Quizz 1 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1: Find a parametric representation of the line in $\mathbb{R}^{4}$ that passes through $P=$ $(4,-2,3,1)$ in the direction of $u=(2,5,-7,8)$.
The line in question consists of the points $X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ that are such that there is $t \in \mathbb{R}$ so that $(X-P)=t u$. This means that

$$
X-P=t u=(2 t, 5 t,-7 t, 8 t)
$$

The parametric representation of the line is

$$
x_{1}=4+2 t, \quad x_{2}=-2+5 t, \quad x_{3}=3-7 t, \quad x_{4}=1+8 t .
$$

Question 2: Find a unit vector orthogonal to $u=(2,1,3)$ and $v=(4,-1,2)$.
It is a known property of the cross product that the following vector $w:=u \times v$ is orthogonal to $u$ and $v$. By definition

$$
\begin{equation*}
w=(1 \times 2-3 \times(-1), 3 \times 4-2 \times 2,2 \times(-1)-1 \times 4)=(5,8,-6) . \tag{1}
\end{equation*}
$$

By normalizing $w$ we obtain the desired vector:

$$
\frac{w}{\|w\|}=\frac{1}{\sqrt{125}}(5,8,-6)
$$

Question 3: Find an equation of the hyperplane in $\mathbb{R}^{3}$ that passes through $P=(1,-3,-4)$ and is parallel to the hyperplane $H^{\prime}$ determined by the equation $3 x_{1}-6 x_{2}+5 x_{3}=2$.
The definition of $H^{\prime}$ implies that $n=(3,-6,5)$ is normal to $H^{\prime}$. Since $H$ and $H^{\prime}$ are parallel, $n=$ $(3,-6,5)$ is also a normal vector to $H$. By definition $H$ is the collection of points $X=\left(x_{1}, x_{2}, x_{3}\right)$ so that $(X-P) \cdot n=0$. This means

$$
\begin{aligned}
0= & (X-P) \cdot(3,-6,5)=\left(x_{1}-1, x_{2}+3, x_{3}+4\right) \cdot(3,-6,5)= \\
& \left.=3 x_{1}-3-6 x_{2}-18+5 x_{3}+20\right)=3 x_{1}-6 x_{2}+5 x_{3}-1 .
\end{aligned}
$$

The equation of the hyperplane in question is

$$
3 x_{1}-6 x_{2}+5 x_{3}=1
$$

Question 4: Prove the Schwarz inequality: $|u \cdot v| \leq\|u\|\|v\|$ for all vectors $u$ and $v$ in $\mathbb{R}^{n}$.
Let $u$ and $v$ be two vectors in $\mathbb{R}^{n}$. The following holds for every $t \in \mathbb{R}$,

$$
0 \leq\|u+t v\|^{2}:=(u+t v) \cdot(u+t v)=u \cdot u+t u \cdot v+t v \cdot u+t^{2} v \cdot v=\|u\|^{2}+2 t(u \cdot v)+t^{2}\|v\|^{2} .
$$

This means that the quadratic polynomial $\|u\|^{2}+2 t(u \cdot v)+t^{2}\|v\|^{2}$ in $t$ cannot have two disctinct real roots. This implies that the discriminant $4(u \cdot v)-4\|v\|^{2}\|u\|^{2}$ is negative, or equivalently

$$
4(u \cdot v) \leq 4\|v\|^{2}\|u\|^{2} .
$$

Dividing by 4 and taking the square root gives the Schwarz inequality

$$
|(u \cdot v)| \leq\|v\|\|u\| .
$$

