Name	UIN					
	Even 1		1-10	/50	12	/25
MATH 171	Exam 1	Fall 2021				
Sections 503		P. Yasskin	11	/ 5	13	/25
Multiple Choice: (5 points each. No part credit.)					Total	/105

1. Write $\langle 1,5 \rangle$ as a linear combination of $\langle 2,3 \rangle$ and $\langle 3,1 \rangle$ or type "impossible" in both boxes.

 $\langle 1,5\rangle = \underline{\langle 2,3\rangle} + \underline{\langle 3,1\rangle}$

2. Find the angle between the vectors $\langle 2,3 \rangle$ and $\langle 5,1 \rangle$.

a.	0°	f . 120°
b.	30°	g . 135°
C .	45°	h . 150°
d.	60°	i. 180°

- **e**. 90°
- **3**. Write $\vec{v} = \langle 10, 5 \rangle$ as the sum of two vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{u} = \langle 3, 4 \rangle$ and \vec{q} is perpendicular to \vec{u} .

$$\langle 10,5\rangle = \vec{p} + \vec{q}$$

where

 $\vec{p} = \langle __, __ \rangle$ and $\vec{q} = \langle __, __ \rangle$

4. Find the smallest interval with integer endpoints in which there is a solution of the equation $x^3 + 3x = 40$.

There is a solution in the interval $I = [_, _]$.

5. For the piecewise defined function $f(x) = \begin{cases} 5 & \text{for } x = 4 \\ 9 - x & \text{for } x > 4 \\ 2 + x & \text{for } x < 4 \end{cases}$ identify $f(4) = \underline{\qquad} \qquad \lim_{x \to 4^{-}} f(x) = \underline{\qquad} \qquad \lim_{x \to 4^{+}} f(x) = \underline{\qquad}$

Then enter T or F to say if each statement is true or false:

- **a**. f(x) is continuous (TorF)
- **b**. f(x) is continuous from the right (TorF)
- **c**. f(x) is continuous from the left (TorF)
- **d**. $\lim_{x \to 4} f(x)$ exists (TorF)

6. Find the interval on which $g(x) = \frac{1}{\sqrt{4-x^2}} + \sqrt{x}$ is continuous.

- **a**. $-2 < x \le 0$
- **b**. $-2 \le x \le 2$
- **c**. $2 < x < \infty$
- **d**. $0 \le x < 2$
- **e**. $0 < x \le 2$

7. Find the horizontal asymptotes for $g(x) = \frac{5 \cdot 3^x + 4}{3^x + 2}$.

- As $x \to +\infty$, the horizontal asymptote is y = _____
- As $x \to -\infty$, the horizontal asymptote is y = _____

8. The function $f(x) = \frac{x-4}{(x-2)^2}$ has a vertical asymptote at x = 2. Near x = 2, its graph looks like: a. b. c. d. e None of these

- **9**. Find the average velocity between $t_1 = 1$ and $t_2 = 1.1$ if the position is $x(t) = t^2$.
 - **a**. 12.01
 - **b**. 12.1
 - **c**. 2
 - **d**. 2.01
 - **e**. 2.1

10. Find the tangent line to the curve $y = \frac{1}{x^2}$ at x = 2. It can be written in slope intercept form as y = mx + b, where

m = _____ and *b* = _____

Work Out: (Points indicated. Part credit possible. Show all work.)

11. (5 points) Write out the definition of the statement $\lim_{x\to 4} x^3 = 64$. Your answer must consist of words, phrases and formulas from the following list:

For	and	$\varepsilon > 0$	$\delta > 0$
such that	or	$ x-4 < \varepsilon$	$ x-4 < \delta$
there exists	if	$0 < x-4 < \varepsilon$	$0 < x-4 < \delta$
there does not exist	then	$ x^3-64 <\varepsilon$	$ x^3 - 64 < \delta$
some	all	$0 < x^3 - 64 < \varepsilon$	$0 < x^3 - 64 < \delta$

 $\lim_{x \to 4} x^3 = 64 \qquad \text{means:}$

. (25 points) Compute each of the following limits.

a.
$$\lim_{k \to 4} \frac{k-4}{k^2 - k - 12} =$$

b.
$$\lim_{x \to 5} \frac{(x-10)^2 - 25}{x-5} =$$

c.
$$\lim_{x \to 4} \frac{x-4}{\sqrt{12+x} - \sqrt{20-x}} =$$

$$d. \lim_{x \to \infty} \left(x - \frac{x^2 + 3}{x + 4} \right) =$$

$$\mathbf{e.} \lim_{\theta \to 0} \frac{1 - \cos^4 \theta}{\theta^2} =$$

- **13**. (25 points) Compute the derivative of each of the following functions.
 - **a**. $f(x) = 5x^4 3x^2 + 7x \frac{2}{x^3}$

b. $g(y) = y^3 \cos(y)$

c.
$$h(t) = \frac{\sin(t)}{t}$$

d. $k(x) = 2x^e + 3e^x$

e. If
$$f(x) = \frac{p(x) + q(x)}{r(x)}$$
, find $f'(1)$, given that
 $p(1) = 7$, $p'(1) = 6$, $q(1) = 5$, $q'(1) = 4$, $r(1) = 3$, $r'(1) = 2$