Name.

UIN

MATH 171

Exam 3

Fall 2021

Sections 503

P. Yasskin

Multiple Choice: (5 points each, unless indicated. No part credit.)

1-10	/57	13	/10
11	/15	14	/15
12	/10	Total	/107

1. If $L = \sqrt{x^2 + y^2}$, find $\frac{dL}{dt}$ given that

$$x = 4$$
 $y = 3$ $\frac{dx}{dt} = 1$ $\frac{dy}{dt} = 2$

$$\frac{dL}{dt} =$$

2. Find the horizontal asymptotes of the function $f(x) = \frac{6e^x + 12}{3e^x - 4}$.

a.
$$y = 2$$
 only

b.
$$y = -3$$
 only

c.
$$y = \ln\left(\frac{4}{3}\right)$$
 only

d.
$$y = 2$$
 and $y = -3$ only

e.
$$y = 2$$
 and $y = \ln\left(\frac{4}{3}\right)$ only

f.
$$y = -3$$
 and $y = \ln\left(\frac{4}{3}\right)$ only

g.
$$y = 2$$
, $y = -3$ and $y = \ln(\frac{4}{3})$

h. None

3. Find the *x*-coordinate(s) on the graph of $f(x) = x^4 + 4x^3 + 5x^2 + 3x + 1$ where the **curvature** is a minimum.

Enter one or more numbers separated by commas, no spaces.

4. (10 points) This is the graph of f', i.e. the derivative of f.

a. Identify the interval(s) where f is increasing. Enter one or more intervals separated by commas, no spaces. Include finite endpoints in the intervals. All numbers are integers. Type infinity for ∞ .

Increasing on ______.

b. Identify the interval(s) where f is concave up. Enter one or more intervals separated by commas, no spaces. Include finite endpoints in the intervals. All numbers are integers. Type infinity for ∞ .

Concave Up on ______.

- **5**. The point x = 1 is a critical point of the function $f(x) = x^3 3x^2 + 3x$. Then the Second Derivative Test implies x = 1 is a
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. Test Fails
- **6**. (6 points) Find the locations of the absolute maximum and minimum of $f(x) = x^3 6x^2 + 9x$ on the interval [-2, 2].

The absolute minimum occurs at x =

The absolute maximum occurs at x =_____.

7. Use a Riemann Sum with 4 equal intervals and right endpoints to approximate $\int_{1}^{9} (x^2 + 1) dx$.

 $\int_{1}^{9} (x^2 + 1) \, dx \approx \underline{\hspace{1cm}}$

8. (6 points) A rocket starts with an initial height y(0) = 8 m and an initial velocity of v(0) = 0 $\frac{\text{m}}{\text{sec}}$. If its acceleration is $a(t) = 5e^t$, find its velocity and height at time $t = \ln 3$. Put an integer in each blank.

 $v(\ln 3) = \underline{\qquad} + \underline{\qquad} \ln 3$

 $y(\ln 3) = \underline{\qquad} + \underline{\qquad} \ln 3$

9. Find the area between the curves $y = 3x^2$ and y = 6x.

 $A = \underline{\hspace{1cm}}$

10. Find the mass of a bar of length π cm, if its linear density is $\delta = 1 + \sin x$ where x is measured from one end. Put an rational number in each blank.

 $M = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} \pi$

11. (15 points) A cone with the vertex at the bottom has height H=6 cm and radius R=3 cm at the top. It is being filled with water at the rate of $\frac{dV}{dt}=2\pi\,\frac{\mathrm{cm}^3}{\mathrm{sec}}$.

How fast is the height of the water increasing when it is 4 cm deep?

HINT: The volume of a cone is $V = \frac{1}{3}\pi r^2 h$.

12. (10 points) Find the perimeter of the rectangle in the first quadrant with the smallest perimeter having one edge on the x-axis and one on the y-axis and the opposite vertex on the curve $y = \frac{4}{x^2}$.

13. (10 points) If $f(x) = \int_{x^2}^{x^3} \frac{1}{t^3 + 1} dt$, find f'(1).

14. (15 points) Compute each integral.

$$\mathbf{a.} \int x^3 \cos(x^4) \, dx$$

$$\mathbf{b.} \int \frac{x^2 + 1}{x^3 + 3x} \, dx$$

c. $\int_0^3 2x\sqrt{16+x^2} dx$ Simplify to a rational number.