Name	UIN_					
			1-10	/55	12	/10
MATH 171	Exam 2	Fall 2021		105	10	45
Sections 503		P. Yasskin	11	/25	13	/15
Multiple Choice: (5 points each. No part credit.)					Total	/105

1. If $f(x) = e^{3x} - 4e^{2x} + 2x^4 + \sin(2x) + \ln(1 - 3x)$, find f'(0).

f′(0) = _____

f(2) = 2 f'(2) = 3 g(2) = 4 g'(2) = 5f(4) = 4 f'(4) = 5 g(4) = 6 g'(4) = 7

find F'(2).

2. If F(x) = f'(g(x)), where

F′(2) = _____

3. If $g(x) = x \cos(\pi x)$, find $g'\left(\frac{1}{2}\right)$. (Type "pi" for π . Type "sqrt(3)" for $\sqrt{3}$.)

 $g'\left(\frac{1}{2}\right) =$ _____

4. Find the slope of the curve $xy^2 + x^2y^3 = 6$ at the point (x,y) = (2,1).

- **5**. (10 points) Consider the parametric curve $\vec{r}(t) = \langle t^3 + 3t, t^3 3t \rangle$.
 - **a**. Find the position at time t = 2.
 - **b**. Find the velocity at time t = 2.

 $\vec{v}(2) = \langle _, _\rangle$

 $\vec{r}(2) = \langle ___, ___ \rangle$

c. Find the parametric tangent line at t = 2. (Write each component in the form.a + bt with no spaces.)

 $m(2) = _ m(1) = _$

x(t) =_____ y(t) =_____

e. Find the time(s) at which the curve is horizontal. (*Put times in separate blanks in ascending order.*)

d. Find the slopes at times t = 2 and t = 1.

t = _____ and *t* = _____

6. If
$$f(x) = \sqrt{25 - x^2} + \arcsin\left(\frac{x}{5}\right)$$
, then $f'(3) =$
a. 1
b. $\frac{1}{2}$

c.
$$-\frac{1}{4}$$

d. $-\frac{1}{2}$

d.
$$-\frac{1}{2}$$

e. $-\frac{3}{4}$

7. Notice that the derivative of $f(x) = x + x^3 + x^5$ is always positive. So it is always increasing and is 1-to-1. So it has an inverse g(x). Find g'(3).

HINT: f(-1) = -3 f(0) = 0 f(1) = 3 f(2) = 42 f(3) = 273

g'(3) = _____

- 8. The distance from Houston to Dallas is 240 miles. The highest speed limit for the entire trip is $75 \frac{\text{miles}}{\text{hour}}$. An Aggie makes the trip in 3 hours. Which theorem says that the Aggie was speeding at some point along the trip?
 - a. The Squeeze Theorem
 - b. The Mean Value Theorem
 - c. The Intermediate Value Theorem
 - d. Rolle's Theorem
- **9**. The side of a cube is measured to be $s = 20 \text{ cm} \pm 0.05 \text{ cm}$. So the volume of the cube is $V = s^3 \pm \Delta V = 8000 \text{ cm}^3 \pm \Delta V$. Using the linear approximation, what is the error ΔV in this computation of the volume.

 $\Delta V \approx _$ cm³

10. If the position function is $x(t) = \sin(t^2)$, find the jerk at t = 1. Note: the jerk is $j(t) = \frac{d^3x}{dt^3}$.

 $j(1) = \underline{\qquad} \sin 1 + \underline{\qquad} \cos 1$

	Work Out: (Points indicated. Part credit possible. Show all work.)		
11 . (25 points)	Consider the function $f(x) = \frac{1}{5}x^5 - x^4 + 3$.		
a . (3 pts)	Find $f'(x) =$		
b . (3 pts)	Find $f''(x) =$		
c . (2 pts)	Find all critical points of f , i.e all values of x at which $f'(x) = 0$.		
	critical points at: $x =$		
d . (3 pts)	Find the intervals where f is increasing and decreasing. (If none, say none.)		
	increasing on: decreasing on:		
e . (2 pts)	Find all secondary critical points of f , i.e all values of x at which $f''(x) = 0$.		
	secondary critical points at: $x =$		
f . (3 pts)	Find the intervals where f is concave up and concave down. (If none, say none.)		
	concave up on: concave down on:		
g . (4 pts)	What does the Second Derivative Test say about each critical point?		
h . (3 pts)	Find the x location of all local minima and local maxima of f . (If none, say none.)		
	local minima at: $x =$ local maxima at: $x =$		
i. (2 pts)	Find the x location of all inflection points of f . (If none, say none.)		
	inflection points at: $x =$		

4

- **12**. (10 points) A weather balloon is currently at $x_0 = 2490$ meters from the weather station and currently has velocity $v = 4 \frac{\text{meters}}{\text{hour}}$. The balloon measures the temperature is currently $T_0 = 78^{\circ}\text{F}$ and has derivative $\frac{dT}{dx} = 0.2 \frac{^{\circ}\text{F}}{\text{meter}}$.
 - **a**. (4 pts) What is $\frac{dT}{dt}$, i.e. the current time rate of change of the temperature?
 - **b**. (3 pts) What will be the approximate position x_1 of the balloon after $\frac{1}{2}$ hour?
 - **c**. (3 pts) What will be the approximate temperature T_1 at the location of the balloon after $\frac{1}{2}$ hour?
- 13. (15 points) Compute the derivatives of the following functions.

a.
$$p(t) = \sin^3(\cos(t^2))$$

b. $g(x) = \csc(\arcsin(x^2))$ (There cannot be any trig or arctrig functions in your answer.)

c.
$$f(x) = \frac{(x-2)^{12}(x+1)^{10}}{(x-3)^8}$$
 Find $f'(1)$.