ideal q′

such that (0 : a/1) ⊂ q′ ⊂ q. Then

(0 : a) ⊆ (ann(a))ec = (0 : a/1)c ⊂ q′c ⊂ qc = p.
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Therefore, q is minimal so that q ∈ D(S−1A). Therefore, p = qc ∈ i∗(D(S−1A)). Conversely, let p = qc

for some q ∈ D(S−1A), (that is, p ∈ i∗(D(S−1A))). Clearly, p ∩ S = ∅ so that p ∈ i∗(Spec(S−1A)). Let
a/s ∈ S−1A satisfy the requirement that q ∈ D(S−1A). Then it is easy to see that we may assume s = 1.
Then

(0 : a) ⊆ (0 : a)ec = (0 : a/1)c ⊆ qc = p.

If (0 : a) ⊂ p′ ⊂ p, extending gives a contradiction to the minimality of q. Therefore, p ∈ D(A). Combining all
these inclusions, we have

i∗(D(S−1A)) = D(A) ∩ i∗(Spec(S−1A)).

10a. Let p be a prime ideal of a ring A and Sp(0) = kerφ where φ : A 7→ Ap is the inclusion map. Clearly, if
a ∈ Sp(0), then a/1 = 0 ∈ Ap implies there exists s ∈ A \ p such that as = 0. Since 0 ∈ p and s 6∈ p, we have
that a ∈ p. Therefore, Sp(0) ⊆ p.

10b. Assume that r(Sp(0)) = p. Then for each x ∈ p, there exists n > 0 such that xn/1 = 0 in Ap. That is, there
exists s ∈ A\p such that xns = 0. From this, S cannot be extended to a larger multiplicative set not containing
zero. Indeed, if x ∈ A \ S = p, there exists n > 0 and s ∈ S such that xns = 0 so that x ∈ S would imply
0 ∈ S. Therefore, S is a maximal multiplicative subset so that A \ S = p is a minimal prime of A.

Conversely, if p is a minimal prime of A, then S = A \ p is a maximal multiplicative subset of A. Then for all
x ∈ A \ S = p, the multiplicative set S(xn)n≥0 necessarily contains 0. Therefore, there exists s ∈ S and n > 0
such that xns = 0. That is, xn/1 = 0 in Ap so that xn ∈ Sp(0) and x ∈ r(Sp(0)).

10c. If p′ ⊆ p, we may consider Ap ⊆ Ap′ so we have a composition of inclusions A ↪→ Ap ↪→ Ap′ . It is clear Sp(0) is
the kernel of the first map and Sp′(0) is the kernel of the composition. From this, it is clear that Sp(0) ⊆ Sp′(0).

10d. If x 6= 0, then (0 : x) 6= (1) and so there are prime ideals that contain it. By Zorn’s lemma, there exists minimal
elements p ∈ D(A). Then (0 : x) ⊆ p implies for every s ∈ A \ p, xs 6= 0. That is, x/1 6= 0 in Ap so x 6∈ Sp(0).
The contrapositive of this is if x ∈ Sp(0) for all p ∈ D(A), then x = 0. The result follows.

11. Let p be a minimal ideal of A. From a previous problem, this implies that r(Sp(0)) = p. If xy ∈ Sp(0) and
x 6∈ Sp(0), then there exists s ∈ A \ p such that sxy = 0. Since x 6∈ Sp(0), for all t ∈ A \ p, tx 6= 0 so that
ann(x) ⊆ p. Since sxy = 0, we then have sy = 0. s 6∈ p then implies that y ∈ p = r(Sp(0)). Therefore, Sp(0) is
primary. Let q be any p-primary ideal. For a ∈ Sp(0), a/1 = 0 implies there exists s ∈ A \ p such that as = 0.
Since 0 ∈ q and s 6∈ p = r(q), this immediately implies that a ∈ q. Therefore, Sp(0) ⊆ q and so Sp(0) is the
minimal p-primary ideal.

Let a be the intersection of Sp(0) indexed over the minimal prime ideals of A. Then

a ⊆ r(a) ⊆
⋂

p minimal

r(Sp(0)) =
⋂

p minimal

p = N.

Finally, assume that 0 is decomposable so there are finitely many primes associated to zero. If a = 0, then the
decomposition of a can be reduced to a minimal decomposition of 0. From this decomposition and minimality
of each prime, it is clear that each prime associated to 0 is isolated. Conversely, assume each prime associated
to 0 is isolated. Then each associated prime to 0 is necessarily minimal. Writing a primary decomposition
0 = ∩qp indexed by the minimal primes, Sp(0) ⊆ qp so that a ⊆ 0 so that a = 0.

12a. Since both contractions and S−1 commute with finite intersections, we have

S(a) ∩ S(b) = (S−1a)c ∩ (S−1b)c = (S−1a ∩ S−1b)c = (S−1(a ∩ b))c = S(a ∩ b).

12b. Similar to the above, contractions and S−1 commute with radicals so we have

S(r(a)) = (S−1(r(a)))c = (r(S−1a))c = r((S−1a)c) = r(S(a)).

12c. If S(a) = (1), then S−1a = (S−1a)ce = S(a)e = (1)e = (1) so that a ∩ S 6= ∅. Conversely, if a ∩ S 6= ∅, then
S−1a = (1) so that S(a) = (S−1a)c = (1).
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12d. If S1 and S2 are multiplicative subsets of A, then S1S2 is a multiplicative subset of A. Notice that x ∈ S(a) if
and only if there exists some s ∈ S such that xs ∈ a. Therefore, if x ∈ (S1S2)(a), then there exists s1s2 ∈ S1S2

such that s1s2x ∈ a. Then s2(s1x) ∈ a implies that s1x ∈ S2(a) and this implies that x ∈ S1(S2(a)). Conversely,
if x ∈ S1(S2(a)), then there exists s1 ∈ S1 such that xs1 ∈ S2(a). Then there exists s2 ∈ S2 such that xs1s2 ∈ a.
Therefore, x ∈ (S1S2)(a). Combining inclusions, we get the result.

Let q be a p-primary ideal and S ⊆ A be multiplicative. If S∩p 6= ∅, then there exists p ∈ p∩S. Since r(q) = p,
pn ∈ q for some n > 0. Since S is multiplicative, then pn ∈ q ∩ S so that q ∩ S 6= ∅. This then implies that
S(q) = (1). If S ∩ p = ∅, then for x ∈ S(q), there exists s ∈ S such that xs ∈ q, but s 6∈ p so that x ∈ q. That
is, S(q) ⊆ q. Since q ⊆ S(q by definition, we then have that S(q) = q.

If a has a primary decomposition, we may write

a =

n⋂
i=1

qi

for some primary ideals qi. From this, for any multiplicative subset S of A,

S(a) =

n⋂
i=1

S(qi).

Here, for each index i there are two possibilities. If pi ∩S 6= ∅, then S(qi) = (1). If pi ∩S = ∅, then S(qi) = qi.
Therefore, there are at most 2n possibilities for S(a).

13a. Let A be a ring and p a prime ideal of A. Let Sp = A \ p and define

p(n) = Sp(pn).

Clearly, by the prime ideal correspondence from localization, we have

r(p(n)) = r(Sp(pn)) = Sp(r(pn)) = Sp(p) = p.

To see that p(n) is primary, let xy ∈ p(n) and assume y 6∈ p. Then there exists s ∈ Sp = A \ p such that
sxy ∈ pn. Since sy ∈ Sp = A \ p, this then implies that x ∈ Sp(pn) = p(n). Therefore, p(n) is primary.

13b. Assume pn has a (minimal) primary decomposition

pn =

m⋂
i=1

qi,

where r(qi) = pi. Taking radicals, we then have

p =

m⋂
i=1

pi.

From the first chapter, this implies that p = pj for some 1 ≤ j ≤ m. That is, p is an associated ideal of pn.
From the above, we also have that p is an isolated ideal of pn. Notice that pn ⊆ p(n) so that

pn = pn ∩ p(n) = (p(n) ∩ qj) ∩

⋂
i 6=j

qi

 .

From this, we get a new primary decomposition. By invariance of the isolated components in a minimal
decomposition, we have that qj = qj ∩ p(n) so that qj ⊆ p(n). Conversely, for x ∈ p(n), there exists s ∈ A \ p
such that sx ∈ pn ⊆ qj . Since s 6∈ p = r(qj), this implies that x ∈ qj and so p(n) ⊆ qj . Therefore, qj = p(n) as
desired.

13c. Assume that p(n)p(m) has a (minimal) primary decomposition

p(n)p(m) =

l⋂
i=1

qi.
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Similar to above, we have

p = r(p(n)) ∩ r(p(m)) = r(p(n)p(m)) =

l⋂
i=1

pi.

Therefore, p = pj for some 1 ≤ j ≤ l. Again, we see that p is an isolated ideal of p(n)p(m). Notice that
p(n)p(m) ⊆ p(n+m), which is straightforward to check. By intersecting with the primary decomposition as
before, we get from invariance of isolated components of minimal decompositions that qj ⊆ p(n+m). Conversely,
if x ∈ p(n+m), there exists s ∈ A \ p such that sx ∈ pn+m ⊆ qj . Then s 6∈ p = r(qj) implies that x ∈ qj so
p(n+m) ⊆ qj . Therefore, qj = p(n+m) as desired.

13d. Clearly, if pn = p(n), then pn is p-primary. Conversely, if pn is p-primary, we already know that pn ⊆ p(n) so
let x ∈ p(n). Then there exists s ∈ A \ p such that xs ∈ pn. s 6∈ p = r(pn) implies that x ∈ pn so that the
opposite inclusion holds as well. Therefore, pn = p(n).

14. Let a be decomposable and p maximal in the set of (a : x) for x 6∈ a. Clearly, p is an ideal. To see that it is
prime, let yz ∈ p and assume that y 6∈ p. For x ∈ A such that p = (a : x), we see

p = (a : x) ⊆ ((a : x) : y) = (a : xy).

(Note that this implicitly uses that y 6∈ p = (a : x)) By maximality, we then necessarily have that p = (a : xy).
Since yz ∈ p = (a : x), we have that xyz ∈ p, but this implies that z ∈ (a : xy) = p. Therefore, p is prime.

Now let a have the (minimal) primary decomposition

a =

n⋂
i=1

qi.

Clearly, for all x 6∈ a,

(a : x) =

n⋂
i=1

(qi : x).

Therefore, if p = (a : x) for some x 6∈ a, then from chapter 1, we know that p = (qj : x) for some 1 ≤ j ≤ n.
In particular, this implies that x 6∈ qj . Taking the radical of both sides, we have that p = r(qj : x) = pj .
Therefore, p is associated to a.

15. Let a be a decomposable ideal of a ring A, Σ be a subset of isolated prime ideals of a, and let f ∈ A have the
property that for all prime ideals p associated with a, f ∈ p ⇐⇒ p 6∈ Σ. Write Sf = (fn)n≥0 and let

a =

n⋂
i=1

qi

be a minimal primary decomposition of a. We see

Sf (a) =

n⋂
i=1

Sf (qi).

Note that because of the property that f has, if f ∈ pi, then fn ∈ qi implies that Sf (qi) = (1) and if f 6∈ pi,
then pi ∈ Σ. Using this in the above, the intersection is then over all p-primary ideals of the intersection with
p ∈ Σ. That is, over all qi such that r(qi) ∈ Σ.

Sf (a) =
⋂

r(qi)∈Σ

Sf (qi)

We always have that a ⊆ S(a). If pi = r(qi) ∈ Σ, then f 6∈ pi. For x ∈ Sf (qi), there exists fn ∈ Sf such that
xfn ∈ qi. Since f 6∈ pi, f

n 6∈ pi so that we immediately have that x ∈ q by primality. Therefore, Sf (qi) ⊆ qi
and we have Sf (qi) = qi. Therefore,

Sf (a) =
⋂

r(qi)∈Σ

Sf (qi) =
⋂

r(qi)∈Σ

qi = qΣ.
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16. Let A be a ring such that every ideal has a primary decomposition. For any ideal i of S−1A, it is the extension
of some ideal a of A. a then has a primary decomposition

a =

n⋂
i=1

qi.

Since S−1 commutes with finite intersections, we have

i = S−1a =

n⋂
i=1

S−1qi.

From this point, if S ∩ pi 6= ∅ (where pi = r(qi)), then S−1qi = (1) and so we may remove it from this
intersection. Otherwise, S ∩ pi = ∅, from which it is straightforward to check that S−1qi is primary.

17. Let A be a ring with the property (L1) and a be a proper ideal of A. Let p1 be a minimal element of the set
of prime ideals containing a. Let q1 = Sp1(a). Clearly, r(q1) = Sp1(r(a)). Every prime ideal p containing a
either intersects A \ p1 (in which case, Sp1(p) = (1)) or is contained in p1 (and hence, equal by minimality of
p1. Then Sp1

(p) = p1). Therefore, r(q1) = p1. Now if xy ∈ q1 = Sp1
(a), there exists s ∈ A \ p1 such that

sxy ∈ a. If x 6∈ p1, then sx 6∈ p1. This then implies that y ∈ Sp1
(a) = q. Therefore, q1 is p1-primary. Since A

satisfies (L1), there exists some x 6∈ p1 such that

q1 = Sp1
(a) = (a : x).

Clearly, a ⊆ q1∩ (a+(x)). Conversely, let a+bx ∈ q1∩ (a+(x)). Then ax+bx2 ∈ a implies that bx2 ∈ a. Since
x 6∈ p1, x2 6∈ p1 = r(q1). Since bx2 ∈ a ⊆ Sp1(a) = q1, this then implies that b ∈ q1 so that bx ∈ a. Therefore,
a + bx ∈ a and a = q1 ∩ (a + (x)). By Zorn’s lemma, the set of ideals b such that a + (x) ⊆ b and a = q1 ∩ b
has a maximal element. Denote this element by a1 (note that x ∈ a+ (x) ⊆ b, therefore, a1 6⊆ p1). Inductively
applying this procedure, for any n > 0, we can find primary ideals qi for 1 ≤ i ≤ n and an such that a ⊆ an
(really, an−1 ⊂ an) and

a = q1 ∩ . . . ∩ qn ∩ an.

If at any point an = (1), then we have a primary decomposition of a.

The claim is that for all ordinals, there is a representation of a of the above form. For the ordinal 0, the
representation a = a suffices. For an ordinal µ ∈ Ord, if µ has a predecessor η, then following the procedure
above with a = aη, we can get a desired representation. If µ ∈ Ord is a limit ordinal and we can achieve

a =

(⋂
α<η

qα

)
∩ aη

for every ordinal η < µ, then let

aµ =
⋃
α<µ

aα.

This is an ideal since the ideals aα are ascending. Then following the procedure from earlier, let pµ be a minimal
prime ideal containing aµ and qµ = Spµ(a) so that qµ is pµ-primary. Notice that(⋂

α<µ

qα

)
∩ aµ =

⋃
β<µ

((⋂
α<µ

qα

)
∩ aβ

)
=
⋃
β<µ

 ⋂
β≤α<µ

qα

 ∩
⋂
α<β

qα

 ∩ aβ


=
⋃
β<µ

 ⋂
β≤α<µ

qα

 ∩ a

 =
⋃
β<µ

a = a.

Therefore, by transfinite induction, there is always such a decomposition. For sufficiently large ordinals, the
cardinality of aµ will be equal to the cardinality of A and hence, aµ = (1) for sufficiently large ordinals (in the
induction, the new ideal aµ always has greater cardinality than all previous. In particular, this implies that
the cardinality of aµ is greater than or equal to µ). Therefore, such a representation of a as an intersection of
primary ideals always exists.
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18. (i) =⇒ (ii) Let A be a ring such that every ideal has a primary decomposition. For an ideal a of A, we may
write a primary decomposition

a =

n⋂
i=1

qi.

Consider a descending chain of multiplicative subsets S1 ⊇ S2 ⊇ . . .. For any j, we have

Sj(a) =

n⋂
i=1

Sj(qi) =
⋂

Sj∩pi=∅

qi.

Let nj be the cardinality of {i ∈ {1, . . . , n} : Sj ∩pi = ∅}. That is, nj is the number of terms in the intersection
above. Since the multiplicative subsets are descending, nj is a decreasing sequence. Any decreasing sequence
of natural numbers is eventually constant. Therefore, there is some N such that j ≥ N implies nj = nN . Since
the sets {i ∈ {1, . . . , n} : Sj ∩ pi = ∅} all have the same cardinality for j ≥ N and they are related under
inclusion, they are all equal. Since the terms of the intersection are also the same, we have Sj(a) = SN (a) for
j ≥ N . Therefore, A satisfies (L2).

Now let a be a proper ideal and p be a prime ideal. We may write a minimal primary decomposition for a,

a =

n⋂
i=1

qi,

for some primary ideals qi. As above,

Sp(a) =
⋂
pi⊆p

qi.

For those ideals for which qi ⊆ pi 6⊆ p, there exists xi ∈ qi for which xi 6∈ p. Consider x =
∏

pi 6⊆p xi. Then
x ∈ ∩pi 6⊆pq and x 6∈ p. In particular, for prime ideals such that pi ⊆ p, x 6∈ pi. Therefore,

(a : x) =

 ⋂
pi 6⊆p

(qi : x)

 ∩
 ⋂

pi⊆p

(qi : x)

 = (1) ∩

 ⋂
pi⊆p

qi

 = Sp(a).

From this, A satisfies (L1).

(ii) =⇒ (i) Let a be an ideal of A. Following the construction from the previous problem (that is, using
(L1)), for any n > 0, we may write

a = q1 ∩ . . . ∩ qn ∩ an,

where qi = Spi(a) for some prime ideals pi. Write Sn = Sp1 ∩ . . . ∩ Spn . Notice that an ∩ Sn 6= ∅ since by
construction aj 6⊆ pi for i ≤ j (from chapter 1, if a ⊆ ∪pi for a finite union, then a ⊆ pi for some i). Therefore,
Sn(an) = (1). Since Sn ⊆ Spi for each i, Sn(qi) = qi for each i and

Sn(a) = q1 ∩ . . . ∩ qn.

The sequence S1 ⊇ S2 ⊇ . . . is a descending chain of multiplicative subsets. By (L2), there is some N such
that m > N implies Sm(a) = SN (a). If aN = (1), we are done since then

a = q1 ∩ . . . ∩ qN ∩ aN = q1 ∩ . . . ∩ qN .

If aN 6= (1), then let pN+1 be a minimal containing aN so that qN+1 = SpN+1
(aN ) is pN+1-primary (continue

the process essentially). Then we know SN (a) = SN+1(a) so that qN+1 ⊆ q1 ∩ . . . ∩ qN and

aN ⊆ SpN+1
(aN ) = qN+1 ⊆ q1 ∩ . . . ∩ qN .

Therefore,

a = q1 ∩ . . . ∩ qN ∩ aN = q1 ∩ . . . ∩ qN .

In either case, a has a primary decomposition.
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19. The first statement that every p-primary ideal contains Sp(0) was done in problem 10. Let A be a ring such
that the intersection of all p-primary ideals is exactly Sp(0). It will be shown by induction that if p1, . . . , pn
are distinct primes, none of which are minimal in A, then there exists an ideal a of A whose associated primes
are p1, . . . , pn. The base case, n = 1 is trivial since we may take a = p1. Assume now that the result holds for
a fixed n− 1. Then there exists an ideal b with decomposition

b = q1 ∩ . . . ∩ qn−1.

where each qi is pi-primary. If b ⊆ Spn(0), let p be a minimal prime of A contained in pn. Then Spn(0) ⊆ Sp(0)
so that b ⊆ Sp(0). Taking radicals, we have

p1 ∩ . . . ∩ pn−1 ⊆ r(Sp(0)) ⊆ p.

Therefore, pi ⊆ p for some index 1 ≤ i ≤ n − 1. Since then pi ⊆ p ⊆ pn, by minimality of p, we must have
p = pi. This is a contradiction since no pi is minimal, but p is assumed to be minimal. Therefore, b 6⊆ Spn(0).
Since Spn(0) is the intersection of all pn-primary ideals, this then implies there is some pn-primary ideal qn
such that b 6⊆ qn. Finally, let

a = b ∩ qn = q1 ∩ . . . ∩ qn.

Clearly, a is decomposable and it is easy to see that the associated prime ideals are exactly pi for 1 ≤ i ≤ n.
Therefore, the proof follows by induction.

20. Let M be a fixed A-module and N a submodule of M . Define

rM (N) = {x ∈ A : ∃q > 0, xqM ⊆ N}

to be the radical of N in M . It is very clear by writing out the definitions that rM (N) = r(M : N) =
r(ann(M/N)) so that rM (N) is an ideal.

First, an obvious statement is that if N ⊆ N ′ are submodules of M , then rM (N) ⊆ rM (N ′), which follows by
writing out the definitions.

Another obvious statement if for a submodule N , rM (Nk) = rM (N). ⊆ follows from the statement above and
the other inclusion is easy to check pointwise.

If N,N ′ are two submodules of M , then both NN ′ and N∩N ′ are submodules of M . In particular, (N∩N ′)2 ⊆
NN ′ ⊆ N ∩N ′. From the above, this gives

rM (N ∩N ′) = rM ((N ∩N ′)2) ⊆ rM (NN ′) ⊆ rM (N ∩N ′).

Therefore, rM (NN ′) = rM (N ∩N ′). It is clear that rM (N ∩N ′) ⊆ rM (N) ∩ rM (N ′). The other inclusion is
simple to check pointwise. Therefore,

rM (NN ′) = rM (N ∩N ′) = rM (N) ∩ rM (N ′).

If rM (N) = (1), then M ⊆ N (since 1 ∈ rM (N)). Therefore, M = N . Conversely, if M = N , then it is clear
that rM (N) = (1). Finally, if x ∈ r(rM (N) + rM (N ′)), then xq ∈ rM (N) + rM (N ′) for some q > 0. That
is, xq = a + b where asM ⊆ N and btM ⊆ N ′ for s, t sufficiently large. Then xqst = (a + b)st is such that
xqstM ⊆ N +N ′. That is to say, x ∈ r(N +N ′). Therefore, r(rM (N) + rM (N ′)) ⊆ r(N +N ′).

From the last bit, it is clear that if rM (N) + rM (N ′) = (1), then N +N ′ = M .

21. For x ∈ A, define φx : M 7→M to be the map φx(m) = xm. x ∈ A is a zero-divisor in M if φx is not injective
and x ∈ A in nilpotent in M if φx is nilpotent. A submodule Q of M is primary in M if Q 6= M and every
zero-divisor of M/Q is nilpotent. Notice that if Q is primary in M

Assume Q is primary in M , xy ∈ (Q : M) and x 6∈ (Q : M). Then there exists m ∈M such that xm 6∈ Q (but
xm ∈M of course). Then xym ∈ Q implies that the map φy : M/Q 7→M/Q is not injective since xm 6= 0 but
φy(xm) = 0. Therefore, y is nilpotent. That is, for some q > 0, φqy = φyq is the zero map. This is equivalent to
yq ∈ ann(M/Q) so that y ∈ r(ann(M/Q) = rM (Q) = r(Q : M). Therefore, (Q : M) is (rM (Q)-)primary. This
also shows that rM (Q) is a prime ideal of A.

It is easy to see the equivalent statements x ∈ A is nilpotent in M/Q if and only if xq ∈ ann(M/Q) if and only
if x ∈ r(ann(M/Q)) = rM (Q). Similarly, x ∈ A is a zero-divisor of M/Q if and only if there exists m ∈M \Q
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such that xm ∈ Q. Therefore, Q is primary in M if and only if for all x ∈ A such that there exists m ∈M \Q
such that xm ∈ Q, then x ∈ rM (Q).

(4.3) Let Q1, . . . , Qn be p-primary submodules of M . Notice

rM

(
n⋂
i=1

Qi

)
= r

(
n⋂
i=1

Qi : M

)
=

n⋂
i=1

r(Qi : M) =

n⋂
i=1

rM (Qi) =

n⋂
i=1

p = p.

Now let x ∈ A be such that there exists m ∈ M \
⋂n
i=1Qi such that xm ∈

⋂n
i=1Qi. Then there exists some

index i such that m ∈ M \ Qi, but xm ∈ Qi. Since Qi is primary in M , this implies that x ∈ rM (Qi) = p.
Therefore, ∩ni=1Qi is p-primary in M .

(4.4) As usual, let (Q : m) = {x ∈ A : xm ∈ Q}. From this, (i) is obvious since if m ∈ Q, xm ∈ Q for all
x ∈ A. For (ii), assume m 6∈ Q and assume xy ∈ (Q : m) so that xym ∈ Q and x 6∈ (Q : m). Since xm 6∈ Q
and Q is primary, this implies that y ∈ rM (Q) = p. From this, it suffices to show that r(Q : m) = p. Notice
that if x ∈ p = rM (Q), then for some q > 0, xqM ⊆ Q. In particular, xqm ∈ Q. Therefore, x ∈ r(Q : m).
Conversely, if x ∈ (Q : m), then xm ∈ Q implies that x ∈ rM (Q) = p (since m 6∈ Q). Taking radicals of the
latter inclusion, we get that r(Q : m) = p so that from the above, (Q : m) is p-primary in M .

22. A primary decomposition of a submodules N in M is a representation of the form

N = Q1 ∩ . . . ∩Qn,

where the submodules Qi are primary in M . This decomposition is minimal if all the pi = rM (Qi) are distinct
and for all j, ∩i 6=jQi 6⊆ Qj .
Let N be a decomposable submodule of M with minimal primary decomposition

N =

n⋂
i=1

Qi,

with pi = rM (Qi). Notice for any m ∈M ,

(N : m) =

n⋂
i=1

(Qi : m)

so that

r(N : m) =

n⋂
i=1

r(Qi : m) =
⋂

m 6∈Qi

pi.

If r(N : m) is prime for some m ∈ M , then from chapter 1, we necessarily have r(N : m) = pi for some
1 ≤ i ≤ n. Therefore, every prime ideal of the form r(N : m) is one of the pi. Conversely, for each j, we
may take m ∈ ∩i6=jQi so that m 6∈ Qj . Then from the previous problem, we have exactly r(N : m) = pj .
This shows that the pi are independent of the decomposition and that they are exactly the prime ideals of the
form r(N : m) for m ∈ M . Notice that for m ∈ M/N , (0 : m) = {x ∈ A : xm ∈ N} = (N : x). Therefore,
r(0 : m) = r(N : x) so that if N is decomposable, its associated primes are those primes associated to 0 in
M/N .

23. The proof of (4.7) is almost identical for submodules with the set of zero-divisors in N given by

D =
⋃
m 6∈N

r(N : m).

For the proof of (4.8), for (i), if m/s ∈ S−1M and x ∈ S ∩ p = S ∩ rM (Q), then xq ∈ S and xqM ⊆ Q for
some q > 0. Then m/s = xqm/xqs ∈ S−1Q. Therefore, S−1Q = S−1M . For (ii), notice first that for a
primary submodule Q of M , S−1Q is also primary (with prime radical rS−1M (S−1Q)) = r(S−1Q : S−1M) =
S−1(r(Q : M)) = S−1p). Similarly, the preimage of a primary module is primary (with radical equal to the
preimage of the radical). If S ∩ p = ∅, then sm ∈ Q implies m ∈ Q (since if m 6∈ Q, Q is primary and implies
s ∈ rM (Q) = q). From this (and chapter 3), the preimage of S−1Q is exactly Q (using the same verification
that qec = ∪s∈S(q : s)). Similarly, the correspondence holds in the other direction as well since every submodule
of S−1M is of the form S−1N for some submodule N of M (which is easy to verify). Therefore, there is a
bijective correspondence between primary submodules of M and primary submodules of S−1M .

The proofs of (4.9), (4.10), and (4.11) are the exact same.
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Chapter 5

1. Consider an integral ring homomorphism f : A 7→ B. Note that we can write this map as the composition

A
f−→ f(A)

i−→ B,

where i : f(A) 7→ B is the inclusion map, which is injective and integral since f is integral. Then the map
f∗ : Spec(f(A)) 7→ Spec(A) is a homeomorphism onto V (ker f) (since f : A 7→ f(A) is surjective) and so is a
closed map. Therefore, it suffices to show that i∗ : Spec(B) 7→ Spec(f(A)) is closed. That is, we can reduce to
the case that A ⊆ B, B is integral over A and f is the inclusion map.

If A ⊆ B and B is integral over A, then the result follows if we can show that

i∗(V (b)) = {q ∩A ∈ Spec(A) : b ⊆ q} = V (b ∩A),

where i : A 7→ B is the inclusion map and b is an ideal of B. The inclusion ⊆ is immediate. For the other
inclusion, let b∩A ⊆ p for some p ∈ Spec(A). We know that B/b is integral over A/(b∩A). From the text (5.10),
for every prime ideal p/(b∩A) of A/(b∩A), there exists an ideal q of B/b such that p/(b∩A) = q∩(A/(b∩A)).
Then qc ∈ Spec(B) is such that b ⊆ qc and qc ∩ A = p (draw the box diagram, it commutes. qc ∩ A is
the contraction one way and is equal to the contraction the other way, which is obviously p). Therefore,
i∗(V (b)) = V (b ∩ A) and i∗ is closed. This implies that i∗ : Spec(B) 7→ Spec(f(A)) is closed and so the
composition (i ◦ f)∗ : Spec(B) 7→ Spec(A) is closed.

2. Let A ⊆ B be rings where B is integral over A and f : A 7→ Ω be a ring homomorphism into an algebraically
closed field Ω. Since Ω is a field, f(A) is an integral domain, which implies that p = ker f is prime in A.
Therefore, there exists q prime in B such that p = q ∩ A. Then A/p and B/q are integral domains, we may
consider A/p ⊆ B/q, and B/q is integral over A/p. We may write f : A 7→ B as the composition

A
π−→ A/p

f−→ Ω.

From this, if f extends to a map g : B/q 7→ Ω, then f extends to a map g : B 7→ Ω. Therefore, it suffices to
consider the case that A ⊆ B are integral domains, B is integral over A, and f is injective.

From here, localize at the zero ideal (in other words, consider the field of fractions). We have that (A\{0})−1B
is integral over frac(A). Since frac(A) is a field, (A\{0})−1B is a field as well. Since frac(B) is the smallest field
in which B embeds and (A \ {0})−1B ⊆ frac(B), we necessarily have that (A \ {0})−1B = frac(B). Therefore,
frac(B) is integral over frac(A). That is, frac(B) is an algebraic extension of frac(A). Considering the induced

map f̃ : frac(A) 7→ Ω defined by f(a1/a2) = f(a1)/f(a2) (remembering f is injective), there is necessarily a
map g : frac(B) 7→ Ω that agrees on frac(A) (this follows from the fact that Ω is algebraically closed via Zorn’s
lemma). Consider the composition g ◦ i, where i : B 7→ frac(B) is the inclusion map. Clearly, this map agrees
with f on A and so is an extension of f to B.

To prove the property above of algebraic closures, here is another proof of the problem, from which that
property immediately follows. Let A ⊆ B be rings such that B is integral over A and let f : A 7→ Ω be a ring
homomorphism into an algebraically closed field Ω. Let Σ be the set of pairs (R, g) where R is a subring of
B containing A and g : R 7→ Ω is a ring homomorphism that restricts to f on A. This set is nonempty since
(A, f) ∈ Σ. Order Σ as follows. For (R1, g) and (R2, g

′), say (R1, g) ≤ (R2, g
′) if R1 ⊆ R2 and g = g′

∣∣
R1

. For

any increasing chain (R1, g1) ≤ (R2, g2) ≤ . . ., there is clearly a well-defined function g on R = ∪Ri defined by
g(x) = gi(x) for x ∈ Ri. Therefore, by Zorn’s lemma, there is some maximal element (R, g) of Σ. The claim
now is that R = B, from which it follows that g is an extension of f to B.

Let b ∈ B. Since b is integral over A, b is integral over R, so there exists a monic polynomial of minimal
degree f ∈ R[x] such that f(b) = 0. Notice that if g ∈ R[x] and g(b) = 0, then we may apply the Euclidean
algorithm since f is monic to see that f | g (since deg f is minimal). That is, g ∈ (f). Conversely, every
element of (f) has b as a root. Therefore, the map mb : R[x] 7→ R[b] that sends x 7→ b has kernel exactly (f).
That is, R[b] ' R[x]/(f). Since Ω is algebraically closed, there exists ζ ∈ Ω such that f(ζ) = 0. Consider the
composition

R[x]
g̃−→ Ω[x]

mζ−−→ Ω.
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Clearly, f ∈ ker(mζ ◦ g̃) so that there is an induced map g′ : R[b] 7→ Ω. It is clear that restricted to R, this
map agrees with g since it factors through the above composition. Therefore, g′

∣∣
A

= f so that (R[b], g′) ∈ Σ.
By maximality of (R, g), this then implies that R[b] = R so that b ∈ R.

3. Let f : B 7→ C be an integral A-algebra homomorphism, D an arbitrary A-algebra, and f⊗Id : B⊗D 7→ C⊗D
be the map f tensored with IdD. For c⊗ d ∈ C ⊗D, there exists bi ∈ B such that

cn + f(bn)cn−1 + f(bn−1)cn−2 . . .+ f(bn) = 0.

Consider the polynomial

xn + (f(bn)⊗ d)xn−1 + (f(bn−1)⊗ d2)xn−2 + . . .+ (f(bn)⊗ dn).

It is clear by plugging in c⊗ d that c⊗ d is a zero of this polynomial. Since the coefficients are in f(B)⊗D =
(f ⊗ Id)(B ⊗D) and c⊗ d ∈ C ⊗D was arbitrary, C ⊗D is integral over (f ⊗ Id)(B ⊗D) and the map f ⊗ Id
is integral.

4. In general, Bn is not integral over Am. To see this, consider Q[x2 − 1] ⊆ Q[x] with n = (x − 1) so that
m = (x2 − 1) (this is an integral extension since x is a root of t2 − x2 where x2 ∈ Q[x2 − 1]. Then sums
and products are integral as well). Then Am = A = Q[x2 − 1] and 1/(x + 1) ∈ Bn. By the ”rational root
theorem” (using Q(x) = frac(Q[x]) to find roots), 1/(x + 1) satisfies no monic polynomial in Q[x], let alone
Q[x2 − 1] = Am. Therefore, 1/(x+ 1) is not integral over Am so that Bn is not integral over Am.

5a. Let A ⊆ B be rings with B integral over A and a ∈ A be a unit in B. Then there exists b ∈ B such that ab = 1.
Let ai be such that

bn + a1b
n−1 + . . .+ an = 0.

Then multiplying through by an, we get

1 + a1a+ . . .+ ana
n = 0 =⇒ a(−a1 − . . .− anan−1) = 1.

Therefore, a is a unit in A as well.

5b. Let JA, JB be the Jacobson radicals of A and B respectively. If a ∈ A∩JB , then 1− ya is a unit in B for every
y ∈ A. From the above, this implies that 1 − ya is a unit in A for every y ∈ A. That is, a ∈ JA. If a ∈ JA,
then for every maximal ideal m of B, A ∩m = mc is a maximal ideal of A so that a ∈ A ∩m. Therefore,

a ∈
⋂

m maximal

(A ∩m) = A ∩ JB .

Therefore, we have JA = A ∩ JB .

6. Let B1, . . . , Bn be integral A-algebras and let B =
∏n
i=1Bi. For each element (b1, . . . , bn) ∈ B, there exists

monic polynomials fi ∈ A[x] such that f(bi) = 0. Consider the monic polynomial f(x) =
∏n
i=1 fi(x) ∈ A[x].

Clearly,

f((b1, . . . , bn)) = (f(b1), . . . , f(bn)) = 0.

Therefore, each element of B is integral over A and hence, B is an integral A-algebra (technically, there should
be some discussion about how the monic polynomials fi are in Bi[x] and the coefficients are elements of the
image of A in Bi, but this is a notational issue alone).

7. Let A ⊆ B be rings such that B \ A is a multiplicative subset of B and C be the integral closure of A in B.
Clearly, A ⊆ C. For b ∈ C, there exists ai such that

bn + a1b
n−1 + . . .+ an = 0 ∈ A.

Therefore, we may find n minimal such that there exists coefficients ai satisfying

bn + a1b
n−1 + . . .+ an ∈ A.

Since A is a ring, this implies

(bn−1 + a1b
n−2 + . . .+ an−1)b ∈ A.

Since B\A is multiplicative, this implies either b ∈ A or bn−1 +a1b
n−2 +. . .+an−1 ∈ A. The latter is impossible

by minimality of n. Therefore, b ∈ A and C = A so that A is integrally closed in B.
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8a. Let A be a subring of an integral domain B and let C be the integral closure of A in B. Assume f, g ∈ B[x]
are two monic polynomials such that fg ∈ C[x]. Consider the splitting field k of {f, g}, where we may write

f(x) =

n∏
i=1

(x− ξi), g(x) =

m∏
j=1

(x− ζj).

Since each root ξi and ζj are roots of the monic polynomial fg with coefficients in C, they are integral over C
in k. Notice that the coefficients of f and g are symmetric polynomials in the ξi and ζj respectively. Therefore,
the coefficients of f and g are also integral over C in k. By transitivity, this implies the coefficients of f and
g are integral over A in k. Since the coefficients are in B and they are integral over A, this implies that the
coefficients lie in C. That is, f, g ∈ C[x].

8b. Let A ⊆ B be rings and let C be the integral closure of A in B. Assume f, g ∈ B[x] are two monic polynomials
such that fg ∈ C[x]. For any prime ideal q of B, C/(C∩q) is integral over A/(A∩q). Since fg ∈ (C/(C∩q))[x],
the previous problem implies that the coefficients of f and g lie in the integral closure of A/(A ∩ q) in B/q.
From this, it suffices to show that if b ∈ B is such that b ∈ B/q is in the integral closure of A/(A ∩ q) for all
prime ideals q of B, then b is in the integral closure of A in B (that is, b ∈ C).

It suffices to prove the contrapositive. Assume that b is not integral over A. That is, for all monic f ∈ A[x],
f(b) 6= 0. Then S = {f(b) : f ∈ A[x] monic} is a multiplicative subset of B and 0 6∈ S. Let q be any ideal of B
such that S ∩ q = ∅ (take the contraction of a maximal ideal in S−1B). Then consider b ∈ B/q. If there exists
coefficients ai ∈ A/(A ∩ q) such that

b
n

+ a1b
n−1

+ . . .+ an = 0,

then there are coefficients ai ∈ A such that

bn + a1b
n−1 + . . .+ an ∈ q.

This is a contradiction because the element above is an element of S, which is disjoint from q. Therefore,
b ∈ B/q is not integral over A/(A∩ q). This shows that if b ∈ B is such that b ∈ B/q is integral over A/(A∩ q)
for all prime ideals q of B, then b is integral over A. From the above, this then implies that the coefficients of
f and g lie in C.

9. Let A ⊆ B be rings and C be the integral closure of A in B. For f ∈ C[x], the coefficients ci are in C so that they
are integral over A[x]. Then A[x][c1, . . . , cn] is a finitely-generated A[x]-module. Since f ∈ A[x][c1, . . . , cn] ⊆
C[x], we have that f is integral over A[x] by the third condition for an element to be integral. Conversely, let
f ∈ B[x] be integral over A[x]. Then there exists gi such that f satisfies

fn + g1f
n−1 + . . .+ gn = 0.

Let r > max{n, deg f, deg g1, . . . ,deg gn} be an integer. Notice that f1(x) = f(x)− xr satisfies the equation

(f1 + xr)m + g1(f1 + xr)m−1 + . . .+ gm = 0.

Expanding this out, we get an equation of the form

fm1 + h1f
m−1
1 + . . .+ hm = 0,

where

hm = (xr)m + g1(xr)m−1 + . . .+ gm ∈ A[x].

We see

−f1(fm−1
1 + h1f

m−2
1 + . . .+ hm−1) = hm ∈ A[x] ⊆ C[x].

Since −f1 is monic and the latter polynomial is monic by out assumption of r (with a possible negative sign),
this implies that −f1 ∈ C[x]. Since xr ∈ C[x], this also implies that f ∈ C[x]. Therefore, the algebraic closure
of A[x] in B[x] is C[x].
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10a. (i) =⇒ (ii) Let f : A 7→ B be a ring homomorphism such that the induced map f∗ : Spec(B) 7→ Spec(A)
is a closed map. Let p1 ⊆ p2 be prime ideals of f(A) and let q1 be an ideal of B such that q1 ∩ f(A) = p1.
Consider the closed subset V (q1) of Spec(B). Since f is closed, we necessarily have f∗(V (q1)) = V (p1). From
this, there exists q2 ∈ V (q1) such that f∗(q2) = q2∩f(A) = p2. That is, q2 satisfies q1 ⊆ q2 and q1∩f(A) = p1,
q2 ∩ f(A) = p2. The going-up property then follows immediately by induction.

(ii) ⇐⇒ (iii) For a ring homomorphism f : A 7→ B, fixed prime ideals q of B and p = qc of A, we may write
the map f : A/p 7→ B/q as the composition

A/p
f−→ f(A)/(q ∩ f(A))

i−→ B/q.

It takes a moment to show that the first map is an isomorphism. Therefore, we have maps

Spec(B/q)
i∗−→ Spec(f(A)/(q ∩ f(A)))

f∗−→ Spec(A/p),

where the latter is a homeomorphism. Almost by definition, f has the going-up property if and only if the
first map is surjective. However, the first map is surjective if and only if the composition is surjective. This
completes the proof.

Note that there is an equivalent notion for a map f : A 7→ B to have the going-up property as follows. For any
prime ideals p1, p2 ∈ Spec(A) such that p1 ⊆ p2 and there exists q1 satisfying f∗(q1) = p1, then there exists q2

such that q1 ⊆ q2 and f∗(q2) = p2. This equivalence follows immediately from the factorization A 7→ f(A) 7→ B
where the first map is a homeomorphism on spectra. Therefore, the above follow with this adjusted definition.

10b. (i) =⇒ (iii) Let f : A 7→ B be a ring homomorphism such that the induced map f∗ : Y 7→ X is an open map
(where X = Spec(A) and Y = Spec(B)). For prime ideals q of B and p of A, there is a map f : A/p 7→ B/q.
Notice (see after the problem) that Bq = limt∈B\qBt. From a previous problem, this implies

f∗(Spec(Bq)) =
⋂

t∈B\q

f∗(i∗t (Spec(Bt))),

where it : B 7→ Bt is the inclusion map. From another problem, i∗t (Spec(Bt)) = Yt = Y \V (t). Therefore, each
of these sets is open in Y and contains q (since t 6∈ q). Therefore, f∗(Yt) is an open set containing p. From this,
each f∗(Yt) contains Spec(Ap) (if not, take a prime ideal contained in p not in f∗(Yt). Its closure is disjoint
from f∗(Yt) since this set is open, but p is in the closure. This is a contradiction since p ∈ f∗(Yt)). Therefore,
Spec(Ap) is contained in the intersection and so f∗(Spec(Bq)) = Spec(Ap) and f∗ is surjective.

To show that Bq = limt∈B\qBt, it will be shown that Bq satisfies the universal property of the direct limit of
the directed system (Bt, µts) where the set of Bt is ordered under inclusion. Let ft : Bt 7→ A be a sequence of
maps such that ft = fs ◦ µts for all t ≤ s. For b/s ∈ Bq define f : Bq 7→ A by

f(b/s) = fs(b/s).

This map is well-defined since for b/s = b′/t,

fs(b/s) = fst(bt/st) = fst(b
′s/st) = ft(b

′/t).

It is easy to check that this is a ring homomorphism by finding an upper bound for indices involved. It is
simple to check that f satisfies ft = f ◦ µt for each t ∈ B \ q. To show that this map is unique, assume there
exists g : Bq 7→ A that also satisfies ft = g ◦ µt for each t ∈ B \ q. As usual, the range of the µt cover Bq so
that f and g necessarily agree pointwise. Therefore, f = g. From all of this, Bq = limt∈B\qBt and the result
above follows.

(ii) ⇐⇒ (iii) (Assuming that f is injective) Note that the map f : Ap 7→ Bq can be factored as follows.

Ap
f−→ (f(A \ p))−1f(A)

i−→ Bq

Since f is injective, f : A 7→ f(A) is an isomorphism so that f : Ap 7→ (f(A))p ' (f(A \ p))−1f(A) is an
isomorphism. Notice that f(A \ p) = f(A) \ (q ∩ f(A)) so that the above can be written as the composition

Ap
f−→ f(A)q∩f(A)

i−→ Bq,
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where the first map is an isomorphism. The induced maps on spectra give the compositions

Spec(Bq)
i∗−→ Spec(f(A)q∩f(A))

f∗−→ Spec(Ap),

where the latter map is a homeomorphism. f has the going-down property if and only if the first map is
surjective, almost by definition. Note that the latter map is bijective so the composition is surjective if and
only if the first map is surjective. That is, the map Spec(Bq) 7→ Spec(Ap) is surjective if and only if f has the
going-down property.

To show that the above does not hold in the case that f is not injective, consider the map φ : Z[x] 7→
Z[x]/(2, x) ' Z/2Z. This map is surjective and so satisfies the going-down property defined in the problem
statement. However, if q = (0) and p = qc = (2, x), then Spec((Z[x])p) is the set of all prime ideals contained
in p = (2, x), which contains (2) and (x) in particular. On the other hand, (Z/2Z)q = Z/2Z has only one prime
ideal, (0), so the induced map Spec((Z/2Z)q) 7→ Spec((Z[x])p) is not surjective.

On the other hand, let A ⊆ B be any two rings not satisfying the going-down property (that is, the map
Spec(Bq) 7→ Spec(Ap) induced by the inclusion map is not surjective some prime q and p = qc). Then let
A′ = A[x]/(x2) and let φ : A′ 7→ B be evaluation at x = 0 (which is easily a well-defined ring homomorphism).
Then the image is easily A so that φ does not have the going-down property. However, since the image of
φ is A, φ∗ : Spec(A) 7→ V ((x2)) = Spec(A′) is a homeomorphism. From this and the statement about the
non-surjectivity of the map induced by the inclusion map, it follows that the map Spec(Bq) 7→ Spec(A′p) is not
surjective for some prime ideal q (take the same ideal used to show that A ⊆ B does not satisfy the going-down
property. Then the map Spec(A′p) 7→ Spec(Ap) is a bijection, so the map Spec(Bq) 7→ Spec(A′p) cannot be
surjective).

As for the going-up scenario, there is an adjusted definition that in this case is slightly stronger. Say that a
map f : A 7→ B has the going-down property if for every two prime ideals p1, p2 ∈ Spec(A) such that p1 ⊇ p2

and there exists q1 such that f∗(q1) = p1, then there exists q2 such that q1 ⊇ q2 and f∗(q2) = p2. It will be
shown that the above theorem holds with this new definition without the assumption of injectivity.

(i) =⇒ (iii) This proof needs no adjustment because it does not use the going-down property.

(ii) ⇐⇒ (iii) This now follows almost immediately. f∗ : Spec(Bq) 7→ Spec(Ap) (where p = f∗(q)) is surjective
if and only if for every prime ideal p′ ⊆ p of A, there exists a prime ideal q′ ⊆ q such that f∗(q′) = p′. That is,
this map is surjective if and only if f has the (new) going-down property.

11. If f : A 7→ B is an injective flat ring homomorphism, then from a previous problem, for any prime ideals q of
B and p = qc of A, the induced map f∗ : Spec(Bq) 7→ Spec(Ap) is surjective. From the equivalences from the
previous problem, it follows that f satisfies the going-down property.

Clearly, using the new definition of going-up and going-down property for maps, any (not necessarily injective)
flat ring homomorphism has the going-down property.

12. Let G be a finite group of automorphisms of a ring A and let AG be the set of elements of A fixed by all
elements of G. It is clear that AG is a subring of A since the elements of G are ring homomorphisms. For
x ∈ A, consider the polynomial

f(t) =
∏
g∈G

(t− g(x)).

Clearly this polynomial is monic and its coefficients are functions symmetric in the g(x) for g ∈ G. Then
multiplication by an element h ∈ G is a permutation of the g(x) and so the coefficients therefore remain
unchanged. That is, the coefficients of f(t) are in AG. Clearly, the identity Id ∈ G so that f(x) = 0. That is,
x is integral over A. Since x ∈ A was arbitrary, A is integral over AG.

Let S ⊆ A be multiplicative (not containing 0) such that g(S) ⊆ S for every g ∈ G and define SG = S ∩ AG.
Since ker g = {0} for each g ∈ G, S ∩ ker g = ∅ and so each g induces a ring homomorphism g : S−1A 7→ S−1A
defined by

g(a/s) = g(a)/g(s).
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Define a map φ : AG 7→ (S−1A)G defined by φ(a) = a/1 (clearly, a/1 ∈ (S−1A)G since g(1) = 1 for all g ∈ G).
For s ∈ SG, we have 1/s ∈ (S−1A)G so φ(s) is a unit for each s ∈ SG. If φ(a) = a/1 = 0, then there exists
s ∈ S such that as = 0. Then applying any element g ∈ G, we get ag(s) = 0. Summing these, we get as′ = 0,
where s′ =

∑
g∈G g(s) ∈ SG. Finally it is shown that every element of (S−1A)G can be written in the form

φ(a)φ(s)−1. It is clear that every element of (S−1A)G can be written in the form

a

s
=
a
∏
g 6=Id g(s)∏
g∈G g(s)

,

where the denominator is in SG. Therefore, it suffices to consider when s ∈ SG and a/s ∈ (S−1A)G. In this
case, it is clear that a/1 = (a/s)(s/1) ∈ (S−1A)G. Therefore, for each g ∈ G, there exists sg ∈ S such that
sg(a−g(a)) = 0. Multiplying by

∏
h6=Id h(sg), we get s′g(a−g(a)) = 0 for some s′g ∈ SG. Let t =

∏
g∈G s

′
g ∈ SG

so that t(a− g(a)) = 0 for all g ∈ G. We see for any g ∈ G,

g(ta) = tg(a) = ta.

Therefore, ta ∈ AG. Then a/s = at/st = φ(at)φ(st)−1 with st ∈ SG. From all of this, it follows that
(SG)−1AG ' (S−1A)G.

13. Let G be a finite group of automorphisms of a ring A as above, let p be a prime ideal of AG, and let P be
the set of prime ideals of A whose contraction is p (that is, prime ideals q of A such that q ∩ AG = p). Let
q, q′ ∈ P . For any x ∈ q, since Id ∈ G, ∏

g∈G
g(x) ∈ q ∩AG = p ⊆ q′.

Therefore, there exists g ∈ G such that g(x) ∈ q′ and x ∈ h∗(q′) for h = g−1. That is, q ⊆ ∪g∈Gg∗(q′). Since
this union is finite, this implies q ⊆ g∗(q′) for some g ∈ G. But by theorem 5.9, this implies that q = g∗(q′).
From this, it is clear that the action of G is transitive.

14. Let A be an integrally closed integral domain, k its field of fractions, and L a finite normal separable extension
of k (it is Galois). Let G be the Galois group of L over k and let B be the integral closure of A in L. For
b ∈ B, there is some monic polynomial f ∈ A[x] that b satisfies. It is clear that f(σ(b)) = σ(f(b)) = 0 so that
σ(b) ∈ L satisfies the same polynomial and is integral over A. That is, σ(b) ∈ B and σ(B) ⊆ B. Conversely,
since σ is an automorphism, the same can be done with σ−1 to get that σ−1(B) ⊆ B so that B ⊆ σ(B). This
implies σ(B) = B for all σ ∈ G. Since the extension k ⊆ L is Galois, the only elements of L that are fixed
by all elements of G are elements of k. From this, BG ⊆ k. However, since A is integrally closed, the only
integral elements of k over A are exactly the elements of A. Therefore, BG ⊆ A. The other inclusion is obvious.
Therefore, BG = A.

*15.

16. Let k be an infinite field and A a finitely-generated k-algebra. The result will be shown by induction on n. The
base case n = 1 is trivial since then A = k[x1] is integral over itself. Assume the result for a fixed n−1. Assume
now A is generated by x1, . . . , xn and that they are ordered so that x1, . . . , xr are algebraically independent
and xr+1, . . . , xn are algebraic over k[x1, . . . , xr] (take r maximal, then xr+1, . . . , xn are necessarily algebraic
over k[x1, . . . , xr]). If r = n, there is nothing to prove since A = k[x1, . . . , xr] is integral over itself. If r < n,
then xn is algebraic over k[x1, . . . , xn−1]. That is, there exists a nonzero polynomial f ∈ k[t1, . . . , tn−1, tn] such
that f(x1, . . . , xn−1, xn) = 0. Let F be the homogeneous term of highest degree. Since k is infinite, there exists
some λ1, . . . , λn−1 ∈ k such that F (λ1, . . . , λn−1, 1) 6= 0. Since k is a field, we may then normalize so that
F (λ1, . . . , λn−1, 1) = 1. Let x′i = xi − λixn. We have

F (x1, . . . , xn) = F (x′1 + λ1xn, . . . , x
′
n−1 + λn−1xn, xn).

Writing out F component wise and expanding this, we get a monic polynomial in xn with coefficients in
k[x′1, . . . , x

′
n−1] and degree equal to the total degree of F . Since F was the monomial of maximal total degree

of f , the polynomial

0 = f(x1, . . . , xn−1, xn) = f(x′1 + λ1xn, . . . , x
′
n−1 + λn−1xn, xn)
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as a polynomial in xn with coefficients in k[x′1, . . . , x
′
n−1] is monic. Therefore, xn is integral over k[x′1, . . . , x

′
n−1]

and therefore, A = k[x1, . . . , xn] is integral over k[x′1, . . . , x
′
n−1] (since xi = x′i + λixn). By our inductive

hypothesis, there exists algebraically independent over k, y1, . . . , ys ∈ k[x′1, . . . , x
′
n−1], such that k[x′1, . . . , x

′
n−1]

is integral over k[y1, . . . , ys]. By transitivity, we then have A is integral over k[y1, . . . , ys]. From this proof
(that is, our choice of algebraically independent elements), it follows that we may choose the yi to be linear
combinations of the xi (since they are in fact x′i for 1 ≤ i ≤ r).
Let k be algebraically closed andX be an algebraic variety of kn with nonzero coordinate ring A (which is finitely
generated from the surjective map k[t1, . . . , tn] 7→ A). From the previous problem, there are y1, . . . , yr ∈ A that
are algebraically independent over k and A is integral over k[y1, . . . , yr]. We may write yi =

∑
j aijxj . Then

let ϕ : k[y1, . . . , yr] 7→ A be the inclusion map. This is clearly a k-algebra homomorphism and so corresponds
to a regular map φ : X 7→ kr where φ∗ = ϕ. It is clear from this that φ is defined by

φ(t1, . . . , tn) =

∑
j

a1jtj , . . . ,
∑
j

arjtj

 .

To see that φ is surjective, consider the inclusion map ia : {0} 7→ kr sending 0 to a. This induces a map
i∗a : k[t1, . . . , tr] 7→ k. Considering k[t1, . . . , tr] as k[y1, . . . , yr] ⊆ A (since the yi are algebraically independent),
since A is integral over k[y1, . . . , yr], there is an extension of this map to the k-algebra homomorphism θ : A 7→ k.
Therefore, there is a map µ : {0} 7→ X. The image of this map then satisfies φ(µ(0)) = a (draw the diagram,
it commutes). Therefore, φ is surjective.

(Note: The proof of surjectivity did not feel very natrual. I looked some things up and this seemed to be the
consensual argument.)

17. Let X be an affine algebraic variety in kn where k is an algebraically closed field and let I be a defining ideal
for X. If I 6= (1), then let A = k[t1, . . . , tn]/I be the coordinate ring of X. It is clear that A 6= 0 so that from
the above, there is a surjective map of X onto a linear subspace of kn of dimension r ≥ 0. This implies that
X 6= ∅.
Assuming k is algebraically closed, let m be a maximal ideal of k[t1, . . . , tn]. Consider the projection π :
k[t1, . . . , tn] 7→ k[t1, . . . , tn]/m. Since the image is a finitely-generated k-algebra and a field, it follows from
Zariski’s lemma that the image is a finite algebraic extension of k. Since k is algebraically closed, this implies
that the image is k itself. Consider the images αi = π(ti) for 1 ≤ i ≤ n. Then clearly, ti − αi ∈ m for all i.
That is, (ti − αi) ⊆ m. Since this ideal is maximal (its quotient is k itself), we necessarily have an equality of
the form

m = (t1 − α1, . . . , tn − αn).

18. Note that this result is proved in the text. The proof will follow by induction. Let k be a field and let B be a
finitely-generated k-algebra that is also a field. For the base case, if B is generated by one element, x, then x
is a unit and so there exists coefficients ki such that

x(k1 + . . .+ knx
n) = 1.

That is, x is algebraic over k so that B is a finite algebraic extension. Assume now that the result holds for all
such B generated by n − 1 elements. Let B be generated by x1, . . . , xn and let A = k[x1], K = k(x1). Since
B is a finitely-generated K-algebra (generated by x2, . . . , xn) and a field, then B is a finite algebraic extension
of K. Therefore, each x2, . . . , xn satisfy a monic polynomial with coefficients in K. If f is the product of
denominators of the coefficients from these monomials, then each x2, . . . , xn is integral over Af . Therefore, B
is integral over Af , but K ⊆ B so that K is integral over Af . If x1 is transcendental over k, then A is integrally
closed (over its field of fractions) since it is a UFD (by rational root theorem and Gauss’ lemma). This should
imply that Af is integrally closed as well since localizations of integrally closed domains are integrally closed.
Since K is integral over Af , this is a contradiction. Therefore, x1 is algebraic over k. This implies that K is a
finite algebraic extension of k and since B is a finite algebraic extension of K, B is a finite algebraic extension
of k.

19. This is exactly what was done in problem 17. For the first part, any proper ideal is contained in some maximal
ideal which has the form above and so there is some common root in every element of m so that the corresponding
variety is nonempty.
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20. Let A ⊆ B be integral domains where B is a finitely-generated A-algebra. Let S = A \ {0} and K =
S−1A = frac(A). Then S−1B is a finitely-generated K-algebra (with essentially the same generators). By the
normalization lemma, there exists y1/s1, . . . , yn/sn ∈ S−1B such that the yn/sn are algebraically independent
over K and S−1B is integral over K[yn/sn, . . . , yn/sn] (it is easy to see that then the yi are algebraically
independent). If z1, . . . , zm generate B as an A-algebra, then zi/1 generate S−1B as a K-algebra. Therefore,
each zi/1 is integral over K[y1/s1, . . . , yn/sn] and so satisfies an equation of the form

(zi/1)n + f1i(y1/s1, . . . , yn/sn)(zi/1)n−1 + . . .+ fni(y1/s1, . . . , yn/sn) = 0.

Let s ∈ S be a common denominator for all fij(y1/s1, . . . , yn/sn). Then we have sfij(y1/s1, . . . , yn/zn) =
gij(y1, . . . , yn) ∈ A[y1, . . . , yn]. Let B′ = A[y1, . . . , yn]. With this common denominator, the above is a monic
polynomial in B′s. That is, the zi/1 are integral over B′s. Since the zi/1 generate S−1B, they generate Bs as
well. Therefore, Bs is integral over B′s.

21. Let A ⊆ B be integral domains where B is a finitely-generated A-algebra and let f : A 7→ Ω be a ring
homomorphism where Ω is algebraically closed. From the above, there exists s ∈ A \ {0} such that Bs
is integral over B′s, where B′ = A[y1, . . . , yn] for some yi algebraically independent over A (since they are
algebraically independent over K = frac(A)). This s ∈ A \ {0} is the specified s in the problem. To see this,
assume f(s) 6= 0. Then f extends to a map B′ 7→ Ω defined by sending each yi 7→ 0. Since f(s) 6= 0, this then
extends further to a map B′s 7→ Ω (since Ω is a field, f(s) is invertible). Since Bs is integral over B′s, from
problem 2, this extends even further to a map Bs 7→ Ω. Mapping B 7→ Bs 7→ Ω is then the desired extension.

22. Let A ⊆ B be integral domains such that B is a finitely-generated A-algebra and the Jacobson radical of A
JA = 0. Let v ∈ B, v 6= 0. From the previous problem, since Bv is a finitely-generated A-algebra as well, there
exists some s ∈ A \ {0} that satisfies the previous problem. Let m be a maximal ideal of A not containing s (if
they all do, s = 0) and let k = A/m. The projection map A 7→ k extends to a map φ : Bv 7→ Ω, where Ω is an
algebraic closure of k. It is clear that φ(v) 6= 0 (if φ(v) = 0, then φ(b) = φ(v)φ(b/v) = 0 for all b ∈ B, but this
map extends a nontrivial map and so is nontrivial). Therefore, the composition ϕ : B 7→ Bv 7→ Ω is such that
ϕ(v) 6= 0. The kernel of this map satisfies kerϕ ∩ A = m and so kerϕ is maximal (If x ∈ kerϕ ∩ A, then the
projection of x is zero so x ∈ m. Conversely, if x ∈ m, x ∈ kerϕ and x ∈ A since m ⊆ A). Since v 6∈ kerϕ, this
implies v 6∈ JB . Since v ∈ B, v 6= 0 was arbitrary, this implies that JB = 0 as well.

23. (i) =⇒ (iii) Assume every prime ideal of A is the intersection of maximal ideals. If p is a prime ideal that is
not maximal, then it can be written

p =
⋂
i∈I

mi,

where the mi are maximal. From this, we can include any prime ideal that strictly contains p (note the maximal
ideals already strictly contain p) in this intersection (just intersect the above line with q where p ⊆ q). That
is, we may write

p =
⋂

q prime
p⊂q

q.

(iii) =⇒ (ii) The contrapositive will be proved. Assuming (ii) is false, there exists a surjective homomorphism
φ : A 7→ B where NB 6= JB . That is, there exists some prime ideal q of B such that q cannot be written as
the intersection of maximal ideals (where the containment is not necessarily strict. That is, q may be maximal
itself). This is because if every prime ideal can be written as the intersection of maximal ideals, then the
intersection of all prime ideals is equal to the intersection of all maximal ideals (remember every maximal
ideal is prime) and therefore, we should have NB = JB . Since the map φ : A 7→ B is surjective, there is the
correspondence of prime ideals in B with prime ideals of A containing kerφ. It is clear from this that p = qc

cannot be written as an intersection of maximal ideals (since the correspondence preserves inclusions and so
maximal ideals correspond). From this, passing to the quotient A/p, the Jacobson radical JA/p 6= 0 (consider
the set of maximal ideals that contain p, p is not equal to their intersection so the containment is proper). Let
f ∈ JA/p be nonzero. Then (A/p)f 6= 0 (f is not nilpotent since A/p is an integral domain). Therefore, there
is some maximal ideal m of (A/p)f . The contraction p′ = mc is such that f 6∈ p′ and is maximal in this set of
ideals that do not contain f (by the correspondence of prime ideals in A with S−1A). Then p′ is not maximal
since f ∈ JA/p and not equal to the intersection of all prime ideals that strictly contain it because any prime
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ideal that strictly contains p′ necessarily contains f . By the prime ideal correspondence of A with A/p, p′c has
these same properties.

(ii) =⇒ (i) The contrapositive will be proved. If there is a prime ideal p of A that is not an intersection of
maximal ideals, then consider the map A 7→ A/p. This is an integral domain so NA/p = 0, but the intersection
of all maximal ideals that contains p is not equal to p and so the containment

p ⊂
⋂

m maximal
p⊂m

m

is proper. That is, JA/p 6= 0.

Rings satisfying these properties is called a Jacobson ring.

24. The contrapositive of (i) will be proved. Let f : A 7→ B be an A-algebra, and B be integral over f(A). Assume
that B is not a Jacobson radical. Then there exists q, a prime, non-maximal ideal of B and assume that

q ⊂
⋂

q′ prime
q⊂q′

q′

is a proper containment. Then there exists g in the right hand side of the above and g 6∈ q. That is, the
extension q of q in Bg is a maximal ideal (any prime ideal properly containing q contains g). Since B is integral
over f(A), Bg is integral over (f(A))g. Then q∩ (f(A))g is a maximal ideal of (f(A))g. The contraction of this
ideal, p is an ideal of f(A) such that g 6∈ p and

p ⊂
⋂

p′ prime
p⊂p′

p′

is a proper containment (since every ideal properly containing p contains g). Note that this statement is exactly
that f(A) is not a Jacobson ring. That is, we’ve reduced to the case that f is surjective.

Since f(A) is not surjective, there exists some prime ideal p of f(A) such that p is properly contained in the
intersection of all maximal ideals that contain p. Consider the composition A 7→ f(A) 7→ f(A)/p. This map is
surjective and we have Nf(A)/p = 0 6= Jf(A)/p. Therefore, A is not a Jacobson ring.

The contrapositive of the above is that if A is a Jacobson ring and f : A 7→ B is a A-algebra such that B is
integral over f(A), then B is a Jacobson ring as well.

If B is finitely-generated over A, let q be a prime ideal of B and p = qc be a prime ideal in A. Then the map
f : A 7→ B induces a map f : A/p 7→ B/q. Since p can be written as the intersection of the maximal ideals that
contain it, JA/p = 0. From problem 22, this implies that JB/q = 0. That is, the intersection of the maximal
ideals that contain q is exactly q. Since q was arbitrary, this implies that B is a Jacobson ring.

25. (i) =⇒ (ii) Let A be a Jacobson ring and f : A 7→ B a finitely-generated A-algebra that is also a field.
Clearly, B is a finitely generated f(A)-algebra and B is finite over A if and only if it is finite over f(A) (by
definition of the action of A on B). From the previous problems, f(A) is also Jacobson and Nf(A) = Jf(A).
Since f(A) is contained in a field, it is an integral domain so in particular, Jf(A) = Nf(A) = 0. Therefore, it
suffices to consider A ⊆ B.

Since B is a field, we may use problem 21. Let s ∈ A \ {0} satisfy the conditions of problem 21 and m be a
maximal ideal of A such that s 6∈ m (possible since JA = 0). Then the homomorphism A 7→ A/m = k extends to
a homomorphism φ : B 7→ Ω (since s 6∈ m) where Ω is an algebraic closure of k. Since B is a field and φ extends
a nontrivial map, φ is nontrivial and hence injective. Since φ(B) ⊆ Ω, φ(B) is an algebraic extension of k.
Since B is a finitely-generated A-algebra, φ(B) is a finite algebraic extension of k (each generator satisfies some
polynomial equation, which gives a finite basis of φ(B) over k). Notice however that φ extends the projection
A 7→ A/m. Since kerφ = {0}, this implies that m = 0 and A = k. That is, φ(B) is a finite extension of A. This
clearly implies that B is a finite extension of A as well.

(ii) =⇒ (i) Let p be a prime ideal of A which is not maximal, and let B = A/p. For f ∈ B, f 6= 0, Bf is
a finitely-generated A-algebra (generated by 1/f). If it is a field, it is a finitely-generated A-module by our
assumptions. This then implies that Bf is a finitely-generated B-module (since multiplication by elements of
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A is really multiplication by their image in B). In particular, this implies that Bf is integral over B (since Bf
is finitely generated as a B-module, every element is integral). Then this would imply that B is a field, but
this contradicts that p is not maximal. Therefore, Bf is not a field. This implies there is some non-zero prime
ideal whose contraction in B is a non-zero prime ideal not containing f . That is, the intersection of all non-zero
prime ideals in B is 0. Contracting back to A and using the prime ideal correspondence with quotients, we
have that p is the intersection of all prime ideals that strictly contain p. Since p was arbitrary, this implies that
A is a Jacobson ring.

26. (1) =⇒ (2) Let X be a topological space. Let E be closed in X. Clearly, E ∩X0 ⊆ E since E is closed. For
any x ∈ E and open set U containing X, U ∩ E is locally-closed so (E ∩ X0) ∩ U 6= ∅ so that x ∈ E ∩X0.
Therefore, E ∩X0 = E.

(2) =⇒ (3) The mapping U 7→ U ∩X0 of open subsets of X to open subsets of X0 is surjective by definition
of the subspace topology on X0. Therefore, it suffices to show that this map is injective. Notice that if
U ∩X0 = V ∩X0 for U, V open in X, then (X \U)∩X0 = (X \V )∩X0. Taking closures, we get X \U = X \V
so that U = V . Therefore, this map is also injective and hence, bijective.

(3) =⇒ (1) Let A = U ∩ E where U is open and E = X \ V is closed. If A ∩X0 = U ∩ E ∩X0 = ∅, Then
U ∩X0 ⊆ X \ C = V . Intersecting with U ∩X0 on both sides, we have U ∩X0 = (U ∩ V ) ∩X0. This then
implies that U = U ∩ V so that U ⊆ V . That is, U ∩ E = ∅. Therefore, if U ∩ E 6= ∅, then A ∩X0 6= ∅.
A set satisfying these properties is said to be ”very dense”.

(i) =⇒ (ii) Let A be a Jacobson ring and Max(A) be the set of maximal ideals of A. For any ideal a of A,
since any prime ideal is the intersection of all prime ideals that contain it, we may write

r(a) =
⋂

p prime
a⊆p

p =
⋂

m maximal
a⊆m

m.

Now let a be an ideal such that r(a) = a and consider V (a). Notice

V (a) ∩Max(A) = {m ∈ max(A) : a ⊆ m}.

Therefore, V (a) contains V (a ∩Max(A)) if and only if b ⊆ m for every maximal ideal of A that contains a.
That is, if and only if

b ⊆
⋂

m∈Max(A)
a⊆m

m = r(a) = a.

From this, we have,

V (a) ∩Max(A) =
⋂
b⊆a

V (b).

However, b ⊆ a implies V (a) ⊆ V (b) so that the above implies

V (a) ∩Max(A) ⊇ V (a).

The other inclusion holds trivially. Therefore, the two are equal and Max(A) is very dense.

(ii) =⇒ (iii) Let {p} = V (a) \ V (b) be locally closed. Since Max(A) is very dense, {p} ∩ Max(A) 6= ∅.
Therefore, this intersection is exactly {p} so that p ∈ Max(A). Then {p} = V (p) = {p} so this set is closed.

(iii) =⇒ (i) The contrapositive will be proved. Assume there exists a non-maximal prime ideal p such that

p ⊂
⋂

p′ prime
p⊂p′

p′

is proper. Then let f be an element of the intersection on the right so that f 6∈ p. Then the extension p in
Af is maximal by the prime ideal correspondence with localizations. That is, {p} = V (p) \ V (f). However,

{p} 6= {p} since p is not maximal. Therefore, the locally-closed singleton {p} is not closed.
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27. Let Σ be the set of local subrings of k ordered under the relation of domination. To show that Σ has maximal
elements, we will use Zorn’s lemma. Let

(A1,m1) ⊆ (A2,m2) ⊆ . . .

be an increasing chain of local subrings of k. Note that (Ai,mi) ≤ (Aj ,mj) implies the inclusion map Ai ↪→ Aj
induces a nontrivial map (consider the image of 1) Ai/mi 7→ Aj/mj . Since this is a nontrivial map of fields, it
is injective (which implies mi = Ai ∩mj). Therefore, we have an increasing sequence of fields

A1/m1 ⊆ A2/m2 ⊆ . . . .

Let K = ∪Ai/mi. It is clear that K is a field and Ai/mi injects into K for each i. We now have a sequence of
maps πi : Ai 7→ K with kernel mi and Ai ⊆ Aj , mi ⊆ mj for i ≤ j. Let Λ be the set of pairs (B, g) such that
g : B 7→ K extends all of these maps. Λ is nonempty because there is a well-defined map π : ∪Ai 7→ K defined
by π(x) = πi(x) for x ∈ Ai. A simple use of Zorn’s lemma shows that Λ has maximal elements (do the same as
for the Ai for any increasing chain in Λ). That is, there exists (B, g) such that Ai ⊆ B and mi ⊆ ker g for each
i (the latter because g extends πi). It remains now to be seen that B is local and ker g is its maximal ideal.
Since g : B 7→ K and K is a field, ker g is prime. Since g(s) 6= 0 for s ∈ B \ ker g, we may localize and get an
extension g : Bker g 7→ K. Since (B, g) is maximal, this implies that Bker g = B and that every element not in
ker g is a unit. That is, B is a local ring with maximal ideal ker g. Therefore, (B, g) ∈ Σ is the desired upper
bound of the sequence (Ai,mi). It follows now by Zorn’s lemma that Σ has maximal elements.

If (B, n) ∈ Σ is maximal, consider the set Θ of pairings (A, f) where A is a subring of k containing B and
f : A 7→ Ω where Ω is the algebraic closure of B/n. Order Θ by (A1, f1) ≤ (A2, f2) if A1 ⊆ A2 and f2

∣∣
A1

= f1

(as in the text). By Zorn’s lemma, this set easily has maximal elements and similar to above, maximal elements
are local rings. Following the text, maximal elements of this set are also valuation rings over k. For such a
maximal element (C, g), g extends the projection π : B 7→ B/n so that n ⊆ ker g so that (B, n) is dominated
by (C, ker g). Therefore by maximality, C = B and B is a valuation ring over k.

Conversely, assume (A,m) ∈ Σ is a valuation ring over k and (B, n) ∈ Σ dominates (A,m). For b ∈ B ⊆ k, we
necessarily have either b ∈ A or b−1A. In the latter case, either b−1 is a unit in A or b−1 ∈ m. If b−1 is a unit
in A, then b ∈ A. If b−1 ∈ m, then b−1 ∈ n, but this implies 1 = bb−1 ∈ n. This is a contradiction. Therefore,
in any of the cases above, b ∈ A. This implies that (A,m) = (B, n) and so (A,m) is maximal.

28. (i) =⇒ (ii) The contrapositive will be proved. Let a, b be proper ideals of an integral domain A with
k = frac(A) and assume that b 6⊆ a and a 6⊆ b. Then there exists a ∈ a such that a 6∈ b and there exists b ∈ b
such that b 6∈ a. Consider a/b ∈ k. Clearly, a/b 6∈ A since if it were, a = b(a/b) ∈ b. Similarly, b/a 6∈ A since
this would imply b = a(b/a) ∈ a. Therefore, A is not a valuation ring.

(ii) =⇒ (i) Let x/y ∈ k for x, y ∈ A. Then either (x) ⊆ (y) or (y) ⊆ (x). In the first case, there exists a
z ∈ A such that x = zy. From this, we have that x/y = z ∈ A. In the other case, there exists z ∈ A such that
y = zx. From this, y/x = z ∈ A. Therefore, either x/y ∈ A or y/z ∈ A. That is, A is a valuation ring over k.

Let A be an integral domain that is a valuation ring over its field of fractions and p a prime ideal of A. Since
the ideals of A are in an order preserving correspondence with the ideals of A/p (ideals that contain p in this
case) and with the ideals of Ap (ideals that are contained in p in this case), both of these rings have their ideals
totally ordered. That is, they are valuation rings over their respective fields of fractions.

29. Let A be a valuation ring (integral domain) over a field k and let A ⊆ B ⊆ k for some integral domain B. It is
easy to verify that B is a local ring (the argument given that a valuation ring is local carries over almost word
for word). Let n be the maximal ideal of B (the set of all non-units) and let p = n ∩ A. Clearly, A \ (n ∩ A)
is the set of elements of A who, when considered as an element of B, are a unit. For b ∈ B, either b ∈ A or
b−1 ∈ A. If b ∈ A, then clearly, b = b/1 ∈ Ap. Similarly, if b−1 ∈ A, then b−1 ∈ B so that b−1 is a unit in
B. That is, b−1 ∈ A \ (n ∩ A) so that b = 1/b−1 ∈ Ap. Therefore, B ⊆ Ap. Conversely, if a/s ∈ Ap with
s ∈ A \ (n∩A) (and so is a unit in B), then considered as an element of K, we see a/s = as−1 ∈ B. Therefore,
the opposite inclusion holds as well. Therefore, we have B = Ap is a local ring of A.

30. Let A be a valuation ring of a field k. Since k is commutative, the set of units, U , of A forms a group under
multiplication, which is clearly a subgroup of the multiplicative group k∗. Let Γ = k∗/U be the quotient. Order
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Γ by ξ ≤ η if ηξ−1 ∈ A (for any choice of representative, since different representatives differ by a unit of A).
This relation is clearly reflexive and transitive. To show that it is antisymmetric, notice that if ηξ−1, ξη−1 ∈ A,
then ηξ−1 ∈ U so that η = ξ in Γ. Therefore, this defines a partial order. Since A is a valuation ring, for
every ξ, η ∈ Γ and representatives, x, y ∈ k∗, either xy−1 ∈ A or yx−1 ∈ A. Equivalently, either η ≤ ξ or
ξ ≤ η respectively. Therefore, this defines a total order on Γ. If θ ∈ Γ and ξ ≤ η, it is clear by writing out
representatives that ξθ ≤ ηθ so this order respects the group operation. From this, Γ is a totally ordered
abelian group (called the ”value group” of A).

Let v : k∗ 7→ Γ be the projection map and x, y ∈ k∗. Without loss of generality, assume that v(x) ≤ v(y) so
that yx−1 ∈ A (since x and y are representatives of v(x) and v(y) respectively). Then we have x−1(x + y) =
1 + yx−1 ∈ A so that

v(x+ y) ≥ v(x) = min{v(x), v(y)}.

Since v(xy) = v(x) + v(y) (where Γ is written additively), the above implies that v is a valuation on k with
values in Γ. Notice that v(x) ≥ 0 if and only if x1−1 = x ∈ A. That is, A = {x ∈ k∗ : v(x) ≥ 0} ∪ {0}.

31. Let Γ be a totally ordered abelian group (written additively) and let k be a field. A group homomorphism
v : k∗ 7→ Γ satisfying the inequality from the previous problem is said to be a valuation with values in Γ.

Let k be a field, Γ a totally ordered abelian group and v : k∗ 7→ Γ be a valuation. Let A = {x ∈ k∗ : v(x) ≥
0} ∪ {0}. First, this is an additive group since for every x, y ∈ A, the inequality v(x + y) ≥ min{v(x), v(y)}
ensures that x + y ∈ A and 0 = v(1) ≤ v(−1) ≤ v(1) implies that v(−x) = v(−1) + v(x) = v(x) implies that
−x ∈ A for all x ∈ A. The fact that v is a homomorphism ensures that xy ∈ A for all x, y ∈ A. Therefore,
A is a ring. For x ∈ k∗, we have 0 = v(1) = v(xx−1) = v(x) + v(x−1). If v(x) ≥ 0, then x ∈ A. If v(x) ≤ 0,
then v(x−1) ≥ 0 (remember the order preserves the group structure and add v(x−1) to both sides) implies that
x−1 ∈ A. That is, A is a valuation ring.

A is the valuation ring of the valuation v and v(k∗) is the value group of v.

32. Let A be a valuation ring of a field k, Γ = k∗/U (where U is the group of units of A), and v : k∗ 7→ Γ be the
corresponding valuation with values in Γ. For a prime p of A, consider the set

∆p = {ξ ∈ Γ : ±ξ ∈ v(A \ p)}.

Clearly, this set is closed under addition since A\p is multiplicative. Almost by definition, this set has additive
inverses (and identity). Therefore, it is a subgroup of Γ. Notice that since A\p ⊆ A, v(A\p) ⊆ {ξ ∈ ∆p : ξ ≥ 0}.
Conversely, for v(x) ∈ {ξ ∈ ∆p : ξ ≥ 0}, either v(x) ∈ v(A \ p) or −v(x) ∈ v(A \ p). In the latter case,
−v(x) = v(s) for some s ∈ A \ p so that v(xs) = 0 and xs is a unit in A. This implies that both x and s are
units in A and hence, not in p (the unit group is saturated). That is, x ∈ A \ p and v(x) ∈ v(A \ p). Therefore,

{ξ ∈ ∆p : ξ ≥ 0} = v(A \ p).

If 0 ≤ v(x) ≤ v(s) for some x ∈ A and s ∈ A \ p, then sx−1 ∈ A. That is, there exists a ∈ A such that
s = ax. From this, it is clear that x 6∈ p since x ∈ p would imply that s ∈ p. Therefore, v(x) ∈ v(A \ p) as well.
Therefore, for each prime p of A, the subgroup ∆p of Γ is isolated.

Define a map from Spec(A) into the set of isolated subgroups of Γ defined by p 7→ ∆p. Define a mapping in
the other directions as follows. For an isolated subgroup ∆ of Γ, define

p∆ = {x ∈ A : v(x) 6∈ ∆} = {x ∈ A : ∀ξ ∈ ∆, v(x) ≥ ξ}.

It is immediate from the second definition (that follows since ∆ is isolated) that p∆ is an ideal. To see that it
is prime, assume for that xy ∈ p∆ and y 6∈ p∆ (that is, v(y) ∈ ∆). Then for all ξ ∈ ∆,

v(x) + v(y) = v(xy) ≥ ξ.

Since v(y) ∈ ∆ =⇒ −v(y) ∈ ∆ and the ordering preserves the group structure,

v(x) ≥ ξ − v(y).

It is clear that this implies v(x) ≥ ξ for all ξ ∈ ∆. That is, x ∈ p∆. Therefore, p∆ is a prime ideal and the
assignment ∆ 7→ p∆ is well-defined.
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For a prime p of A, it is clear from the above that

p∆p
= {x ∈ A : v(x) 6∈ ∆p} = A \ v−1(∆p) = A \ (A \ p) = p.

Conversely, for an isolated subgroup ∆ of Γ, (this takes a second to verify)

∆p∆
= {v(x) ∈ Γ : ±v(x) ∈ v(A \ p∆)} = {v(x) ∈ Γ : ±v(x) ∈ ∆} = ∆.

Therefore, we have that the correspondence between prime ideals of A and isolated subgroups of Γ is bijective.

33. Let Γ be a totally ordered abelian group. Let k be a fiel and let A = k[Γ] be the group-algebra of Γ over k. By
definition, A is freely-generated as a k-vector space by elements xα with α ∈ Γ such that xαxβ = xα+β . To see
that A is an integral domain, simply notice that any nonzero element can be written

λ1xa1
+ . . .+ λnxan ,

where λi 6= 0 and a1 < . . . < an (where strict inequality ai < aj is ai ≤ aj and ai 6= aj). Then multiplication of
two such elements has maximal term given by the sum of maximal terms (with coefficient given as the product
of coefficients). From this, any two nonzero element necessarily gives a nonzero element and so A is an integral
domain.

If u ∈ A is an (nonzero) element of the above form, let v0(u) = a1. This is easily a well-defined mapping
v0 : A 7→ Γ. It is clear that this map is a homomorphism since the product of two such elements has minimal
term given by the product of the individual minimal terms. Similarly, if v0(u) ≤ v0(w), then the minimal term
of u+ w is clearly greater than or equal to v0(u) (they may cancel). That is, v0(u+ w) ≥ min{v(x), v(y)}.
Let K = frac(A) and define v : K∗ 7→ Γ by v(a/s) = v0(a)−v0(s). This clearly defines a group homomorphism.
To see the other property, assume

v(a)− v(s) = v(a/s) ≤ v(b/t) = v(b)− v(t).

Then v(at) ≤ v(bs) so that v(at+ bs) ≥ v(at) = v(a) + v(t). This implies

v(a/s+ b/t) = v((at+ bs)/st)

= v(at+ bs)− v(st)

≥ v(a) + v(t)− v(s)− v(t)

= v(a)− v(s) = v(a/s) = min{v(a/s), v(b/t)}.

Therefore, v defines a valuation on K with values in Γ. It is clear that v is surjective since v(xα/1) = α for all
α ∈ Γ. Therefore, Γ is exactly the value group of the valuation v.

34. Let A be a valuation ring and k its field of fractions. Let f : A 7→ B be a ring homomorphism such that
f∗ : Spec(B) 7→ Spec(A) is closed and g : B 7→ k be any A-algebra homomorphism. If C = g(B), then clearly,
A ⊆ C since g(a1) = ag(1) = a ∈ C. Let n be a maximal ideal of C. Since f∗ is closed, m = n ∩ A is
the maximal ideal of A (f∗(V (n)) is closed and a singleton. Therefore, the ideal of the image, m = n ∩ A is
maximal) (note, we are considering A ⊆ B since an A-algebra is really a f(A)-algebra). Since A is a valuation
ring, it is a local ring and therefore, m is its maximal ideal and Am = A. Notice that A = Am is a local ring
and a valuation ring over k so that it is maximal in the local subrings of k. Therefore, C ⊆ Cn ⊆ Am = A.
Therefore, g(B) = C = A.

35. If f : A 7→ B is integral and C is any A-algebra, from problem 2, the map f ⊗ Id : C = A⊗A C 7→ B ⊗A C is
integral. Therefore, the induced map (f ⊗ Id)∗ : Spec(B⊗AC) 7→ Spec(C) is closed. Conversely, let f : A 7→ B
be such that for any A-algebra C, the induced map (f ⊗ Id)∗ : Spec(B ⊗A C) 7→ Spec(C) is closed and assume
B is an integral domain.

As usual, assume that A ⊆ B (it is easy to see that this also does not change the tensor product) so that the
map f is injective. Let k = frac(B) and let A′ be a valuation ring of k containing A (which exists since the
integral closure of A in k is the intersection of all valuation rings of k that contain A). From this note, it then
suffices to show that B ⊆ A′ since then B is contained in all valuation rings that contain A and hence, the
integral closure of A in k.

Since A′ is an A-algebra, the map (f ⊗ Id)∗ : Spec(B⊗AA′) 7→ Spec(A′) is closed. From the previous problem,
we have that the image of the map φ : B ⊗A A′ 7→ k is A′ (φ is the multiplication map) (considering both of
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these as A′-algebras). Therefore, for all b ∈ B and a′ ∈ A′, ba′ ∈ A′. That is, b = b1 ∈ A′ for all b ∈ B so
that B ⊆ A′ and so B is contained in the integral closure of A in k. This implies that the map f : A 7→ B is
integral.

Let B be a ring with finitely many minimal primes pi and assume f : A 7→ B has the property above for any
A-module C. Then for any i, the surjective map B 7→ B/pi induces a surjective map B ⊗A C 7→ B/pi ⊗A C.
That is, B/pi⊗AC is isomorphic to a quotient of B⊗AC (all prime ideals that contain the kernel of this map).
From this, Spec(B/pi ⊗C) is a closed subspace of Spec(B ⊗A C) and so (f ⊗ Id)∗ restricts to the pull back of
the induced map Spec(B/pi ⊗A C) 7→ Spec(C). Therefore, this map is closed as well and the composite map
A 7→ B 7→ B/pi satisfies the above property as well. Since B/pi is an integral domain, this implies this map is
integral. Since there are finitely many, this implies the map A 7→

∏
iB/pi is integral. Considering the product

of projections, B 7→
∏
iB/pi, the kernel is obviously NB = ∩ipi so that

∏
iB/pi ' B/NB . Therefore, the map

A 7→ B/NB is integral. That is, for every b ∈ B, there are coefficients ai ∈ A such that

bn + a1b
n−1 + . . .+ an ∈ NB .

Raising this polynomial to a high enough power gives a monic polynomial with coefficients in A that b satisfies.
That is, B is integral over A so the map f : A 7→ B is integral.

Chapter 6

1a. Let M be an A-module and u : M 7→M be a surjective module homomorphism that is not injective. Consider
the sequence of submodules

0 ⊂ keru ⊂ keru2 ⊂ . . . .

It will be shown by induction that these inclusions are proper. The first inclusion is proper simply because
keru 6= {0}. Assuming keruk−1 ⊂ keruk, let a ∈ kerun, a 6∈ kerun−1. Since u is surjective, there exists
b ∈ M such that u(b) = a. Then uk(b) = uk−1(a) 6= 0, but uk+1(b) = uk(a) = 0. Therefore, b ∈ keruk+1, but
b 6∈ keruk. Therefore, M is not Noetherian.

The contrapositive of this statement is that if M is Noetherian and u : M 7→ M is a surjective module
homomorphism, then u is injective and hence, an isomorphism.

1b. Let M be an A-module and u : M 7→M be an injective module homomorphism that is not surjective. Consider
the sequence of submodules

M ⊃ Imu ⊃ Imu2 ⊃ . . . .

It will again be shown by induction that these inclusions are proper. The first inclusion is proper because
Imu 6= M . Assuming that Imuk−1 ⊃ Imuk, let a ∈ Imuk−1, but a 6∈ Imuk. Then there exists b ∈ M such
that uk−1(b) = a so that u(a) = uk(b) ∈ Imuk. However, if u(a) = uk+1(c), then by injectivity, a = uk(c) for
some c, which is not possible. Therefore, u(a) ∈ Imuk, but u(a) 6∈ Imuk+1. Therefore, M is not Artinian.

The converse of this is that if M is an Artinian ring and u : M 7→ M is an injective module homomorphism,
then u is surjective and hence, an isomorphism.

2. Let M be an A-module such that every non-empty set of finitely generated submodules has a maximal element.
Let N be a submodule of M and consider the set of finitely-generated submodules of N . This set has a maximal
element, N0. For n ∈ N , we may consider N0 + An. Since this module is finitely-generated by the generators
of N0 and n, maximality of N0 implies that n ∈ N0. That is, we necessarily have N = N0 so that N is
finitely-generated. Therefore, M is Noetherian.

Clearly, the converse holds as well. If M is Noetherian, then every non-empty subset of submodules has a
maximal element so that in particular, every non-empty set of finitely-generated submodules has a maximal
element.

3. Let M be an A-module and let N1, N2 be submodules of M such that M/N1 and M/N2 are Noetherian (or
Artinian). Consider the ring homomorphism φ : M 7→ (M/N1) ⊕ (M/N2). Clearly, kerφ = N1 ∩ N2 so that
there is an isomorphism M/(N1 ∩ N2) ' (M/N1) ⊕ (M/N2) Since M/Ni are Noetherian (resp. Artinian),
so is their direct sum. Since these are isomorphism invariants (there is a bijective correspondence between
submodules), this implies that M/(N1 ∩N2) is Noetherian (resp. Artinian).
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4. First, a result which will be useful later. Let M be a finitely-generated faithful A module and let p, q be ideals
such that pM ⊆ qM . Define a module homomorphism φ : M 7→ M by φ(m) = pm for some p ∈ p. Then
φ(M) = pM ⊆ qM . By the Cayley-Hamilton theorem, there is some equation of the form

φn + q1φ
n−1 + . . .+ qn = 0

for qi ∈ q. That is, the map on the left is the zero map. Since M is a faithful A-module, this then implies

pn + q1p
n−1 + . . .+ qn = 0.

This may be rewritten as follows.

p(pn−1 + q1p
n−2 + . . .+ qn−1) = −qn ∈ q

Therefore, either p ∈ q or pn−1 + q1p
n−2 + . . . + qn−1 ∈ q. It is clear that we may continue to decrease the

degree so this process eventually terminates with p ∈ q. Therefore, p ⊆ q.

Let M be a Noetherian A-module and let a = ann(M). We know M is a faithful A/a-module. Let

p1 ⊆ p2 ⊆ . . .

be an increasing sequence of prime ideals of A/a. Then

p1M ⊆ p2M ⊆ . . .

is an increasing sequence of submodules of M . Therefore, there exists n such that pmM = pnM for m ≥ n.
Since M is Noetherian, M is finitely-generated (as an A/a-module) and the above then implies that pm = pn
for m ≥ n. That is, the sequence of prime ideals above is stationary and so A/a is Noetherian.

It is clear that the same process works with Artinian in place of Noetherian and inclusions reversed in the
chains.

5. Let X be a Noetherian topological space and Y ⊆ X be a subspace. First, notice that for open sets U1 ⊆ U2

of Y , there exists open sets W1,W2 of X such that Wi ∩ Y = Ui. We may choose W2 to contain W1 by taking
the union if necessary. That is, for any open sets U1 ⊆ U2 of Y , there exists open sets W1 ⊆ W2 of X such
that Wi ∩ Y = Ui.

Now let U1 ⊆ U2 ⊆ . . . be an ascending chain of open subsets of Y . From the above, we can inductively find
open subsets W1 ⊆ W2 ⊆ . . . of X such that Wi ∩ Y = Ui. Since X is Noetherian, there exists some n such
that for m ≥ n, Wm = Wn. Then it is clear that Um = Wm ∩ Y = Wn ∩ Y = Un. Therefore, the sequence of
open sets U1 ⊆ U2 ⊆ . . . is stationary and so Y is a Noetherian topological space as well.

If {Ui}i∈I is an open cover of X, consider the set of finite unions of the Ui, {VJ}J⊆I . Since these sets are open
and X is Noetherian, there is necessarily a maximal element V0 ∈ {VJ}J⊆I . For x ∈ X, we may find an open
subset U0 containing x. Then V0 ∪ U0 is a finite union of the Ui and by maximality is equal to V0. That is,
x ∈ V0. Therefore, V0 = X and X is a finite union of the Ui. Therefore, X is a Noetherian topological space.

6. (i) =⇒ (iii) This follows from the above since every subspace of a Noetherian topological space is Noetherian
and a Noetherian topological space is quasi-compact.

(iii) =⇒ (ii) This is immediate.

(ii) =⇒ (i) Let X be a topological space such that every open subspace of X is quasi-compact and consider
an ascending chain of open sets U1 ⊆ U2 ⊆ . . . of X. Then the set U = ∪Ui is open and so is quasi-compact.
If we write each Ui as a finite union Ui = ∪jVij , then each Vij is open in U and these sets cover U . Therefore,
there are finitely many Vi1j1 , . . . Vinjn that cover U . If n ≥ max{ik}nk=1, then we have that Um = Un for m ≥ n,
since Un = U . That is, the sequence of open sets of X is stationary and so X is Noetherian.

7. Let X be a Noetherian topological space. Let Σ be the set of closed subsets of X that are not finite unions
of closed, irreducible spaces. If Σ is nonempty, since X is Noetherian, there is some minimal element Y ∈ Σ.
Since Y itself cannot be irreducible (then it would be a finite union of closed, irreducible spaces, itself) there
exists two nonempty open sets U, V of Y such that U ∩ V = ∅. The complements of these sets A,B are then
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proper subsets of Y and such that A ∪ B = Y . By minimality of Y , we necessarily have that A and B are
finite unions of closed, irreducible sets, but then Y = A ∪ B is a finite union of closed, irreducible sets. This
is a contradiction. Therefore, Σ = ∅. Since X itself is a union of closed, irreducible sets (from chapter 1), this
implies that X can be written as a finite union of closed, irreducible sets.

8. Let A be a Noetherian ring and V (a1) ⊇ V (a2) ⊇ . . . be a decreasing sequence of closed subsets of Spec(A).
We see for i ≤ j,

r(ai) =
⋂

p∈V (ai)

p ⊆
⋂

p∈V (aj)

p = r(aj).

Therefore, we have an increasing sequence of ideals

r(a1) ⊆ r(a2) ⊆ . . . .

Therefore, for some n, r(am) = r(an) for m ≥ n. Then V (am) = V (r(am)) = V (r(an)) = V (an) so that the
sequence of closed subsets is stationary. That is, Spec(A) is a Noetherian topological space.

To show the converse is not true, let k be a field, consider the polynomial ring k[x1, x2, . . .] in countably many
indeterminants, the ideal a generated by the indeterminants x1, . . ., and the quotient A = k[x1, . . .]/a

2. Clearly,
the sequence of ideals

(x1) ⊂ (x1, x2) ⊂ . . .

is strictly increasing so that A is not Noetherian. However, Spec(A) is finite and so necessarily is Noetherian
(in fact, Spec(A) is a singleton. Every prime ideal contains every xi since they are nilpotent. Conversely, the
ideal generated by the xi is maximal since the quotient is the field k).

9. Let A be a Noetherian ring. From the previous exercise, Spec(A) is Noetherian. Therefore, Spec(A) has finitely
many irreducible components. Since the irreducible components of Spec(A) are in bijection with the minimal
primes of A (from chapter 1), there are finitely many minimal primes of A.

10. Let M be a Noetherian A-module and a = ann(M). From a previous problem, since M is finitely-generated,
we have

Supp(M) = V (a) = Spec(A/a).

From an earlier problem in this chapter, we know that A/a is a Noetherian ring since M is Noetherian.
Therefore, Spec(A/a) is a closed, Noetherian subspace of Spec(A).

11. First, it will be shown that every ideal in a Noetherian ring has a primary decomposition. From the primary
decomposition chapter, we need only show that a Noetherian ring satisfies (L1) and (L2) (defined in a previous
problem).

Let A be a Noetherian ring, a be an ideal and p be any prime ideal. We know that

Sp(a) =
⋃

s∈A\p

(a : s).

Consider Σ = {(a : s) : s ∈ A \ p}. Since A is Noetherian, there is some maximal element of Σ, say (a : x) for
x ∈ A \ p. For y ∈ Sp(a), there exists some s ∈ A \ p such that sy ∈ a. Consider (a : sx) (where sx ∈ A \ p
since they both are). It is clear that (a : x) ⊆ (a : sx) so that

y ∈ (a : sx) = (a : x).

Therefore, Sp(a) = (a : x) (since the other inclusion holds trivially). Therefore, (L1) is satisfied.

Let a be an ideal and S1 ⊇ S2 ⊇ . . . be a decreasing sequence of multiplicatively closed subsets. Clearly,
S1(a) ⊆ S2(a) ⊆ . . . is an increasing sequence of ideals and so is stationary. Therefore, (L2) is satisfies almost
trivially.

Since these are both satisfied, every ideal of a Noetherian ring has a primary decomposition.
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From a problem last chapter, it was shown that if f : A 7→ B is such that f∗ : Spec(B) 7→ Spec(A) is a closed
map, then f has the going-up property.

Assume Spec(B) is Noetherian, f : A 7→ B has the going-up property, and f∗ : Spec(B) 7→ Spec(A) is the
induced map on spectra. As usual, we can reduce to the case that A ⊆ B and f : A 7→ B is the inclusion map
since the map f∗ : Spec(f(A)) 7→ Spec(A) is a homeomorphism onto the closed set, V (ker f).

Let V (b) ⊆ Spec(B) be an arbitrary closed subset of Spec(B). From the above, there exists a primary
decomposition

b =

n⋂
i=1

qi,

where r(qi) = pi. This implies

V (b) =

n⋃
i=1

V (qi) =

n⋃
i=1

V (pi).

Since then

f∗(V (b)) =

n⋃
i=1

f∗(V (pi)),

it suffices to show that each f∗(V (pi)) is closed (where f is the inclusion map). However, the going-up property
immediately implies that f∗(V (p)) = V (pc) = V (p ∩ A) for any prime p of B. The inclusion ⊆ holds trivially.
For the other inclusion, consider any containment of prime ideals p ∩ A ⊆ p′. By the going-up property, there
exists a prime ideal q of B such that p ⊆ q and qc = q ∩ A = p′. Therefore, f∗(V (pi)) = V (pi ∩ A) and so f∗

is a closed map.

12. Let A be a ring such that Spec(A) is Noetherian. Consider a sequence of increasing prime ideals p1 ⊆ p2 ⊆ . . ..
This gives rise to the decreasing sequence of closed sets

V (p1) ⊇ V (p2) ⊇ . . . .

Since Spec(A) is Noetherian, we eventually have V (pm) = V (pn) for m ≥ n. We then have

pm = r(pm) =
⋂

q∈V (pm)

q =
⋂

q∈V (pn)

q = r(pn) = pn.

Therefore, the sequence of prime ideals is stationary. That is, the set of prime ideals satisfies the ascending
chain condition.

To show that the converse does not hold, consider the ring A =
∏∞
i=1 Z/2Z. It is clear that every prime ideal is

maximal (the quotient by a prime ideal has two elements and so is a field). Therefore, A satisfies the ascending
chain condition for prime ideals. However, there is a strictly decreasing sequence of closed subsets of Spec(A).

V (e1) ⊃ V (e1, e2) ⊃ . . .

To see that each containment is proper, notice that (1 − ek) ∈ V (e1, . . . , ek−1), but (1 − ek) 6∈ V (e1, . . . , ek)
(and (1− ek) ∈ Spec(A) clearly).

Chapter 7

1. Let A be a non-Noetherian ring, Σ be the set of ideals in A that are not finitely-generated. By Zorn’s
lemma, it is easy to see that there are maximal elements of Σ (for an increasing chain of not finitely-generated
ideals, their union is an ideal that is not finitely-generated). Let a ∈ Σ be maximal and let xy ∈ a with
x 6∈ a. Since x 6∈ a, a ⊂ a + (x) so that a + (x) is necessarily finitely-generated by say {ai + bix}ni=1.
Let a0 = (a1, . . . , an). Clearly, a0 is finitely-generated and a0 + (x) ⊆ a + (x). The other inclusion follows
immediately since a + (x) = (a1 + b1x, . . . , an + bnx). Therefore,

a0 + (x) = a + (x).
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We clearly have a ⊇ a0 + x · (a : x). For a ∈ a ⊆ a + (x), we may write a = a0 + bx for a0 ∈ a0. Subtracting
a0, we get that bx ∈ a so b ∈ (a : x). That is,

a = a0 + bx ∈ a0 + x · (a : x).

Therefore, we have a = a0 + x · (a : x). If (a : x) is finitely-generated, we get that a is finitely-generated,
which is a contradiction. Therefore, (a : x) ∈ Σ, but a ⊆ (a : x) so that they are necessarily equal a = (a : x).
Therefore,

y ∈ (a : x) = a.

That is, a is necessarily prime. Therefore, if A is non-Noetherian, then there exists prime ideals that are not
finitely-generated. The contrapositive of this statement is that if all prime ideals of a ring are finitely-generated,
then the ring itself is Noetherian.

2. The implication that if f ∈ A[[x]] is nilpotent than the coefficients are nilpotent was an exercise from the first
chapter. It is very easy to see that if f ∈ A[[x]] is nilpotent, then the term of lowest power is nilpotent (and so
the coefficient as well). Subtracting, we get g ∈ A[[x]] of higher lowest term that is still nilpotent. Continuing
in this way by induction, it follows that every coefficient is nilpotent.

If f ∈ A[[x]] has coefficients ai ∈ NA, then since A is Noetherian, NA is nilpotent and there exists m > 0 such
that Nm

A = 0 (that is, all products of m nilpotents is zero). Then fm = 0 since every coefficient is in Nm
A = 0.

3. (i) =⇒ (ii) Let a be a proper irreducible ideal of a ring A. Assume a is primary with r(a) = p and S is a
multiplicative subset of A. If S ∩ p 6= ∅, then aec = (1) = (a : sn) for s ∈ S ∩ p and n sufficiently large (so that
s ∈ a). If S ∩ p = ∅, then for every s ∈ S, if x ∈ (a : s), since s 6∈ p, x ∈ a. That is,

a ⊆ (a : s) ⊆ a.

Therefore, we have equality.

(ii) =⇒ (i) From a previous problem (chapter 4, problem 17) if this property holds, the ideal a can be
decomposed into the intersection of a primary ideal and an ideal that properly contains a. Since a is irreducible,
this implies that a is then primary.

(i) =⇒ (iii) Let a be primary and r(a) = p. If x ∈ p, then xn ∈ a for some n > 0 so that (a : xn) = (1)
and so this sequence is stationary. If x 6∈ p, then it is easy to see that (a : x) ⊆ a. Since the other inclusion is
immediate, we have equality and so this sequence is stationary as well.

(iii) =⇒ (i) Passing to the quotient A/a, it suffices to show that every nonzero zero-divisor is nilpotent.
Our hypotheses are then (by the correspondence of ideals under quotients) that for every x ∈ A, the sequence
ann(xn) is stationary. For xy = 0 and y 6= 0, our hypotheses imply that (xn) ∩ (y) = 0 for n such that the
sequence of annihilators is stationary at n. Indeed, if a ∈ (y) ∩ (xn), ax = 0 (since a ∈ (y)), and a = bxn for
some b ∈ A. But then, bxn+1 = ax = 0 implies that b ∈ ann(xn+1) = ann(xn). That is, a = bxn = 0. Since a
is irreducible, 0 is irreducible in A/a. Since y 6∈ 0, this then implies that xn = 0 so x is nilpotent. Therefore, a
is primary.

4a. Let A1 be the ring of rational functions C(x) with no pole on the unit circle, S1. Consider the inclusion
C[x] ↪→ A1. For any ideal a of A1, ac is clearly the set of numerators of elements of A1. Then an increasing
sequence of ideals a1 ⊆ a2 ⊆ . . . induces an increasing sequence of ideals ac1 ⊆ ac2 ⊆ . . .. Since C[x] is a finitely-
generated algebra over a field, it is Noetherian and this sequence is stationary. It is clear that the extension of
a contracted ideal is the original ideal itself (just put denominators back). Therefore, the original sequence of
ideals is stationary as well.

4b. Let A2 be the ring of analytic functions with convergent power series at z = 0 (that is, positive radius of
convergence). For any ideal a, let

f(z) =

∞∑
n=k

anz
n ∈ a

be such that k is minimal with ak 6= 0 (Note that k = 0 implies f is a unit). Then for any

g(z) =

∞∑
n=l

bnz
n ∈ a,
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g/f has a removable singularity at z = 0 and therefore is analytic in some neighborhood of z = 0. That is,
g/f ∈ A2. Then g = f(g/f) ∈ (f). This then implies that a = (f) so that A2 is a PID and hence, Noetherian.

4c. Let A3 be the ring of entire functions and consider the increasing chain of ideals

(sin z) ⊂ (sin z/2) ⊂ (sin z/4) ⊂ . . . .

These inclusions are clearly proper since if g(w) sinw = sinw/2, then g(w) necessarily has poles (for example
at w = π) and so g is not entire. Therefore, A3 is not Noetherian.

4d. Let A4 be the set of polynomials whose first k derivatives vanish (note k = 0 is not included so the ring has an
identity). It is clear that every element of f ∈ A4 may be written

f(z) = a0 +

m∑
n=k+1

anz
n.

From this, A4 is a finitely-generated C-algebra and hence, Noetherian (generated by {1, zk+1, zk+2, . . . , z2k+1}).

4e. Let A5 be the ring of polynomials C[z, w] such that all partial derivatives (except the 0-th) with respect to w
vanish for z = 0. Consider the increasing chain of ideals

(zw) ⊂ (zw, zw2) ⊂ (zw, zw2, zw3) ⊂ . . . .

To show this chain is strictly increasing, we need only show zwn+1 6∈ (zw, zw2, . . . , zwn). As an equality of
polynomials, it is clear that if zwn+1 = g(z, w)zwk for k ≤ n, then g is independent of z. However, this should
imply that g is a constant since the partial derivatives then need vanish. This is a contradiction. Therefore,
the inclusions are proper and so A5 is not Noetherian.

5. Let A be a Noetherian ring, B a finitely-generated A-algebra, G a finite group of A-automorphisms of B, and
BG the set of elements fixed by all elements of G. As usual, we may consider A ⊆ B. Then this follows
immediately from proposition 7.8. Indeed, A is Noetherian, B is a finitely-generated A-algebra, and B is
integral over BG. Therefore, BG is a finitely-generated A-algebra.

6. Let K be a finitely-generated ring that is also a field. If charK = 0, then Z ⊆ Q ⊆ K and so K is finitely-
generated over Q. By Zariski’s lemma, K is a finite algebraic extension of Q and therefore a finitely-generated
Q-module. Since Z is Noetherian, K is a finitely-generated Z-algebra (it is a finitely-generated ring), and K is
finitely-generated as a Q-module, by proposition 7.8, we get a contradiction since this should imply that Q is
a finitely-generated Z-algebra. Therefore, charK > 0.

Therefore, K is finitely-generated as a Z/pZ-algebra for some prime p > 0. By Zariski’s lemma, this implies
that K is a finite algebraic extension of Z/pZ and is therefore a finite field.

7. Let X be an affine algebraic variety over a field k given by the family of equations fα(t1, . . . , tn) = 0 for α ∈ I
for some index set I. Consider the corresponding ideal a generated by the fα. By the Hilbert basis theorem,
this ideal is finitely-generated and so we may write

a = (f1, . . . , fn).

That is, each of the above fα can be written as linear combinations of these fi and vice versa (so if one set is
zero, so is the either set). Therefore, X is determined by finitely many polynomials, f1, . . . , fn.

8. Let A be a ring such that A[x] is Noetherian. For any increasing chain of ideals a1 ⊆ a2 ⊆ . . . of A, consider
the chain of ideals

a1 + (x) ⊆ a2 + (x) ⊆ . . .

of A[x]. Since A[x] is Noetherian, this sequence is stationary. Taking contractions and using that (ai + (x))c =
(ai + (x)) ∩ A = ai, we get that the original sequence of ideals is stationary as well. That is, A is Noetherian
as well.
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9. Let A be a ring such that for every maximal ideal m of A, Am is Noetherian and for every x ∈ A, x 6= 0, there
are finitely many maximal ideals that contain x. Let a be a nonzero ideal of A and let m1, . . . ,mr be the set
of maximal ideals that contain a (there are finitely many because if there were infinitely many, every point
of a is contained in infinitely many maximal ideals). Let x0 ∈ a, x0 6= 0 and let m1, . . . ,mr+s be the set of
maximal ideals that contain x0. Since mr+1, . . . ,mr+s don’t contain a, there exists xj ∈ a such that xj 6∈ mr+j
for 1 ≤ j ≤ s. Since Ami is Noetherian for each 1 ≤ i ≤ r, the extension of a to Ami is finitely-generated. Then
there are xr+s+1, . . . xt ∈ a whose images generate aAmi for 1 ≤ i ≤ r. Let a0 = (x0, . . . , xt).

For any mi, 1 ≤ i ≤ r, we know that the images of the xr+s+1, . . . , xt generate aAmi so that the extensions
of a0 and m agree in these localizations. For the remaining maximal ideals that contain x0, mr+1, . . . ,mr+s,
xj ∈ A\mr+j with xj ∈ a∩a0 so that the extensions of these ideals to these localizations are the unit ideal and
so agree. For the remaining maximal ideals that don’t contain x0, x0 ∈ a∩a0 so that once again, the extensions
of these ideals are the unit ideal and so agree. That is, the extensions of a and a0 agree in all localizations of
maximal ideals.

Consider the A-module homomorphism a0 ↪→ a. Since localizations of this map at all maximal ideals is
surjective, the map itself is surjective and so we necessarily have a = a0 is finitely generated. Since a was an
arbitrary ideal, this implies that A is Noetherian.

10. Let M be a Noetherian A-module and let M [x] be the polynomial ring with coefficients in M be an A[x]-module.
By imitating the proof of the Hilbert basis theorem, it will follow that M [x] is a Notherian A-module. Let N
be a submodule of M [x]. Consider the submodule P of M generated by the leading coefficients of elements of
N (it is clear that this is an A-module). Since M is a Noetherian A-module, P is finitely generated, say by
a1, . . . , an. For each 1 ≤ i ≤ n, there then exists fi ∈ N such that

fi(x) = aix
ri +

ri−1∑
j=0

fijx
j .

Let r = max{ri}ni=1 and N ′ be the submodule of M [x] generated by the fi. For any f ∈ N , if deg f = m ≥ r,
the leading term of f is necessarily given by axm with a ∈ P . We may write

a =

n∑
j=1

ujaj

for some uj ∈ A. Then

f(x)−
n∑
j=1

ujx
m−rjfj(x)

has degree strictly less than m. That is, we may reduce the degree of f until deg f < r. If N ′′ is the A-module
consisting of polynomials in M [x] of degree strictly less than r, then from the above degree reduction, we have
that N = N ′ + N ′′. Notice that as N ′′ ' Mr and so is Noetherian (since M is Noetherian). If g1, . . . , gm
generate N ′′ as an A-module, then the finite collection f1, . . . , fn, g1, . . . , gm generates N (as an A[x]-module,
but you really only need coefficients from A for the gj). Therefore, M [x] is Noetherian.

11. Being Noetherian is not a local property. Let A = ⊕∞i=1Z/2Z (direct sum). It is easy to see that A is not
Noetherian since the sequence of ideals (e1) ⊂ (e1, e2) ⊂ . . . is not stationary. It isn’t hard to see that the only
prime ideals of A are (ej)j 6=i (since if p 6= (1), there is necessarily some ei 6∈ p. Then eiej = 0 ∈ p implies
ej ∈ p. Conversely, for any element of p, if the i-th component is nonzero, multiplying by ei gives that ei ∈ p.
From this, every element of p is a sum of ej for j 6= i. Therefore, p = (ej)j 6=i). It is not too difficult to see that
for p = (ej)j 6=i, A \ p = {a ∈ A : aei = ei}. Then for f/g ∈ Ap,

f

g
=
fei
gei

=
fei
ei
.

Here, either fei = 0 or fei = ei so that Ap has exactly two elements and so is a field. Therefore, Ap is
Noetherian for each prime p, but A is not Noetherian.

12. Let A be a ring and f : A 7→ B be a faithfully-flat Noetherian A-algebra. If a1 ⊆ a2 ⊆ . . . is an ascending chain
of ideals in A, then

ae1 ⊆ ae2 ⊆ . . .
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is an ascending chain of ideals in B. Since B is a Noetherian, this sequence is stationary. Since B is faithfully-
flat, contracting the above sequence gives the original sequence. Since this sequence is stationary however, the
original sequence is necessarily stationary as well. Therefore, A is Noetherian.

13. Let f : A 7→ B be a finitely-generated A-algebra (for which we can assume A ⊆ B and f is the inclusion map)
and f∗ : Spec(B) 7→ Spec(A) be the induced map on spectra. From a previous problem, we know fibers are
given by

(f∗)−1(p) = Spec(k(p)⊗A B),

where k(p) is the residue field of A at p. From this, it suffices to show that the ring k(p)⊗A B is Noetherian.
From the Hilbert basis theorem, we know that k(p)[t1, . . . , tn] ' k(p) ⊗A A[t1, . . . , tn] is a Noetherian ring
for all n > 0. Since there is a surjective map A[t1, . . . , tn] 7→ B, tensoring with k(p) gives a surjective map
k(p)[t1, . . . , tn] 7→ k(p)⊗A B. Since this is surjective, we have that k(p)⊗A B is Noetherian.

14. Let k be an algebraically closed field, A = k[t1, . . . , tn], a be an ideal of A, X be the variety in kn determined
by a, and I = I(X) be the ideal of polynomials that vanish identically on X. Clearly, r(a) ⊆ I since k is a
field. If f 6∈ r(a), then there is some prime ideal p that contains a but not f (localize at (fn)n≥0). Let f be
the image of f in B = A/p, C = Bf , and m be a maximal ideal of C. Since C is generated by the ti/1 and 1/f
as a k-algebra, C is finitely-generated as a k-algebra and also a field so that C/m ' k by Zariski’s lemma. Let
(x1, . . . , xn) = (π(t1/1), . . . , π(tn/1)) ∈ (C/m)n = kn be the images of the generators of the ti in C/m = k.

For g ∈ a, using that the maps above are all ring homomorphisms, we get that

g(x1, . . . , xn) = π(g(t1, . . . , tn)/1) = 0,

since g(t1, . . . , tn) ∈ a ⊆ p. Therefore, (x1, . . . , xn) ∈ X. Similarly, we may write

f(x1, . . . , xn) = π(f(t1, . . . , tn)/1).

Since f 6∈ p, f(t1, . . . , tn) 6= 0. Since B is an integral domain, f(t1, . . . , tn)/1 6= 0 (B 7→ Bf is injective),

and since this is a unit in C, π(f(t1, . . . , tn)/1) 6= 0. That is, f(x1, . . . , xn) 6= 0. Therefore, f 6∈ I. The
contrapositive of this is that I ⊆ r(a). Combining inclusions, we get that I = r(a).

15. (i) =⇒ (ii) Let (A,m) be a Noetherian local ring with residue field k and M be a finitely-generated A-module.
If M is free, then M is isomorphic to a direct sum of A and so is flat.

(ii) =⇒ (iii) If M is flat, then clearly the injective map m ↪→ A induces an injective map m ⊗A M ↪→
A⊗AM = M .

(iii) =⇒ (iv) This follows immediately by writing out the induced Tor sequence for the exact sequence

0→ m→ A→ k → 0.

(iv) =⇒ (i) Let x1, . . . , xn be elements of M whose images in M/mM form a basis of M as a k-vector space.
As a consequence of Nakayama’s lemma, the xi generate M . Let F be the free A-module with basis e1, . . . , en
so that φ : F 7→M defined by φ(ei) = xi is surjective. If E = kerφ, we have an exact sequence

0→ E → F →M → 0.

Tensoring with k, we get a new exact sequence (using that TorA1 (k,M) = 0)

0→ k ⊗A E → k ⊗A F → k ⊗AM → 0.

Since the latter map is a surjective map between vector spaces of the same dimension, it is necessarily injective
so that k ⊗A E = 0. From a previous problem (chapter 2, problem 2), we have that k ⊗A E ' E/mE = 0.
Since A is a local ring, JA = m so that by Nakayama’s lemma, E = 0. Therefore, the map φ itself is injective
and so is an isomorphism. Therefore, M is free.

16. (i) =⇒ (ii) Let A be a Noetherian ring and M a finitely-generated A-module. If M is a flat A-module, then
Mp is a flat Ap-module for each prime p. From the last problem, since Ap is a Noetherian local ring and Mp

is finitely generated as a Ap-module, this implies that Mp is a flat Ap-module for any prime p.

(ii) =⇒ (iii) This is immediate.

(iii) =⇒ (i) If Mm is a free Am-module for every maximal ideal m, then Mm is a flat Am-module for every
maximal ideal m from the previous problem. Since flatness is a local property, this implies that M is a flat
A-module.
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17. Let A be a ring and M a Noetherian A-module. Let a submodule N of M be irreducible if for every submodules
N ′, N ′′ such that N = N ′ ∩N ′′, either N ′ = N or N ′′ = N .

Suppose there is a submodule that is not a finite intersection of irreducible submodules. Then the set Σ of
such submodules is non-empty. Since M is Noetherian, it has some maximal element N . Note that N itself
is not irreducible since then it is a finite intersection of irreducible submodules. Therefore, N = N ′ ∩ N ′′ for
some submodules N ′, N ′′ where neither is equal to N . Since N ⊂ N ′, N ′′, N ′ and N ′′ are finite intersections of
irreducible submodules so N = N ′∩N ′′ is a finite intersection of irreducible submodules. This is a contradiction.
Therefore, every submodule of M is a finite intersection of irreducible submodules.

Let N be an irreducible submodule of M . We wish to show that every zero-divisor of M/N is nilpotent. Since
N is irreducible, 0 is irreducible in M/N . Let x ∈ A be such that φx : M 7→ M defined by m 7→ xm is not
injective. Consider the ascending sequence of submodules

kerφx ⊆ kerφx2 ⊆ . . . .

Since M is Noetherian, M/N is Noetherian and so this sequence is stationary. Let n be such that kerφxn =
kerφxn+1 . Then Imφxn ∩ kerφx = 0. Indeed, if m ∈ kerφx, then xm = 0. But m ∈ Imφxn implies m = xnm′

so that xm = xn+1m′ = 0 so m′ ∈ kerφxn+1 = kerφxn so that m = xnm′ = 0. Since kerφx 6= 0, irreducibility
of 0 implies that Imφxn = 0 so that φxn = 0 and x is nilpotent. Therefore, an irreducible module is primary.

As a corollary of these results, we have that any submodule of a Noetherian module can be written as a
finite intersection of primary modules. That is, every submodule of a Noetherian module has a primary
decomposition.

18. (i) =⇒ (ii) Let A be a Noetherian ring, p a prime ideal, and M a finitely-generated A-module. If p is an
associated prime of 0 in M , we may write (from the previous problem) a minimal decomposition

0 =

n⋂
i=1

Ni,

such that rM (N1) = p. Let a = ∩ni=2Ni. For x ∈ a, x 6= 0, since x 6∈ N1, we have r(N1 : x) = p (from chapter
4, problem 21). That is, (N1 : x) ⊆ p.

It will now be shown that for every submodule N of M , there exists an integer k > 0 such that (rM (N))k ⊆
(N : M). Notice that rM (N)M is a submodule of M and so is finitely-generated by say x1m1, . . . , xnmn. Then
for each 1 ≤ i ≤ n, there exists ki such that xkii ∈ (N : M). Let k = 1 +

∑n
i=1(ki−1). Then by the pigeon-hole

principle, for every product of k elements from the set x1, . . . , xn, the product lies in (M : N). Consider an
single term

y1 . . . ykm ∈ (rM (N))kM.

Clearly, ykm ∈ rM (N)M so it can be written as a linear combination

ykm =
n∑
i=1

ai1ximi =⇒ y1 . . . ykm =

n∑
i=1

aixiy1 . . . yk−1mi.

From here, yk−1mi ∈ rM (N)M and so we may continue this process. This process is finite since there are
finitely many yj and each time we add finitely many terms. In the end, we get a linear combination of the
mi with coefficients given by an element of A times a product of k of the xi and therefore lies in (M : N). It
follows from this that y1 . . . ykm ∈ N . It follows from this that (rM (N))k ⊆ (N : M).

Letting N = N1 in the above, we get that there is some integer k > 0 such that pk = (rM (N1))k ⊆ (N1 : M).
It follows that

pka ⊆ a ∩N1 = 0.

Let k be minimal such that the above holds. Then for x ∈ pk−1a, x ∈ a so that ann(x) ⊆ p. Conversely, for
every p ∈ p, px ∈ pka = 0 so that p ⊆ ann(x). Therefore, ann(x) = p as desired.

(ii) =⇒ (i) This is trivial from the fact that the primes associated to 0 are the primes of the form r(ann(x)).

(ii) =⇒ (iii) For a fixed prime p and x ∈ M such that p = ann(x), this is evident by the A-module
homomorphism φ : A 7→ M defined by φ(a) = ax. The kernel is clearly ann(x) = p and so the image (the
submodule generated by x) is a submodule isomorphic to A/p.
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(iii) =⇒ (ii) Let φ : A/p 7→M be injective (so an isomorphism with a submodule of M) and let x = φ(1 + p).
By the fact that φ is well-defined, we have that p ⊆ ann(x) (for any p ∈ p, we necessarily have px = 0 for φ to
be well-defined). Then ax = 0 implies that φ(a + p) = ax = 0 so that a ∈ p (since φ is injective. Therefore,
ann(x) ⊆ p. Therefore, ann(x) = p.

For any prime p1 associated to 0 in M , there exists a submodule M1 such that 0 ⊂ M1 and M1 ' A/p1.
Considering the quotient M/M1, the zero module is again decomposable and for any prime p2 associated with
it, there is a submodule N2 of M/M1 such that N2 ' A/p2. Then via the correspondence of submodules under
quotients, there is a submodule M2 of M such that M1 ⊂ M2 and M2 ' N2 ' A/p2. Continue in this way to
get an ascending chain of submodules

0 ⊂M1 ⊂M2 ⊂ . . . .

Since M is Noetherian, this sequence is stationary. Note that at every step, if Mi 6= M , then the above process
gives a submodule Mi+1 that strictly contains Mi. That is, when this chain becomes constant, it is equal to
M . Therefore, there is an ascending chain

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn ⊂M

such that each consecutive quotient is isomorphic to A/p for some prime ideal p.

*19.

20a. Let X be a topological space and F be the smallest collection of subsets of X which contains all open subsets
of X and is closed with under finite intersections and complements (F is the intersection of all subsets of X
that contain the open sets and are closed under finite intersections and complements). F is therefore closed
under finite unions as well. Since all open sets belong to F, all closed sets belong to F, all intersections U ∩ C
of an open set and a closed set belong to F, and all finite unions of these intersections therefore belong to
F. Conversely, the collection of finite unions of sets of the form U ∩ C for U open and C closed contains all
open sets (take C = X) and is closed under finite intersections and complements (show the intersection of two
elements is in the set and so by induction, it is closed under finite intersections. Then the complement of a
finite union is the intersection of the complements, which is also in the set). Therefore, any element of F is in
this set and so can be written as a finite union of sets of the form U ∩ C where U is open and C is closed.

20b. Let X be irreducible and E ∈ F. If E contains a nonempty open set, U ⊆ E, since every open set is dense in
X, we have X = U ⊆ E so that E is dense in X. Conversely, if E is dense in X, write

E =

n⋃
i=1

(Ui ∩ Ci),

where none of the Ui or Ci are empty. Let V = ∩ni=1(X \ Ci). We have

E ∩ V =

(
n⋃
i=1

(Ui ∩ Ci)

)
∩

(
n⋂
i=1

(X \ Ci)

)
=

n⋃
i=1

(
Ui ∩ Ci ∩

(
n⋂
i=1

(X \ Ci)

))
= ∅.

Since E is dense and V is open, this implies V = ∅. Since the sets X \ Ci are open, they are dense and since
their intersection is empty, there exists i such that X \ Ci = ∅. That is, Ci = X for some i. Then Ui ⊆ E so
that E contains a non-empty open set.

21. Let X be a Noetherian topological space and E ⊆ X. From the previous problem, if E ∈ F, then for every
irreducible subset X0 ⊆ X, E ∩X0 is dense (in X0) if and only if E ∩X0 contains a nonempty open subset of
X0. That is, either E ∩X0 6= X0 or E ∩X0 contains some nonempty open subset of X0.

Conversely, if E 6∈ F, then there exists a closed set C ⊆ X such that E ∩ C 6∈ F (one can take C = X). Since
X is Noetherian, the set of closed sets C ⊆ X such that E ∩C 6∈ F has a minimal element X0 (so X0 is closed
and E ∩X0 6∈ F). X0 is necessarily irreducible since if it can be written as a union of two proper closed sets
X0 = C1 ∪ C2, then either E ∩ C1 6∈ F or E ∩ C2 6∈ F (since if they both are, E ∩X0 ∈ F). This contradicts
minimality of X0. Therefore, X0 is irreducible and closed.
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If E ∩X0 ⊂ X0, then E ∩E ∩X0 ∈ F. However, E ∩X0 ⊆ E and E ∩X0 ⊆ E ∩X0 so E ∩X0 ⊆ E ∩E ∩X0

and similarly, E ∩X0 ⊆ X0 implies E ∩X0 ⊆ X0 so that E ∩ E ∩X0 ⊆ E ∩X0. Therefore, the two are equal
so that E ∩X0 ∈ F is a contradiction.

If U ⊆ E ∩ X0 for some nonempty open set U of X0, let C = X0 \ U so that C ⊂ X0 is a closed subset of
X and E ∩ C ∈ F. Then U = V ∩ X0 for some open set V of X and E ∩ U = U = V ∩ X0 ∈ F so that
E ∩X0 = (E ∩ U) ∪ (E ∩ C) ∈ F. This is a contradiction as well.

22. Let X be a Noetherian topological space and E ⊆ X. If E is open in X, then for every irreducible subspace
X0 ⊆ X, either E ∩X0 is empty, or E ∩X0 is open in X0 by definition.

Conversely, if E is not open, then there is some closed set C such that E ∩C is not open in C (take C = X for
example). Since X is Noetherian, there is a minimal element of the set of closed sets C such that E ∩C is not
open, X0.

If X0 = C1∪C2 where X0 ⊂ C1, C2, then E∩C1, E∩C2 are necessarily open so that E∩X0 = (E∩C1)∪(E∩C2)
is open as well, contradicting that E ∩X0 is not closed. Therefore, C0 is irreducible.

By definition, E ∩X0 is not open in X0. In particular, this implies that E ∩X0 6= ∅. If U ⊆ E ∩X0 for some
nonempty open subset U of X0, then D = X0\U ⊂ X0 is a closed subset of X so that E∩D is open in D. Then
there exists V1 open in X0 such that E ∩D = V1 ∩X0. Similarly, there exists V2 such that E ∩ U = V2 ∩X0

(Since E ∩ U = U is open in X0). From this, E ∩ X0 = (E ∩ U) ∪ (E ∩ D) is open in X0, contrary to the
assumption that E ∩X0 is not open in X0. That is, E ∩X0 contains no nonempty open subset of X0.

23. Let A be a Noetherian ring, f : A 7→ B be a finitely-generated A-algebra, f∗ : Spec(B) 7→ Spec(A) be the
induced map on spectra, and E be a constructible set (that is, belongs to the collection F from the previous
problems). Since functions preserve unions, from problem 20, it suffices to show that the image of every set of
the form U ∩ C is constructible where U is open and C is closed in Spec(B). Writing C = V (b) = Spec(B/b),
the image of E is the image of an open set of Spec(B/b) under the induced map on spectra of the composition
A 7→ B 7→ B/b. That is, we may reduce to the case that E is open in Spec(B) (the composition still gives
a finitely-generated A-algebra as well). Since A is Noetherian, B is Noetherian and Spec(B) is Noetherian so
that E is quasi-compact (from chapter 6). From chapter 1, an open, quasi-open subset of a spectrum of a ring
is necessarily a finite union of sets Yg = Spec(Bg). Using that functions preserve unions again, it suffices to
show that the image of each Spec(Bg) is constructible. Considering the composition A 7→ B 7→ Bg and using
that Bg is then a finitely-generated A-algebra, it suffices now to assume that E = Spec(B).

Using problem 21, it suffices now to take an irreducible subset X0 ⊆ Spec(A) such that f∗(Spec(B)) ∩X0 is
dense and show that f∗(Spec(B)) ∩X0 contains some nonempty open set. From chapter 1, every irreducible
subspace of Spec(A) has the form X0 = V (p) for some prime p ∈ Spec(A). We wish to show

f∗(Spec(B)) ∩X0 = f∗((f∗)−1(X0))

is constructible in Spec(A) where X0 = V (p) = Spec(A/p) and

(f∗)−1(X0) = V (pe) = Spec(B/pB) = Spec(A/p⊗A B).

That is, we want to show that the image of the induced map on spectra of the map A 7→ A/p ⊗A B is
constructible. Clearly, p is contained in the kernel of this map so that it factors into the map f : A/p 7→
B/pe = A/p ⊗A B (that is, the image of the map on spectra is contained in V (p), so we may consider this
new map instead). That is, we may assume A is an integral domain and f : A 7→ B is injective (since
A/p⊗A B ' B/pe) (this map is still such that B/pe is a finitely-generated A/p-module).

If Y1, . . . , Yn are the irreducible components of Spec(B) (only finitely many since Y is Noetherian) then it suffices
to show that f∗(Yi) contains an open subset of Spec(A). That is, we may consider the map g : A 7→ B 7→ B/qi
where Yi = V (qi) (this still defines a finitely-generated A-algebra). Then since A 7→ B is injective and B/qi is
an integral domain, the image of A in B/qi is an integral domain. Since the map g : A 7→ g(A) is surjective,
the map of spectra is a homeomorphism onto V (ker g) and so we may finally consider only the inclusion map
i : f(A) ↪→ B/qi. That is, we have reduced to the case that A,B are integral domains and f is injective.

Let A,B be integral domains and f : A 7→ B be injective (we need only show that f∗(Spec(B)) contains
some nonempty open subset of Spec(A)). From chapter 5 problem 21, there exists s ∈ A, s 6= 0, such that
any map of A into an algebraically closed field and the image of s is nonzero, then the map extends to a
map of B into the same field. Consider the set Xs (where X = Spec(A)). For p ∈ Xs, consider the map
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g : A 7→ A/p 7→ frac(A/p) 7→ Ω where Ω is an algebraic closure of frac(A/p). Since s 6∈ p, g(s) 6= 0 and so
there is an extension g̃ : B 7→ Ω. Then ker g̃ ∈ Spec(B) and f∗(ker g̃) = ker g̃ ∩ A = ker g = p. That is,
Xs ⊆ f∗(Spec(B)). Therefore, f∗(Spec(B)) contains some open subset of Spec(A) and so the result follows.

24. Let A be a Noetherian ring, f : A 7→ B be such that B is a finitely-generated A-algebra, and f∗ : Spec(B) 7→
Spec(A) be the induced map on spectra. We’ve shown previously that if f is injective f∗ open implies that
f has the going-down property (Note, I’m assuming that f is injective because I’m not convinced that the
problem is correct without this assumption. See counterexamples to the results of chapter 5 problem 10 from
above). Conversely, assume that f : A 7→ B has the going-down property and U ⊆ Spec(B) is open. Since
Spec(B) is Noetherian, U is quasi-compact and so a finite union of sets of the form Yg (where Y = Spec(B).
Using that functions preserve unions, we need show only that f∗(Yg) = f∗(Spec(Bg)) is open in Spec(A). That
is, we need only show the map f : A 7→ Bg is such that the image of the induced map on spectra is open
(this still gives Bg as a finitely-generated A-algebra and still has the going-up property from the prime ideal
correspondence with localizations). From this, we may assume E = Y = Spec(B). By the usual reduction,
since the map f : A 7→ f(A) is surjective From problem 22, it suffices now to show that for any irreducible
subset X0 = V (p) of Spec(A), if f∗(Spec(B)) ∩X0 6= ∅, then it contains a non-empty open subset of X0.

The going-down property as given (in chapter 5, problem 10) is not sufficient. Using the modified going-down
property (see chapter 5, problem 10) is enough. Indeed, if f : A 7→ B has the going-down property, then for
every prime ideal p′ ∈ f∗(Spec(B)), if p ⊆ p′, then p ∈ f∗(Spec(B)). That is, if X0 = V (p) is an irreducible
subset of Spec(A) such that f∗(Spec(B))∩X0 6= ∅, then there exists p′ ∈ f∗(Spec(B))∩X0 (so p ⊆ p′) implies
p ∈ f∗(Spec(B)) and p ∈ V (p) = X0. Therefore, p ∈ f∗(Spec(B)) ∩X0 and so

X0 = V (p) = {p} ⊆ f∗(Spec(B)) ∩X0.

That is, f∗(Spec(B)) ∩ X0 is dense in X0. Since f∗(Spec(B)) is constructible, it is dense in an irreducible
subspace Z if and only if f∗(Spec(B)) ∩ Z contains a nonempty open subset of Z. That is, f∗(Spec(B)) ∩X0

necessarily contains a nonempty open subset of X0. From problem 22, this implies that f∗(Spec(B)) is open
in Spec(A). The result follows.

25. Let A be a Noetherian ring and f : A 7→ B be a finitely-generated A-algebra. From chapter 5, problem 10, f
has the going-down property and from the previous problem, this implies f∗ : Spec(B) 7→ Spec(A) is an open
map.

26a. Let A be a Noetherian ring and F (A) be the set of isomorphism classes of finitely-generated A-modules and C
be the free abelian group generated by F (A). Let D be the subgroup of C generated by elements of the form
(M ′)− (M) + (M ′′) where there is some short exact sequence

0→M ′ →M →M ′′ → 0.

The let K(A) = C/D be the Grothendieck group of A. For a finitely-generated A-moduleM , let γ(M) = γA(M)
be the image of (M) under the projection C 7→ C/D = K(A).

Let λ be an additive function on the class of finitely-generated A-modules with values in some abelian group G.
It is clear that λ takes the same values on isomorphic A-modules by writing an exact sequence and so defines
a function λ : F (A) 7→ G. Then λ can be extended linearly to a function λ : C 7→ G. Since λ is additive,
it is clear that D ⊆ kerλ (D is defined above). Therefore, there is an induced map λ0 : K(A) = C/D 7→ G.
Clearly, this map satisfies λ(M) = λ0(γ(M)) for all finitely-generated A-modules M . If θ : K(A) 7→ G is any
other map such that λ(M) = θ(γ(M)), it is easy to see that λ0 and θ agree on individual elements of K(A)
and so to all of K(A) since they are group homomorphisms.

26b. From problem 18, for any A-module M , there exists a chain of submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mn−1 ⊆Mn = M

where each quotient Mi/Mi−1 ' A/pi for some prime p. Then for 1 ≤ i ≤ n, we have exact sequences

0→Mi−1 →Mi → A/pi → 0,

so that

γ(Mi) = γ(Mi−1) + γ(A/pi).
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It is clear from this that

γ(M) = γ(Mn) = γ(M0) +

n∑
i=1

γ(A/pi) =

n∑
i=1

γ(A/pi).

Therefore, K(A) is generated by the set of elements of the form γ(A/p) where p ∈ Spec(A).

26c. If A is a PID, then for any nonzero prime ideal p = (p), there is an exact sequence

0→ A→ A→ A/p→ 0

where the first map is multiplication by p (which is injective since A is an integral domain). Therefore,
γ(A/p) = 0. Since K(A) is generated by sets of this form, K(A) is then necessarily generated solely by
γ(A/(0)) = γ(A). That is, there is a surjective group homomorphism Z 7→ K(A) defined by 1 7→ γ(A).

A finitely-generated module over a PID has a well-defined rank which is an isomorphism invariant. This
rank is an additive function with values in Z and so there is a group homomorphism K(A) 7→ Z such that
rank(γ(A)) = 1. From this, it is clear that the maps described are isomorphisms and so K(A) ' Z.

26d. Let f : A 7→ B be a finite ring homomorphism (B is a finitely-generated A-module). For a finitely-generated
B-module M , Let MA denote the A-module given by restriction of scalars to M (which is finitely-generated
since B is a finitely-generated A-module). It is simple to check that for B-modules M ' N , then MA ' NA so
that restriction of scalars defines a map f! : F (B) 7→ F (A). Extending linearly, we get a group homomorphism
f! : C(B) 7→ C(A). Composing with the projection, we get f! : C(B) 7→ C(A)/D(A) = K(A). Finally, it is
clear that D(B) ⊆ ker f! since short exact sequences of B-modules are short exact sequences of A-modules after
restrictions of scalars. Therefore, there is an induced map f! : K(B) = C(B)/D(B) 7→ C(A)/D(A) = K(A).
By definition of f!, we have f!(γB(N)) = γA(NA) for any finitely-generated B-module N .

If g : B 7→ C is another finite ring homomorphism, then for all finitely-generated C-modules O, we have

(f! ◦ g!)(γC(O)) = f!(γB(OB)) = γA(OA) = (g ◦ f)!(γC(O)).

Since sets of these form span K(C) by linearity, we have that (g ◦ f)! = f! ◦ g!.

27a. Let A be a Noetherian ring, F1(A) be the set of isomorphism classes of finitely-generated flat A-modules and
repeat the construction from above to get a group K1(A) = C1(A)/D1(A) where γ1(M) is the image of the
finitely-generated flat A-module M in K1(A).

Clearly, the tensor product of two finitely-generated flat A-modules M,N is finitely-generated and flat as well.
Define

γ1(M) · γ1(N) = γ1(M ⊗A N),

Clearly, this product is well-defined since if M 'M ′ and N ' N ′ then M⊗AN 'M ′⊗AN ′. Since the modules
are flat, they preserve exact sequences and so products with zero are zero (that is, it remains well-defined if we
extend using the distributive law). This product is clearly commutative and γ1(A) is an identity element since
M ⊗A A 'M for all A-modules M . Therefore, K1(A) has a ring structure.

27b. Let γ1(M) ∈ K1(A) and γ(N) ∈ K(A). Define

γ1(M) · γ(N) = γ(M ⊗A N).

As above, this is well-defined. Since M is flat, this takes zero sums to zero sums and so we may extend via the
distributive law. It is then clear that γ1(A) acts as the identity map. Finally, products in K1(A) are preserved
by definition. Therefore, this defines a K1(A)-module structure on K(A).

27c. If (A,m) is a Noetherian local ring, then from problem 15, every flat A-module is free. It is clear that the same
universal property holds so that using the additive rank function, there is a map µ : K1(A) 7→ Z defined exactly
as the rank function extended linearly. This map is clearly surjective since µ(A) = 1 and injective because any
two free modules of the same rank are isomorphic. Therefore, µ is an isomorphism.
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27d. Let f : A 7→ B be a ring homomorphism with B Noetherian. For an A-module M , let MB = B⊗AM denote the
extension of scalars of M to B. This is clearly defined on isomorphism classes and so defines a map f ! : F1(A) 7→
F1(B). Extending linearly gives f ! : C1(A) 7→ C1(B). Projective gives f ! : C1(A) 7→ C1(B)/D1(B) = K1(B).
Finally, D1(A) ⊆ ker f ! so there is a group homomorphism f ! : K1(A) = C1(A)/D1(A) 7→ C1(B)/D1(B) =
K1(B). It is easy to see that this map satisfies f !(γ1(M)) = γ1(MB) and so is also a ring homomorphism (just
write it out). Again from the equation f !(γ1(M)) = γ1(MB), it is easy to see that (f ◦ g)! = f ! ◦ g! (similar to
the restriction of scalars case).

27e. Let f : A 7→ B be a finite ring homomorphism. To show that f!(f
!(x)y) = xf!(y), by linearity and distribution,

it suffices to consider the case that x = γ1(M) ∈ K1(A) and y = γB(N) ∈ K(B). We see

f!(f
!(γ1(M))γB(N)) = f!(γ1(MB)γB(N)) = f!(γB((B ⊗AM)⊗B N)) = f!(γB(M ⊗A N)) = γA(M ⊗A N).

Similarly, we have

γ1(M)f!(γB(N)) = γ1(M)γA(N) = γA(M ⊗A N).

Therefore, the two are equal on elements of this form and so are equal on all elements of K1(A) and K(B).
That is, considering K(B) as a K1(A)-module via restriction of scalars (from the map f ! : K1(A) 7→ K1(B)),
the map f! is a K1(A)-module homomorphism.

Chapter 8

1. Let A be a Noetherian ring and 0 = q1 ∩ . . . ∩ qn with pi = r(qi) be a minimal primary decomposition of the
zero ideal. Since A is Noetherian, for each i there exists ri such that prii ⊆ qi. Then for all s ∈ A \ pi, if
sx ∈ prii ⊆ qi, then s 6∈ pi implies x ∈ qi. That is,

p
(ri)
i = Spi(p

ri
i ) =

⋃
s∈A\pi

(prii : s) ⊆ qi.

From this,

0 = 0 ∩ p
(ri)
i = (qi ∩ p

(ri)
i ) ∩

⋂
j 6=i

qj

 = p
(ri)
i ∩

⋂
j 6=i

qj


is another (minimal) primary decomposition. By invariance of the isolated components, we have that qi = p

(ri)
i .

If qi is an embedded component, then Api is not Artinian (since the dimension is greater than or equal to 1).

Therefore, the powers of the maximal ideal mi = pei are all distinct and so are the p
(r)
i (there is a correspondence

of ideals of a localization with the contracted ideals of the original ring). Intersecting the primary decomposition
as above, we get infinitely-many distinct primary decompositions of 0 that differ in the pi-th component.

2. (i) =⇒ (ii) =⇒ (iii) This is fairly obvious. The first implication takes a second using that Spec(A) is finite
and that every singleton is closed (then take unions to get singletons are open).

(iii) =⇒ (i) If Spec(A) is discrete, it is Hausdorff in particular so that every prime ideal is maximal (chapter
3, problem 11). Therefore, A is Noetherian and has dimension 0. That is, A is Artinian.

3. (i) =⇒ (ii) Writing A =
∏n
i=1Ai, where the Ai are local Artinian rings and finitely-generated over k, it

suffices to show that each Ai is finite as a k-module. That is, we may reduce to the case that (A,m) is a
local Artinian ring. By Zariski’s lemma, since A is a finitely-generated k-algebra, A/m is a finitely-generated
k-algebra that is also a field. Therefore, A/m is a finite algebraic extension of k. That is, A/m is finite as a
k-module. Since A is Artinian, it is also Noetherian and has a finite composition series

0 = M0 ⊂ . . . ⊂Mn = A,

where we may choose each quotient to be isomorphic to A/m (since this is the only prime ideal of A. Then
we have dimMi = dimMi−1 + dim(A/m), which implies dimA = ndim(A/m) < ∞. That is, A is finite as a
k-module.

(ii) =⇒ (i) If A is a finite k-algebra, then from chapter 6, we know that A satisfies the descending chain
condition and so is an Artinian k-module. Notice that the ideals of A are k-submodules and so satisfy the
descending chain property as well. That is, A is Artinian.
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4. (i) =⇒ (iii) Let f : A 7→ B be a finitely-generated A-algebra. If f is finite (that is, B is a finite A-module)
then for every prime p of A, k(p)⊗A B is a finite k(p)-algebra generated by the generators of B tensored with
1.

(iii) =⇒ (ii) From the previous problem, if k(p) ⊗A B is a finite k(p)-algebra, then k(p) ⊗A B is Artinian.
From the problem before that, this implies that

(f∗)−1(p) = Spec(k(p)⊗A B)

is discrete.

(ii) =⇒ (iii) If the fibers are discrete, since k(p) ⊗A B is Noetherian (finite dimensional since f : A 7→ B is
finite), this implies k(p) ⊗A B is Artinian for every prime ideal p of A. Since k(p) ⊗A B is clearly a finitely-
generated k(p)-algebra, the previous problem implies that k(p)⊗A B is a finite k(p)-algebra.

(iii) =⇒ (iv) Notice simply that for any p ∈ Spec(A),

(f∗)−1(p) = Spec(k(p)⊗A B)

where it is assumed that k(p)⊗A B is a finite k(p)-algebra. From the previous problem, it is Artinian and so
from the problem before that, it is discrete and finite.

5. Let k be an algebraically closed field, X an affine variety with coordinate ring A 6= 0, and φ : X 7→ L
be the surjective linear map onto some subspace of kn. Moving to coordinate rings, the induced map ϕ :
k[y1, . . . , ym] 7→ A is finite by construction (The construction of this map was the Noether normalization
lemma). Since A is a finitely-generated k-algebra by the Hilbert basis theorem, the previous theorem applies
and we get a map ϕ : Spec(A) 7→ Spec(k[y1, . . . , ym]). Since k is algebraically closed, we may identify L ⊆
Spec(k[y1, . . . , yk]) by the Nullstellensatz (L corresponds to the maximal ideals of Spec(k[y1, . . . , yn])) and
similarly we may identify X ⊆ Spec(A). Then the map ϕ∗|A is exactly the map φ (plug everything in to see.
This is essentially how φ was defined), but the map ϕ∗|A has finite fibers (from the previous problem) so that
the map φ has finite fibers.

From one of the previous problems, we have that the number of fibers is bounded by the cardinality of
Spec(k[y1, . . . , yk](p) ⊗k[y1,...,yk] A), but the cardinality of this set is bounded by the dimension of this vec-
tor space (the ring itself), which is less than or equal to the dimension of A as a k[y1, . . . , yn]-vector space.

6. Let A be a Noetherian ring and q a p-primary ideal in A. Clearly, since A is Noetherian, all chains of primary
ideals from q to p are of finite length. By Zorn’s lemma, maximal chains exist (an increasing chain of such chains
corresponds to an increasing chain of ideals which is stationary since A is Noetherian. Hence, the sequence of
chains is stationary and has an upper bound). Assume

0 = q0 ⊂ . . . ⊂ qn = p, 0 = r0 ⊂ . . . ⊂ rm = p

are two maximal chains. Clearly, q0∩r0 is a p-primary ideal (and so is nonzero). By maximality of these chains,
we then necessarily have that q0 = q0 ∩ r0 = r0. From here, it is easy to see that because of the containment,
if we quotient by q0 = r0, we get chains of p-primary ideals in the quotient of length one less. Continuing this
process, we get that the lengths of the chains are the same. Therefore, all chains are bounded by the length of
any maximal chain.

Chapter 9

1. Let A be a Dedekind domain and S a multiplicative subset. Since localizations preserve products and there is
a correspondence between the primary ideals of S−1A with the contracted ideals in A and similarly with prime
ideals, all primary ideals in S−1A can be written as a power of a prime ideal. If S−1A has any nonzero prime
ideals, they are maximal by the correspondence and so S−1A has dimension one and is Noetherian since A is
Noetherian. That is, S−1A is a Dedekind domain. If S−1A has no nonzero prime ideals, then it is a field, from
which it is clear that S−1A = frac(A).

Let S 6= A \ {0} be a multiplicative subset so that S−1A 6= frac(A) and S−1A is a Dedekind domain from
above. Then the groups of ideals IA and IS−1A are both defined. Since A is Noetherian, every fractional ideal
in IA has the form x−1a for an integral ideal of A. We may then define a map φ : IA 7→ IS−1A by

φ(x−1a) = x−1(S−1a).
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It is easy to check that this map is well-defined. Clearly, (x−1a)(y−1b) = (xy)−1ab so that

φ((x−1a)(y−1b)) = (xy)−1(S−1(ab)) = (xy)−1(S−1aS−1b) = (x−1S−1a)(y−1S−1b) = φ(x−1S−1a)φ(y−1S−1b).

That is, φ is a group homomorphism. Projecting with the composition IS−1A 7→ IS−1A/PS−1A = HS−1A, we
see that S−1(u) = (u/1) so that PA ⊆ kerφ and so there is an induced map

φ : HA = IA/PA 7→ IS−1A/PS−1A = HS−1A.

This map has image equal to the image of the composition IA 7→ IS−1A 7→ HS−1A. Since the latter map is
surjective, it suffices to show the first map is surjective. However, this is clear since S−1A is Noetherian and
so every element of IS−1A has the form (a/1)−1(S−1a) for some a ∈ A and a an ideal of A (really, of the form
(a/s)−1b where a/s ∈ S−1A and b an ideal of S−1A, but every ideal of S−1A is an extended ideal of A and it
is clear that we can remove the s from the denominator since s/1 ∈ S−1A is a unit). Therefore, the induced
map φ : HA 7→ HS−1A is surjective.

2. Let A be a Dedekind domain. For f, g ∈ A[x], Let c(f), c(g), c(fg) be the content of f , g, and fg respectively.
Clearly, c(fg) ⊆ c(f)c(g). To show that we have equality, consider the inclusion map φ : c(fg) ↪→ c(f)c(g) as
an A-module homomorphism. We wish to show that this map is surjective. To do so, it suffices to show that
φp : c(fg)p ↪→ c(f)pc(g)p is surjective for each maximal ideal p, where Ap is then a discrete valuation ring (that
is, we just need c(fg)p = c(f)pc(g)p for each prime ideal p of A). Note that c(f)p = c(f) where f is the image
of f in Ap. From this, it suffices to prove the result in full generality in the case that A is a discrete valuation
ring.

Assume A is a discrete valuation ring, f, g ∈ A[x], and c(f), c(g), c(fg) are the content of f , g and fg respec-
tively. Then there exists a ∈ A such that we have c(f) = (ar) and c(g) = (as) for some r, s ≥ 0. From here, we
may write

(f(x)/ar)(g(x)/as) = (fg)(x)/ar+s.

We clearly have c(f(x)/ar) = c(g(x)/as) = (1) (since otherwise, c(f) 6= (ar) and c(g) 6= (as)). Therefore, from
chapter 1, we have that c((fg)(x)/ar+s) = (1). That is,

c(fg) = (ar+s) = (ar)(as) = c(f)c(g).

The result then follows from the reduction mentioned above.

3. Let A be a valuation ring that is not a field (that is, it has some nonzero prime ideal). Clearly, if A is a discrete
valuation ring, then A is Noetherian.

If A is a Noetherian valuation ring, then for any ideal a, we may write a = (x1, . . . , xn). From chapter 5,
problem 28, we have that the (xi) are linearly ordered and so there is a minimal element which implies a = (a)
where a = ai for some i. That is, A is a PID. Since a PID is a UFD and we are assuming A is not a field, there
is some nonzero maximal ideal m = (p), where p is then necessarily prime and irreducible. As in the case of Z
and k[x] from the text, for any element a ∈ K = frac(A), we may write uniquely write a = pv(a)y where the
numerator and denominator of y are prime to p. Then the assignment a 7→ v(a) is a discrete valuation. It is
clear that the ring of integers in this case is the localization of A at the prime ideal m. However, since A is a
local ring (it is a valuation ring), we have A = Am so that A is the ring of integers of v. That is, A is a discrete
valuation ring.

4. Let A be a local domain which is not a field and whose maximal ideal m = (m) is principal and
⋂∞
i=1 m

i = 0.
Similar to above, with K = frac(A), we may define v : K 7→ Z as follows. For every a ∈ A, a 6= 0, there is a
maximal k > 0 such that a ∈ mk (since if it is infinitely many, this implies that a = 0). Then let v : A 7→ Z be
the assignment of a to this maximal k > 0. For a, b ∈ A, it follows from the fact that A is an integral domain
and that m = (m) is principal that v(ab) = v(a) + v(b) (ab ∈ mv(a)+v(b), if ab = cmv(a)+v(b)+1, cancel powers
of m to get a contradiction). Clearly, we have the inequality

v(a+ b) ≥ min{v(a), v(b)}

from simple containment of powers of m. Similar to a previous problem on valuation rings, this implies that
there is an extension to a valuation v : K∗ 7→ Z by v(a/b) = v(a)− v(b). It is apparent from the definition and
cancellation in K∗ that the ring of integers of v is exactly Am = A. Therefore, A is a discrete valuation ring.
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5. Let M be a finitely-generated A-module where A is a Dedekind domain. If M is flat, then Mm is flat for every
maximal ideal m. If Am ↪→ K is the injective map of Am into K = frac(Am), then T (Mm) = kerφ where
φ : Mm = Am ⊗Am

Mm 7→ K ⊗Am
Mm. However, since Mm is flat, this map is injective and T (Mm) = 0. Since

torsion-free is a local property, this implies that M is torsion-free.

Conversely, assume that M is torsion-free. Then T (Mm) = 0 for every maximal ideal m of A. Since A is a
Dedekind domain, Am is a discrete valuation ring and so is a PID. Therefore, Mm can be decomposed into a
direct sum of a free Am-module and its torsion module, which is zero. Therefore, Mm is free for every m which
from chapter 5, problem 16 implies that M is flat.

6. Let M be a finitely-generated torsion A-module (that is, T (M) = M) where A is a Dedekind domain. Then
for every prime ideal p, Mp is a torsion Ap-module (easy to check) and Ap is a discrete valuation ring and
so is a PID. Since Mp is a finitely-generated Ap-module, Mp can be decomposed into a free Ap-module of
finite rank and a finite number of cyclic torsion modules of the form Ap/p

ni
i for some prime ideal pi of Ap.

Since Ap is a local ring of dimension 1 (it is a discrete valuation ring), there is only one prime ideal and so
Mp ' Ap/p

n ' (A/pn)p = A/pn (where the last equality is because p is the unique maximal ideal so everything
outside of p is already a unit).

For nonzero prime ideal pi of A, let Mpi = A/pnii and define φ : M 7→ ⊕iMpi . To see that this map is bijective,
it suffices to show each localization is bijective. However, since each localization is the identity map (this takes
a moment to verify) it follows that φ is bijective.

*7.

8. Let a, b, c be ideals of a Dedekind ring A. We clearly see (a∩b)+(a∩c) ⊆ a∩(b+c) and a+(b∩c) ⊆ (a+b)∩(a+c).
From here, we may consider the inclusion maps between these ideals. To show that these inclusions are
equalities, we may localize the inclusion maps and show that they are always surjective. That is, is now
suffices to show the other inclusion holds for every localization of A (since localizations commute with finite
intersections and sums). Since all localizations of A are discrete valuation rings, it suffices to show the opposite
inclusions in this case alone.

Let A be a discrete valuation ring and x ∈ A such that a = (xr), b = (xs), and c = (xt). It is clear that
(xn) ∩ (xm) = (xmax{n,m}) and (xn) + (xm) = (xmin{n,m}). The result then follows from these relations and
the equalities

max{r,min{s, t}} = min{max{r, s},max{r, t}}, min{r,max{s, t}} = max{min{r, s},min{r, t}}

by simply plugging everything into the above equations (the inequalities are easily proved case-wise).

9. Let a1, . . . , an be ideals and x0, . . . , xn be elements in a Dedekind domain A. The reduction from the text is
obvious with a minute of thought. That is, the statment, ”there exists x ∈ A such that x ≡ xi mod ai for all i
if and only if xi ≡ xj mod (ai + aj)” is equivalent to the exactness of the sequence

A
φ−→

n⊕
i=1

A/ai
ψ−→
⊕
i<j

A/(ai + aj),

where

φ(x) = (x+ a1, . . . , x+ an), ψ(x1 + a1, . . . , xn + an) = (xi − xj + ai + aj)i<j .

Since it is clear that Imφ ⊆ kerψ, it suffices as usual to show they are equal in all localizations (that is, show
the localizations of the inclusion map are bijective). All localizations of A are discrete valuation rings and the
localization of the direct sums are the direct sums of the localizations. Therefore, it suffices to prove the result
in the case that A is a discrete valuation ring.

Assume A is a discrete valuation ring, a1, . . . , an are ideals, x1, . . . , xn ∈ A, and φ, ψ be as above. Since A is
a valuation ring, the set of ideals of A is linearly ordered and so we may assume that a1 ⊆ . . . ⊆ an. The map
ψ : ⊕ni=1A/ai 7→ ⊕i<jA/ai (since ai + aj = ai for i < j now) is then given by

ψ(x1 + a1, . . . , xn + an) = (xi − xj + ai)i<j .

If (x1 + a1, . . . , xn + an) ∈ kerψ, then for all i, xi − xn ∈ ai. That is, xi + ai = xn + ai. From this, we have

φ(xn) = (xn + a1, . . . , xn + an) = (x1 + a1, . . . , xn + an).
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That is, kerψ ⊆ Imφ as desired. From this, the localizations of the inclusion map i : Imφ 7→ kerψ is surjective
for all prime ideals of A and so bijective (since it is already injective). Therefore, the original sequence is exact,
which is equivalent to the result.

Chapter 10

1. For n ≥ 1 and a prime number p, define the group homomorphism αn : Z/pZ 7→ Z/pnZ by αn(1) = pn−1.
Then let A be the direct sum of countable copies of Z/pZ and B = ⊕Z/pnZ so that the maps αn determine a
map α : A 7→ B.

It is clear that the filtration of subgroups corresponding to (p),

A ⊃ (p)A ⊃ (p)2A ⊃ . . .

is exactly zero after the first group. That is, the p-adic completion of A is the inverse limit of the sequence

A← A← A← . . . .

Since these maps are all the identity, it follows that the p-adic completion of A is exactly A.

From the map α : A 7→ B, the p-adic topology on B induces a pullback topology on A determined exactly by
taking the preimage under α of open subsets in B. Notice that there is a neighborhood base of 0 in B given
by sets of the form

(p)kB =
⊕
n>k

pk(Z/pnZ).

Therefore, the sets

α−1((p)kB) =
⊕
n>k

Z/pZ

form a neighborhood base of 0 in A in the pullback topology. This gives the filtration

A = A0 ⊃
⊕
n>1

Z/pZ = A1 ⊃
⊕
n>2

Z/pZ = A2 ⊃ . . . ,

of which the completion of A in the pullback topology is given by the inverse limit of quotients A0/Ak. It is
clear that A/Ak is isomorphic to k copies of Z/pZ and that the connecting maps θn+1 : A/An+1 7→ A/An are
given by mapping the first n coordinates identically. From this, it is clear that the inverse limit is

∏
Z/pZ

since there is an obvious isomorphism of sequences of the form

(a1, 0, . . .), (a1, a2, 0, . . .), (a1, a2, a3, . . .), . . .

with sequences (a1, a2, a3, . . .). That is, there is a clear isomorphism from lim←A/Ak to
∏

Z/pZ. Therefore,
the completion of A in the pullback topology is exactly the countable direct product

∏
Z/pZ.

From the notation of proposition 10.2, it is clear that the p-adic functor is right exact if the map dA is surjective
for every exact sequence (where the inverse systems are determined by the p-adic topology). In our case, since
the connecting maps are identity maps, dA is the zero map and therefore is not surjective. From this, the p-adic
functor is not right exact.

2. Let A and Ak be as in the previous problem. Then there is an exact sequence of inverse systems

0→ {An} → {A} → {A/An} → 0.

If takes a second of thought to realize that lim←An = 0. Using the previous problem, the latter inverse limits
are A and

∏
Z/pZ respectively. Therefore, we have an exact sequence

0→ 0→ A→
∏

Z/pZ.
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Since the latter map is obviously not surjective, we have that adjoining the zero map on the end will break
exactness so the inverse limit functor is not right exact in this case.

Since the connecting maps in the middle inverse system from above are all the identity map, the map dB (with
notation from prop 10.2) is the zero map. Therefore, there is a short exact sequence

0→
⊕

Z/pZ→
∏

Z/pZ→ lim
←

1An → 0.

From this, we have

lim
←

1An =
(∏

Z/pZ
)
/
(⊕

Z/pZ
)
.

3. Let A be a Noetherian ring, a an ideal of A, and M a finitely-generated A-module. From the Krull intersection
theorem,

m ∈
⋂
n≥1

anM ⇐⇒ ∃a ∈ a, (1− a)m = 0.

Notice that for any maximal ideal m containing a, 1− a 6∈ m, since otherwise, 1 ∈ m. Therefore, m ∈ ker(M 7→
Mm) for all maximal ideals m that contain a (m/1 = 0 since (1− a)m = 0 where 1− a ∈ A \m). That is,⋂

n≥1

anM ⊆
⋂
m⊇a

ker(M 7→Mm).

Conversely, if

m ∈
⋂
m⊇a

ker(M 7→Mm),

then the submodule N generated by m is such that Nm = 0 for all maximal ideals m that contain a. From
this, it follows that N = aN and we may write m = am for some a ∈ a so that (1 − a)m = 0. From Krull’s
intersection theorem, this then implies that m ∈ ∩anM . Therefore, the other inclusion holds and we have⋂

n≥1

anM =
⋂
m⊇a

ker(M 7→Mm).

Notice now that if ker(M 7→Mm) = M for some maximal ideal m, then Mm = 0 since we may write an arbitrary
element as the product of 1/s for s ∈ A \m and m/1 in the image. Therefore, if ker(M 7→Mm) = M for every
maximal ideal m that contains a, then Mm = 0 for every maximal ideal that contains a. That is, M = aM .
In this scenario, it is clear by considering the filtration anM that M̂ = 0. Since Supp(M) ∩ V (a) = ∅ implies
Mm = 0 for every maximal ideal that contains a, we have

Supp(M) ∩ V (a) = ∅ =⇒ M̂ = 0.

Conversely, if M̂ = 0, then from the equality

ker(M 7→ M̂) =
⋂
n≥1

anM =
⋂
m⊇a

ker(M 7→Mm),

we have that ker(M 7→Mm) = M for all maximal ideals m that contain a. As above, it is easy to see that this
implies Mm = 0 for every maximal ideal containing a. For any prime ideal p and maximal ideal m containing p,
we have A \m ⊆ A \ p. Since ker(M 7→Mm) = M , it is clear that the composition ker(M 7→Mm 7→Mp) = M
so that Mp = 0. Therefore, Supp(M) ∩ V (a) = ∅. Therefore for a Noetherian ring A and a finitely-generated
A module, we have

M̂ = 0 ⇐⇒ Supp(M) ∩ V (a) = ∅.

4. Let A be a Noetherian ring, a an ideal of A, and x ∈ A not be a zero divisor. Then the A-module homomorphism
φx : A 7→ A defined by φ(a) = ax is injective. Since the a-adic completion functor is exact for finitely-generated

modules over a Noetherian ring, it preserves injective functions so φ̂x : Â 7→ Â is injective. It is easy to check
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at this point that the map φ̂x is multiplication by x̂ in Â. That is, φ̂x = φx̂ : Â 7→ Â. From this, it is clear that
x̂ is not a zero-divisor in Â since kerφx̂ = 0.

Let A = k[x, y]/(y2 − x2 − x3). It takes a moment to see that the ideal (y2 − x2 − x3) is prime so that A is an

integral domain. After this,
√

1 + x ∈ Â by the binomial theorem so that

(y − x
√

1 + x)(y + x
√

1 + x) = y2 − x2 − x3 = 0,

so Â is not an integral domain.

5. Let A be Noetherian and a, b be ideals of A. For an A-module M , let Ma and Mb be the a-adic and b-adic
completions respectively. Let M be a finitely-generated A-module and consider the exact sequence

0→ bmM →M →M/bmM → 0.

Since A is Noetherian and each of these modules is finitely-generated, the a-adic functor is exact and we have
the exact sequence

0→ (bmM)a →Ma → (M/bmM)a → 0.

We then see

(M/bmM)a = Aa ⊗AM/bmM = (Aa ⊗AM)/(Aa ⊗A bmM) = Ma/bmMa.

Then

(Ma)b = lim←
m

Ma/bmMa = lim←
m

(M/bm)a.

Using that a(M/N) = (aM +N)/N , this gives

(Ma)b = lim←
m

lim←
n

M/(anM + bmM) = lim←
n

M/((an + bn)M) = Ma+b.

At this point, the inclusions (a + b)2n ⊆ an + bn ⊆ (a + b)n imply that the topologies on M induced by the
filtrations (an + bn)M and (a + b)nM are the same and so the completions are the same.

(The verification that the quotient from a few lines above is equal to the other quotient is simple written out.
The combination of inverse limits is a simple result in noticing that all elements with lattice points in the first
quadrant are determined by their values on the diagonal.)

6. Let A be a ring, a be an ideal, and give A the a-adic topology. If a ⊆ J, then for every maximal ideal m, a ⊆ m.
For s ∈ A \m, s+ a ⊆ A \m (where s+ a is the translate of a and so is open). This is because if s+ a ∈ m for
a ∈ a, this would imply that s ∈ m since a ⊆ m. Therefore, every point of A \m has a neighborhood contained
in A \m and so this set is open which implies m is closed. That is, all maximal ideals are closed in the a-adic
topology.

Conversely, if a maximal ideal m is closed, then A \ m is open and so for s ∈ A \ m, there exists an such that
s + an ⊆ A \ m. Then we may write s + a = 1 for some a ∈ an. This implies that s ∈ A \ a since if s ∈ a, we
should have 1 ∈ a. The contrapositive of this is that s ∈ a implies s ∈ m. Therefore, a ⊆ m. If every maximal
ideal is closed, then a ⊆ m for every maximal ideal m so that a ⊆ J.

7. Let A be a Noetherian ring, a be an ideal, and Â be the a-adic completion of A. From chapter 3, since
Â is flat, Â is faithfully flat if and only if for every A-module M , the map M 7→ Â ⊗A M is injective. It
will be shown that this is equivalent to the condition that for every finitely-generated A-module M , the map
M 7→ Â⊗AM(= M̂) is injective. The implication =⇒ is obvious. For the other, let M be an A-module and

consider φ : M 7→ Â⊗AM . If u = m ∈ kerφ, let N be a finitely-generated submodule of M containing m such
that 1̂⊗m = 0 in Â⊗N . Then φ restricts to a map N 7→ Â⊗N where N is finitely-generated. Therefore, this
restriction is injective which implies that m = 0 so that φ is injective. Therefore, to show that Â is faithfully
flat, it suffices to show that for every finitely-generated A-module M , the map M 7→ M̂ is injective.
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Notice that if A in the a-adic topology is a Zariski ring, then a ⊆ JA so that 1 + a consists of units. By the
Krull intersection theorem, this then implies that the map M 7→ M̂ is injective for every finitely-generated
A-module M . That is, Â is faithfully flat.

Assume Â is faithfully flat. Since A/m is finitely-generated (since A is Noetherian, so is A/m), the map

A/m 7→ Â/m is injective. That is, no elements are annihilated by any element of 1 + a. Therefore, for any
1 + a ∈ 1 + a,

(1 + a)(1 + m) = (1 + a+ m)(1 + m)1 + a+ m 6= 0 + m.

From this, it follows that ae ⊆ JA/m = 0 (since A/m is a field). However, this implies that a ⊆ m. Since m was
arbitrary, this implies that a ⊆ JA so A is a Zariski ring.

8. Let A be the local ring of the origin in Cn (rational runctions defined at the origin), B the ring of power
series in z1, . . . , zn that converge in some neighborhood of the origin, and C the ring of formal power series in
z1, . . . , zn so that A ⊆ B ⊆ C. Let

b = (z1, . . . , zn)

be an ideal of B (of elements whose limit function vanishes at 0). For an element of B \ b, the limit function
is analytic and nonzero at the origin. Therefore, the reciprocal of the limit function is also analytic in some
neighborhood of the origin and so has a convergent power series in this neighborhood. That is, any element of
B \ b is invertible, which implies that b is the unique maximal ideal of B so that B is a local ring. Considering
powers of b and the consecutive quotients B/bn, it is clear that the completion of B is the ring of formal power
series in z1, . . . , zn (much in the same way that the completion of the polynomial ring at the ideal (x) is the
ring of formal power series). From chapter 3, problem 17, to show that B is A-flat, it suffices now to show that
C is A-flat (since we are assume B is Noetherian, C is faithfully B-flat from the last problem).

Let (z1, . . . , zn) be a maximal ideal of C[z1, . . . , zn]. It is easy to see that C[z1, . . . , zn](z1,...,zn) = (1 +
(z1, . . . , zn))−1C[z1, . . . , zn]. Therefore, we may consider A to be the set of rational functions, f/g, where
g(0) = 1. It will be shown that C is the completion of A with respect to the a-adic topology where
a = (z1, . . . , zn) and so is a flat A-module. Consider a coherent sequence(

f1

g1
+ a,

f2

g2
+ a2,

f3

g3
+ a3, . . .

)
.

Notice that s/t ∈ an if and only if s ∈ an since t is a unit. Then

fn
gn
− fn

1
=
fn(1− gn)

gn
∈ an.

Therefore, we may replace the coherent sequence above by the sequence

(f1 + a, f2 + a2, . . .).

From this point, it is clear that Â ⊆ C (since the fi are polynomials in z1, . . . , zn). Conversely, it is clear that

every element of C can appear as such an element. Therefore, Â = C so C is a flat A-module. It then follows
that B is a flat A-module.

9. Let A be a ring with prime ideal m that is m-adic complete and let f ∈ A[x] be a monic polynomial of degree
n such that there exists coprime monic polynomials g, h ∈ (A/m)[x] of degrees r and n− r such that f = gh.

It will be shown that we can inductively find gk, hk ∈ A[x] such that gkhk − f ∈ mk[x] = mkA[x] and so that
the sequence gk +mk is coherent. Let g1, h1 ∈ A[x] be any lifts of g and h respectively. Assuming gk, hk ∈ A[x]
are defined, we know that gk = g and hk = h and so they are relatively prime. From the note at then end, for
1 ≤ p ≤ n, there exists ap, bp ∈ A[x] of degrees ap ≤ n− r and bp ≤ r such that

ap(x)gk(x) + bp(x)hk(x) = xp.

Since all of the above terms above are of degree ≤ n, there exists rp(x) ∈ m[x] of degree ≤ n such that

xp = ap(x)gk(x) + bp(x)hk(x) + rp(x).
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We may write

f(x)− gk(x)hk(x) =
∑
i

mix
i = gk(x)

∑
i

miai(x) + hk(x)
∑
i

mibi(x) +
∑
i

miri(x),

with mi ∈ mk. Let

gk+1(x) = gk(x) +
∑
i

mibi(x), hk+1(x) = hk(x) +
∑
i

miai(x).

From the above, we see

f − gk+1hk+1 =
∑
i

miri(x)−
∑
i,j

mimjai(x)bj(x) ∈ mk+1[x],

since ri(x) ∈ m[x]. It is clear that gk+1 = gk modmk and hk+1 = hk modmk and deg gk = n− r, deg hk = r so
that these polynomials satisfy the desired conditions.

The sequences (gk) and (hk) are coherent. Since A is m-adic complete, the map A 7→ Â is surjective and these
sequences are of the form (g + m, g + m2, . . .) and (h + m, h + m2, . . .) respectively. From this, it is clear that

g(x)h(x) = f(x) by our construction of these sequences and injectivity of the map A 7→ Â.

Note: The following is proof of the result used in the above. For an integral domain A and polynomials
g, h ∈ A[x] of degrees n and m respectively, by the extended Euclidean algorithm, there are polynomials
a, b ∈ A[x] such that

ag + bh = 1

and deg a < m = deg h, deg b < n = deg g. For any polynomial f of degree min{m,n} ≤ deg f ≤ m + n, we
may clearly linear combinations of g and h to lower the degree of f to strictly less than min{m,n}. Consider
now the case that f of degree strictly less than min{m,n}. If n < m, we may continually multiply g by xm−n

and subtract from h to lower the degree of h until deg h < n (note that now h has the form h − cg where
deg c = m − n). We may repeat the same process now until deg f = 0. That is, until f is constant, in which
case we may subtract a multiple of ag+ bh = 1 so that we have written f as a sum of linear combinations of g
and h with the desired powers. On the other hand, if deg g = deg h, then we may subtract a constant multiple
of g from h so that deg h < deg g. Then the above process gives the desired linear combination as well.

10a. Let A be a ring with prime ideal m be m-adic complete and f ∈ A[x] be monic such that f ∈ (A/m)[x] has a
simple root α ∈ A/m. Then we may write f = (x − α)h where these factors are relatively prime since α is a
simple root. Therefore, there is a lifting of these polynomials to g, h ∈ A[x] such that f = gh and their degrees
are equal to the degrees of their projections. That is, g(x) = x − α and deg g = deg(x − α) = 1. Therefore,
g(x) = x− a for some a ∈ A. Then we have that f(x) = (x− a)h(x) so f(a) = 0 and clearly, a = α.

10b. Notice that Z7/7Z7 ' Z/7Z and so the ideal generated by 7 is maximal and Z7 is 7-adic complete by definition.
Therefore, from the above, if suffices to show that 2 is a square in Z/7Z, but 32 = 9 = 2 mod 7. Therefore, 2 is
a square in Z7.

10c. Let k be a field and f(x, y) ∈ k[x, y] ⊆ k[[x]][y] (since k[x, y] is a Noetherian domain, apply Krull intersection
theorem) where k[[x]][y] is the completion of k[x, y] with respect to the (x)-adic topology. The condition that
f(0, y) has a simple root a0 is equivalent to the condition that f ∈ k[[x]][y]/(x) has a simple root. From above,
this then implies there is some root of f ∈ k[[x]][y],

f
(
x,
∑

anx
n
)

= 0

where a0 is the same a0 as above.

11. Let A be the ring of germs of smooth functions in some neighborhood of the origin. Clearly, A is local as the
functions who vanish at the origin is the unique maximal ideal m (everything that doesn’t vanish at the origin

is invertible in A). Note that e−1/x2 ∈ ∩mn so that A is not Noetherian (since otherwise, it is a Noetherian
local ring, which would imply this intersection is empty by the Krull intersection theorem). It can be checked
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via Taylor’s theorem that mk is the set of all functions whose first k derivatives (including k = 0) vanish at the

origin. From this, it is clear that in Â, the Taylor series of a function converges to the function itself and by
Borel’s theorem, every formal power series appears as the Taylor series of some smooth function. Therefore,
Â = R[[x]] is Noetherian. Â is a finitely-generated A-module since A 7→ Â is surjective by Borel’s theorem
again.

Note: Borel’s theorem, (which I’ve never heard of, though I should have) states that for any sequence of real
numbers, there is a smooth function whose Taylor series is given by the generating function of this sequence.

12. Let A be Noetherian and consider the sequence of maps

A→ A[x]→ A[[x]].

From chapter 2, the first map is flat and the latter map is flat since A[[x]] is the completion of A[x] in the
(x)-adic topology (and A[x] is Noetherian by the Hilbert basis theorem). Therefore, A[[x]] is a flat A-algebra.
From chapter 1, the map Spec(A[[x]]) 7→ Spec(A) is surjective. From chapter 3, this implies that A[[x]] is a
faithfully-flat A-module.

Chapter 11

1. Let f ∈ k[x1, . . . , xn] be an irreducible polynomial over an algebraically closed field k, V = V (f) be the
hypersurface defined by f , A = A(V ) = k[x1, . . . , xn]/(f) be the coordinate ring of V , P = (a1, . . . , an) be
a point of V , and m be the maximal ideal corresponding to the point P (which is the image of the ideal
m = (xi−ai) in k[x1, . . . , xn] modulo (f)). Notice first that A/m is a finitely-generated k-algebra that is also a
field. Therefore, it is a finite algebraic extension of k. Since k is algebraically closed, this implies that A/m = k
and

Am/mm = (A/m)m = km = k.

Since A is Noetherian, Am is a local Noetherian ring. From the equivalences of regularity, to show that Am is
regular, it suffices to show that dimAm/mm

mm/m
2
m = dimAm. Notice

dimAm/mm
mm/m

2
m = dimk(m/m2)m = dimk m/m

2,

dimAm = dimA = dim k[x1, . . . , xn]/(f) = n− 1.

Therefore, it simply suffices to show that dimk m/m
2 = n − 1. Since Taylor’s theorem holds for arbitrary

polynomial rings over a field (by writing polynomials in powers of (xi − ai)), we may write

f(x1, . . . , xn) =
∑

ai1,...,in(x1 − a1)m1 . . . (xn − an)mn .

From this, P is singular if and only if aei = 0 for all 1 ≤ i ≤ n (with ei = (0, . . . , 1, . . . , 0) and the 1 in the i-th
position) (also remember that since P ∈ V , a0,...,0 = 0). That is, P is singular if and only if f ∈ (xi−ai)2 = m2.
As a k-vector space, it’s clear that m/m2 has a basis of {x1 − a1, . . . , xn − an} and so has dimension n. As a
k-vector space m/m2 is the quotient of m/m2 by the subspace (f) and so has dimension n if f ∈ m2 and n− 1
if f 6∈ m2. That is, dimk m/m

2 = n− 1 if and only if f 6∈ m2 if and only if P is nonsingular. Therefore, Am is
a regular local ring if and only if P is nonsingular.

2. Let (A,m) be a Noetherian local ring containing a field k such that A is complete with respect to the m-adic
topology and x1, . . . , xd be a system of parameters. Since q = (x1, . . . , xd) is an m-primary ideal, there exists
r > 0 such that mr ⊆ q ⊆ m. From this, the q-adic and m-adic topologies coincide and A is q-adic complete.
Consider the map φ : k[t1, . . . , td] 7→ A defined by ti 7→ xi. Completing with respect to the q-adic topology gives

a map φ̂ : k[[t1, . . . , td]] 7→ A defined by ti 7→ xi. To show that φ̂ is injective, the proof of 11.21 will essentially

be replicated. Assume the formal power series f ∈ k[[t1, . . . , td]] is such that φ̂(f) = 0. Then we may write
f = fs+ higher terms, where fs is homogeneous of degree s (s is then minimal). Since f(x1, . . . , xd) = 0, we
necessarily have that fs(x1, . . . , xd) ∈ q̂s+1. Since fs is a homogeneous polynomial with coefficients in (k ⊆)A,
11.21 applies and shows that the coefficients of fs are in m, but this implies the coefficients of fs are all zero
(since no unit lies in m and k is all units except for zero). This is a contradiction and shows that φ̂ is necessarily
injective.
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3. The proof follows verbatim up until the use of 11.26. At this point, we have that dimV ≥ dimAm = dimBn

where A = A(V ) is the coordinate ring, B = k[x1, . . . , xd] ⊆ A is obtained from the normalization lemma
(which it was never shown that we can take d equal to dimV ), m = (xi − ai), and n = B ∩ m. At this point,
apply lemma 11.26 again with A = k[x1, . . . , xd] since this is integral over B with B integrally closed. This
implies that dimBn = dim k[x1, . . . , xn]n′ . The rest follows as in the text to show that this number is ≥ dimV .

4. Let A = k[x1, . . .] be a polynomial ring over a field k in countably many indeterminants. Let mn = 2n so that
mn+1 −mn = 2n and let pi = (xmi , . . . xmi+1−1). Then S = A \ ∪pi is a multiplicative subset since each pi is
a prime ideal. Let B = S−1A.

To show that B is Noetherian, a problem from chapter 7 will be used. Notice first that by the prime ideal
correspondence, the only maximal ideals of B are in bijective correspondence with the prime ideals of A that
are maximal in ∪pi. Let p be such an ideal. If f1, f2 ∈ p are such that f1 ∈ pi and f2 ∈ pj for i 6= j, then by
the definitions of pi, f1 + f2 6∈ ∪pi (consider degrees) so that f1 + f2 6∈ p. Therefore, we necessarily have p ⊆ pi
for some i. Conversely, each pi is maximal by the same reasoning and each is contained in ∪pi. Therefore,
p = pi for some i. That is, the maximal ideals of B are exactly the ideals S−1pi. Consider polynomial ring
K[xj ]mi≤j≤mi+1−1 where K = k(xj)j<mi, j>mi+1−1 is the field of rational functions in all other indeterminants
xi. Then the localization BS−1pi is then the localization of K[xj ]mi≤j≤mi+1−1 at the ideal 1+(xj)mi≤j≤mi+1−1.
Since the polynomial ring is Noetherian by the Hilbert basis theorem, the localization BS−1pi is Noetherian as
well.

On the other hand, it is clear that for every x 6= 0, it is clear that there is a unique maximal ideal that contains
x (consider degrees). Therefore, B satisfies properties (1) and (2) from chapter 7, problem 9. Therefore, B is
Noetherian.

To see that dimB = ∞, notice that by the prime ideal correspondence with localizations, the height of the
ideal S−1pi is exactly mi+1 −mi = 2i, which shows the dimB is infinite.

5.

6. Let A be any ring. For any prime ideal p and chain of prime ideals

p0 ⊂ p1 ⊂ . . . ⊂ pn = p,

there is a chain of prime ideals

p0[x] ⊂ p1[x] ⊂ . . . ⊂ pn[x] = p[x].

Since A[x]/p[x] ' (A/p)[x] is not a field (even if p is maximal), this shows this chain can be extended. Therefore,
1 + dimA ≤ dimA[x].

For the other inequality, let f : A 7→ A[x] be the canonical embedding. Consider a fiber of a prime ideal
p ∈ Spec(A) under the map f∗ : Spec(A[x]) 7→ Spec(A). From a problem in chapter 3, this fiber can be
identified with the set Spec(k(p) ⊗A A[x]) = Spec(k[x]), where k = k(p) is the residue field of A at the prime
p. Recall that dim k[x] = 1 since k[x] is a PID and not a field. From this, any chain of prime ideals laying over
a prime has length at most 1. For any chain of prime ideals in A[x], we may contract to get a chain of prime
ideals of A. We see that there are at most two primes laying above each prime in this chain so there are at
most twice the number of primes plus two of the chain in A[x]. That is, there are at most twice as many links
plus one. Taking the supremum, we get dimA[x] ≤ 1 + 2 dimA.

7. From the previous problem, the inequality 1 + dimA ≤ dimA[x] holds almost trivially. Therefore, it suffices
to show only the other inequality.

Let q ∈ Spec(A[x]) and p = qc = q ∩ A. For any maximal increasing chain of prime ideals ending in q, it is
clear that p[x] appears (consider ideals of constant terms of these prime ideals, insert p[x] where the constant
term ideals become p). From the previous problem, any chain of prime ideals in A[x] laying over a prime in
A has length at most 1 (so there are 2 prime ideals). From this and the fact that the maximal constant term
ideal of this chain is p, it follows that the chain has the form

q0 ⊂ . . . ⊂ p[x] ⊆ q

(where the last chain may be an equality). From this, it suffices to show that heightp[x] ≤ height(p) ≤ dimA.

For any prime ideal p ∈ Spec(A) of height m, we may find a1, . . . , am ∈ A such that p is a minimal prime of
a = (a1, . . . , am) (see below). Then from chapter 4, problem 7, it follows that p[x] is a minimal prime of a[x].
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Since a[x] is generated by m elements, we have that height(p[x]) ≤ m = height(p) by 11.16. Therefore, the
result follows.

To see that we can always find such ai, we of course use induction. The base case, m = 0 is trivial since any
minimal prime is a minimal prime of 0. Assuming the result for a fixed m, let p be of height m + 1 so that
there exists a maximal increasing chain of prime ideals

p0 ⊂ . . . ⊂ pm ⊂ pm+1 = p.

By inductive hypothesis, there exists a1, . . . , am ∈ A such that pm is a minimal prime of (a1, . . . , am). We
necessarily have p 6⊆ ∪qi where this union is over the minimal elements of the set of prime ideals containing
(a1, . . . , am) (which is finite since A/(a1, . . . , am) is Noetherian), since otherwise, p ⊂ qi for some i and has
height ≤ m by 11.16. Therefore, there exists am+1 ∈ p\∪qi (in particular, am+1 6∈ pm). Let a = (a1, . . . , am+1).
For any prime ideal q containing (a1, . . . , am+1), q contains (a1, . . . , am). Writing out a primary decomposition
and taking radicals, we have that q contains the intersection of minimal primes of (a1, . . . , am) and so contains
one of these minimal primes. Since these each have height ≤ m and q properly contains one of them (it contains
am+1), height(q) ≥ i+1. Since no prime ideals of the same height can contain one another, if height(q) = i+1,
there is no containment with q and pm+1. If height(q) > i + 1, then if there is a containment, it can only be
pm+1 ⊆ q. Therefore, pm+1 is a minimal prime of a = (a1, . . . , am+1) as desired.
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