Name \qquad UIN

MATH 171 Exam 2
Sections 503
Fall 2021

Multiple Choice: (5 points each. No part credit.)

$1-10$	$/ 55$	12	$/ 10$
11	$/ 25$	13	$/ 15$
		Total	$/ 105$

1. If $f(x)=e^{3 x}-4 e^{2 x}+2 x^{4}+\sin (2 x)+\ln (1-3 x)$, find $f^{\prime}(0)$.

$$
f^{\prime}(0)=
$$

\qquad
2. If $F(x)=f^{\prime}(g(x))$, where

$$
\begin{array}{llll}
f(2)=2 & f^{\prime}(2)=3 & g(2)=4 & g^{\prime}(2)=5 \\
f(4)=4 & f^{\prime}(4)=5 & g(4)=6 & g^{\prime}(4)=7
\end{array}
$$

find $F^{\prime}(2)$.

$$
F^{\prime}(2)=
$$

\qquad
3. If $g(x)=x \cos (\pi x)$, find $g^{\prime}\left(\frac{1}{2}\right)$. (Type "pi" for π. Type "sqrt(3)" for $\sqrt{3}$.)

$$
g^{\prime}\left(\frac{1}{2}\right)=
$$

\qquad
4. Find the slope of the curve $x y^{2}+x^{2} y^{3}=6$ at the point $(x, y)=(2,1)$.

$$
\left.\frac{d y}{d x}\right|_{(2,1)}=
$$

\qquad
5. (10 points) Consider the parametric curve $\vec{r}(t)=\left\langle t^{3}+3 t, t^{3}-3 t\right\rangle$.
a. Find the position at time $t=2$.

$$
\vec{r}(2)=\langle\square, \square
$$

b. Find the velocity at time $t=2$.

c. Find the parametric tangent line at $t=2$.
(Write each component in the form. $a+b t$ with no spaces.)

$$
x(t)=
$$ $y(t)=$ \qquad

d. Find the slopes at times $t=2$ and $t=1$.

$$
m(2)=
$$

$$
m(1)=
$$

\qquad
e. Find the time(s) at which the curve is horizontal.
(Put times in separate blanks in ascending order.)

$$
t=\ldots \quad \text { and } \quad t=
$$

6. If $f(x)=\sqrt{25-x^{2}}+\arcsin \left(\frac{x}{5}\right)$, then $f^{\prime}(3)=$
a. 1
b. $\frac{1}{2}$
c. $-\frac{1}{4}$
d. $-\frac{1}{2}$
e. $-\frac{3}{4}$
7. Notice that the derivative of $f(x)=x+x^{3}+x^{5}$ is always positive. So it is always increasing and is 1-to-1. So it has an inverse $g(x)$. Find $g^{\prime}(3)$.
HINT: $\quad f(-1)=-3 \quad f(0)=0 \quad f(1)=3 \quad f(2)=42 \quad f(3)=273$

$$
g^{\prime}(3)=
$$

\qquad
8. The distance from Houston to Dallas is 240 miles. The highest speed limit for the entire trip is $75 \frac{\text { miles }}{\text { hour }}$. An Aggie makes the trip in 3 hours. Which theorem says that the Aggie was speeding at some point along the trip?
a. The Squeeze Theorem
b. The Mean Value Theorem
c. The Intermediate Value Theorem
d. Rolle's Theorem
9. The side of a cube is measured to be $s=20 \mathrm{~cm} \pm 0.05 \mathrm{~cm}$. So the volume of the cube is $V=s^{3} \pm \Delta V=8000 \mathrm{~cm}^{3} \pm \Delta V$. Using the linear approximation, what is the error ΔV in this computation of the volume.

$$
\Delta V \approx \ldots \mathrm{~cm}^{3}
$$

10. If the position function is $x(t)=\sin \left(t^{2}\right)$, find the jerk at $t=1$.

Note: the jerk is $j(t)=\frac{d^{3} x}{d t^{3}}$.

$$
j(1)=
$$

\qquad $\sin 1+$ \qquad $\cos 1$
11. (25 points) Consider the function $f(x)=\frac{1}{5} x^{5}-x^{4}+3$.
a. (3 pts) Find $f^{\prime}(x)=$ \qquad
b. (3 pts) Find $f^{\prime \prime}(x)=$ \qquad
c. $(2 \mathrm{pts})$ Find all critical points of f, i.e all values of x at which $f^{\prime}(x)=0$. critical points at: $x=$ \qquad
d. (3 pts) Find the intervals where f is increasing and decreasing. (If none, say none.)
increasing on: \qquad decreasing on: \qquad
e. (2 pts) Find all secondary critical points of f, i.e all values of x at which $f^{\prime \prime}(x)=0$.
secondary critical points at: $x=$ \qquad
f. (3 pts) Find the intervals where f is concave up and concave down. (If none, say none.)
concave up on: \qquad concave down on: \qquad
g. (4 pts) What does the Second Derivative Test say about each critical point?
h. (3 pts) Find the x location of all local minima and local maxima of f. (If none, say none.)
local minima at: $x=$ \qquad local maxima at: $x=$ \qquad
i. (2 pts) Find the x location of all inflection points of f. (If none, say none.)
inflection points at: $x=$ \qquad
12. (10 points) A weather balloon is currently at $x_{0}=2490$ meters from the weather station and currently has velocity $v=4 \frac{\text { meters }}{\text { hour }}$. The balloon measures the temperature is currently $T_{0}=78^{\circ} \mathrm{F}$ and has derivative $\frac{d T}{d x}=0.2 \frac{{ }^{\circ} \mathrm{F}}{\text { meter }}$.
a. (4 pts) What is $\frac{d T}{d t}$, i.e. the current time rate of change of the temperature?
b. (3 pts) What will be the approximate position x_{1} of the balloon after $\frac{1}{2}$ hour?
c. (3 pts) What will be the approximate temperature T_{1} at the location of the balloon after $\frac{1}{2}$ hour?
13. (15 points) Compute the derivatives of the following functions.
a. $p(t)=\sin ^{3}\left(\cos \left(t^{2}\right)\right)$
b. $g(x)=\csc \left(\arcsin \left(x^{2}\right)\right) \quad$ (There cannot be any trig or arctrig functions in your answer.)
c. $f(x)=\frac{(x-2)^{12}(x+1)^{10}}{(x-3)^{8}}$

Find $f^{\prime}(1)$.

