My research interests have always revolved around various types of inverse problems for partial differential equations. There are three basic mathematical issues:

- is there a unique solution?
- how ill-conditioned is the inverse operator and how can this be resolved?
- what computational methods are available and do these give convergence to a solution?

In the last few years I have been interested in reaction diffusion equations and systems including the case of the underlying pde incorporating a non-local operator such as arises with fractional derivatives. The reasons for this are two-fold. First, these operators frequently provide a better physical model than one based on classical assumptions on derivatives and integrals. Second, inverse problems are almost always ill-conditioned and finding solution methods means resolving the inversion of an unbounded operator; replacing the classical equation by a nonlocal one can be an effective method – the idea of quasi-reversibility. Most of the current work is joint with Barbara Kaltenbacher.

Examples in the first category are numerous and a prominent case is to use the subdiffusion operator \(\partial_t^\alpha u - Lu \) where \(-L\) is a uniformly elliptic operator in \(\Omega \subset \mathbb{R}^n \) in place of the standard parabolic model. The forwards regularity of this operator is much weaker and the analysis more complex. One main effect is replacement of the exponential time decay of the parabolic by a linear decay for the subdiffusion case, and this often has positive consequences for inverse problems. See the survey article [1] for an overview of inverse problems involving such derivatives. Recent papers highlighting the recovery of inclusions for the subdiffusion case and the dependence on \(\alpha \) are [2,3]. The question of recovering \(\alpha \) obviously arises and in fact there might be a finite sum of such with orders \(\{\alpha_i\}_1^N \). For the generally fully distributed derivative case and its recovery from temporal data see [4].

Another direction is the damped wave equation. The undamped case is \(u_{tt} - c^2 \Delta u = 0 \) and the long term behaviour is purely sinusoidal in nature. For the classically damped equation \(u_{tt} - bu_t - c^2 \Delta u = 0 \) all solutions decay exponentially and thus all frequencies decay at this rate. This latter effect does not correspond to the physics in many cases and thus the model \(u_{tt} - b \partial_t^\alpha u - c^2 \Delta u = 0 \) where \(\partial_t^\alpha u \) is a fractional derivative of order \(\alpha \), \(0 < \alpha < 1 \) is often used. In this case, for all frequencies, the decay is only a polynomial of small degree in time. The paper [5] gives an application of this idea to recovering, for example, the wave speed \(c(x) \) under both classical and fractional operators.

An example of the second type is to recover the initial condition from a final time measurement for a parabolic equation. This is perhaps the most well-known severely ill-posed inverse problem and many regularisation methods have been proposed. One such, involves replacing the equation by a subdiffusion operator of order \(\alpha \) and letting \(\alpha \to 1 \). This fails for the important very low frequencies and a more sophisticated version can be found in [6].

Reaction-diffusion equations are the backbone of chemical reactions, ecology models and just about any physical model that balances a diffusion process with a (often nonlinear) driving term. The canonical form is \(u_t - \Delta u = f(u) \) where \(\Delta \) is the Laplacian and a more general setting would extend this to an elliptic operator \(L = -\nabla (a(x) \nabla u) + q(x)u \). There are many formulations:

- The reaction \(f(u) \) is known and we must recover the coefficients, \(a(x) \) and \(q(x) \); [7,8]
- The operator \(L \) is known and we must recover \(f(u) \); [9]
- both \(a(x) \) and \(f(u) \) are unknown, [10], \(a(u) \) is unknown, [11].

Overposed data to accomplish this can be time-trace boundary measurements or values at a time \(T \). There is also the case of reaction-diffusion systems

\[
\begin{align*}
 u_t - L u &= f_1(u) + g_1(\phi(u, v)) \\
 v_t - L v &= f_2(v) + g_2(\phi(u, v)).
\end{align*}
\]

The interaction terms \(g_1, g_2 \) and the coupling \(\phi(u, v) \) might be known and both \(f_1 \) and \(f_2 \) have to be recovered. Alternatively, if the \(f_i \) are known then we seek to recover both \(g_1 \) and \(g_2 \) or if each \(f_i \) and \(g_i \) are known, recover the coupling term \(\phi \). See [12] for both analysis and reconstructions. For the case of coefficient recovery in a damped wave equation see [5] and in a fully nonlinear problem (the Westervelt equation), see [13].
Recent publications in the area

The continuous support of NSF over the last 35 years which has contributed heavily to this research is deeply acknowledged.