Name \qquad UIN
MATH 171 Exam 1

Fall 2021
Sections 503
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-10$	$/ 50$	12	$/ 25$
11	$/ 5$	13	$/ 25$
		Total	$/ 105$

1. Write $\langle 1,5\rangle$ as a linear combination of $\langle 2,3\rangle$ and $\langle 3,1\rangle$ or type "impossible" in both boxes.

$$
\langle 1,5\rangle=\ldots\langle 2,3\rangle+\ldots \quad\langle 3,1\rangle
$$

2. Find the angle between the vectors $\langle 2,3\rangle$ and $\langle 5,1\rangle$.
a. 0°
b. 30°
c. 45°
d. 60°
e. 90°
f. 120°
g. 135°
h. 150°
i. 180°
3. Write $\vec{v}=\langle 10,5\rangle$ as the sum of two vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{u}=\langle 3,4\rangle$ and \vec{q} is perpendicular to \vec{u}.

$$
\langle 10,5\rangle=\vec{p}+\vec{q}
$$

where

$$
\vec{p}=\langle\quad, \quad, \quad \text { and } \quad \vec{q}=\langle\square, \quad, \quad\rangle
$$

4. Find the smallest interval with integer endpoints in which there is a solution of the equation $x^{3}+3 x=40$.
There is a solution in the interval $I=[$ \qquad , \qquad].
5. For the piecewise defined function $f(x)=\left\{\begin{array}{cl}5 & \text { for } x=4 \\ 9-x & \text { for } x>4 \\ 2+x & \text { for } x<4\end{array}\right.$ identify

$$
f(4)=\quad \lim _{x \rightarrow 4^{-}} f(x)=\square \quad \lim _{x \rightarrow 4^{+}} f(x)=
$$

Then enter T or F to say if each statement is true or false:
a. $f(x)$ is continuous \qquad (CorF)
b. $f(x)$ is continuous from the right \square (CorF)
c. $f(x)$ is continuous from the left \qquad (CorF)
d. $\lim _{x \rightarrow 4} f(x)$ exists \qquad (CorF)
6. Find the interval on which $g(x)=\frac{1}{\sqrt{4-x^{2}}}+\sqrt{x}$ is continuous.
a. $-2<x \leq 0$
b. $-2 \leq x \leq 2$
c. $2<x<\infty$
d. $0 \leq x<2$
e. $0<x \leq 2$
7. Find the horizontal asymptotes for $g(x)=\frac{5 \cdot 3^{x}+4}{3^{x}+2}$.

As $x \rightarrow+\infty$, the horizontal asymptote is $y=$ \qquad As $x \rightarrow-\infty$, the horizontal asymptote is $y=$ \qquad
8. The function $f(x)=\frac{x-4}{(x-2)^{2}}$ has a vertical asymptote at $x=2$. Near $x=2$, its graph looks like:
a.

b.

c.

d.

e None of these
9. Find the average velocity between $t_{1}=1$ and $t_{2}=1.1$ if the position is $x(t)=t^{2}$.
a. 12.01
b. 12.1
c. 2
d. 2.01
e. 2.1
10. Find the tangent line to the curve $y=\frac{1}{x^{2}}$ at $x=2$. It can be written in slope intercept form as $y=m x+b$, where

$$
m=\quad \text { and } \quad b=
$$

Work Out: (Points indicated. Part credit possible. Show all work.)
11. (5 points) Write out the definition of the statement $\lim _{x \rightarrow 4} x^{3}=64$.

Your answer must consist of words, phrases and formulas from the following list:

For	and	$\varepsilon>0$	$\delta>0$
such that	or	$\|x-4\|<\varepsilon$	$\|x-4\|<\delta$
there exists	if	$0<\|x-4\|<\varepsilon$	$0<\|x-4\|<\delta$
there does not exist	then	$\left\|x^{3}-64\right\|<\varepsilon$	$\left\|x^{3}-64\right\|<\delta$
some	all	$0<\left\|x^{3}-64\right\|<\varepsilon$	$0<\left\|x^{3}-64\right\|<\delta$

$\lim _{x \rightarrow 4} x^{3}=64 \quad$ means:
12. (25 points) Compute each of the following limits.
a. $\lim _{k \rightarrow 4} \frac{k-4}{k^{2}-k-12}=$
b. $\lim _{x \rightarrow 5} \frac{(x-10)^{2}-25}{x-5}=$
c. $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{12+x}-\sqrt{20-x}}=$
d. $\lim _{x \rightarrow \infty}\left(x-\frac{x^{2}+3}{x+4}\right)=$
e. $\lim _{\theta \rightarrow 0} \frac{1-\cos ^{4} \theta}{\theta^{2}}=$
13. (25 points) Compute the derivative of each of the following functions.
a. $f(x)=5 x^{4}-3 x^{2}+7 x-\frac{2}{x^{3}}$
b. $g(y)=y^{3} \cos (y)$
c. $h(t)=\frac{\sin (t)}{t}$
d. $k(x)=2 x^{e}+3 e^{x}$
e. If $f(x)=\frac{p(x)+q(x)}{r(x)}$, find $f^{\prime}(1)$, given that

$$
p(1)=7, \quad p^{\prime}(1)=6, \quad q(1)=5, \quad q^{\prime}(1)=4, \quad r(1)=3, \quad r^{\prime}(1)=2
$$

