Amoebas!

Nida Obatake

Texas A&M University
College Station, TX

AMS Gathering In Graduate Expository Mathematics 2019

February 16, 2019
Amoebas?
Definition

The **Newton polytope** of a (Laurent) polynomial f is the convex hull of the exponent vectors of the monomials of f.

\[
\text{Newt}(x^5y^3 - 75x^4y - 10x^3y^2 - 7xy^4 - 17x^2y + 71xy - 44)
\]
Amoebas!

Definition

Let \(f \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \).

\[
Z_f := \{(\zeta_1, \ldots, \zeta_n) \in (\mathbb{C}^*)^n \mid f(\zeta_1, \ldots, \zeta_n) = 0\}
\]

\[
\text{Amoeba}(f) := \{(\log |\zeta_1|, \ldots, \log |\zeta_n|) \in \mathbb{R}^n \mid f(\zeta_1, \ldots, \zeta_n) = 0\}
\]

The **amoeba** of the polynomial \(f \) is \(\text{Log}(Z_f) \).
Univariate example

\[f(x_1) := x_1^2 + x_1 + 1 \]

Newt(\(f\)):

Amoeba(\(f\)):

\(\mathbb{R}^1 \setminus \text{Amoeba}(f) \):
Tentacles

[Viro, 2002]
Another one

\[f(x, y) = x^3 + y^3 + 1 + x^2 y^3 + x^3 y^2 + 14x + 14x^2 + 14y + 14y^2 + 14x^3 y + 14xy^3 + 196xy + 196x^2 y + 196xy^2 + 196x^2 y^2 \]

[Bogaard, 2015]
Theorem (Gelfand, Kapranov, and Zelevinsky, 1990)

Given any $f \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$,

- $\mathbb{R}^n \setminus \text{Amoeba}(f)$ is a finite union of open convex sets.

Furthermore,

- for each vertex γ of $\text{Newt}(f)$, there is a unique connected component of $\mathbb{R}^n \setminus \text{Amoeba}(f)$ containing a translate of the outer normal cone of γ.

- the number of compact connected components of $\mathbb{R}^n \setminus \text{Amoeba}(f)$ is $\leq |\mathbb{Z}^n \cap \text{Int}(ext{Newt}(f))|$.
Example

\[f(x, y) = 1 + y^2 + x^3 - 10xy \]

Newt(\(f\)):

Amoeba(\(f\)):
Same support, different amoeba

\[g(x, y) = 1 + y^2 + x^3 - \frac{1}{2}xy \]

Newt\((g)\) is:

Amoeba\((g)\) is:
Planar Amoebas

Proposition

Although a planar amoeba is not bounded, its area is finite. For $f \in \mathbb{C}[x, y],$

$$\text{Area}(\text{Amoeba}(f)) \leq \pi^2 \text{Area}(\text{Newt}(f)).$$

Note: This does not generalize to higher dimensions.
Let \(f(x) \) be a Laurent polynomial. All the components of \(\mathbb{R}^n \setminus \text{Amoeba}(f) \) are convex subsets in \(\mathbb{R}^k \). The components of the complement are in bijective correspondence with Laurent series expansions of the rational function \(1/f(x) \).

There is a vector \(v \) in the outer normal cone of the vertex \(\gamma \) of \(\text{Newt}(f) \) such that the Laurent series of \(1/f(x) \) converges absolutely for any \(x \in (\mathbb{C}^*)^n \) for which the vector \(\log(x) = (\log |x_1|, \ldots, \log |x_n|) \) lies in the affine cone \((v + \text{outer normal cone of } \gamma)\).
Thanks and
References

Maurice Rojas (2018)
Semi-definite Programming

I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky (1994)
Discriminants, Resultants, and Multidimensional Determinants

Oleg Viro (2002)
WHAT IS an amoeba?
Notices of the AMS 49(8), 916–917.

Milo Bogaard (2015)
Introduction to amoebas and tropical geometry
Master Thesis, Universiteit van Amsterdam
Proposition (GKZ)

Let $f(x)$ be a Laurent polynomial. All the components of $\mathbb{R}^n \setminus \text{Amoeba}(f)$ are convex subsets in \mathbb{R}^k. The components of the complement are in bijective correspondence with Laurent series expansions of the rational function $1/f(x)$.

Proof.

- For $f(x_1, \ldots, x_n) = \sum a_\omega x^\omega$, let $\gamma \in \text{Newt}(f)$ be any vertex.
- Write $f(x) = a_\gamma x^\gamma \left(1 + \sum_{\omega \neq \gamma} \frac{a_\omega}{a_\gamma} x^{\omega-\gamma}\right) = a_\gamma x^\gamma (1 + g(x))$.
- Using the geometric series, construct the Laurent expansion $\frac{1}{f(x)} = a_\gamma^{-1} x^{-\gamma} (1 - g(x) + g(x)^2 - \cdots)$
- Facts: this expansion is a well-defined Laurent series whose exponents lie in the affine cone $-\gamma + \mathbb{R}_{>0} \cdot (\text{Newt}(f) - \gamma) \in \mathbb{R}^n$