Name \qquad UIN \qquad
MATH 171 Exam 3

Fall 2021
Sections 503
P. Yasskin

Multiple Choice: (5 points each, unless indicated. No part credit.)

$1-10$	$/ 57$	13	$/ 10$
11	$/ 15$	14	$/ 15$
12	$/ 10$	Total	$/ 107$

1. If $L=\sqrt{x^{2}+y^{2}}$, find $\frac{d L}{d t}$ given that

$$
x=4 \quad y=3 \quad \frac{d x}{d t}=1 \quad \frac{d y}{d t}=2
$$

$\frac{d L}{d t}=$ \qquad
2. Find the horizontal asymptotes of the function $f(x)=\frac{6 e^{x}+12}{3 e^{x}-4}$.
a. $y=2$ only
e. $y=2$ and $y=\ln \left(\frac{4}{3}\right)$ only
b. $y=-3$ only
f. $y=-3$ and $y=\ln \left(\frac{4}{3}\right)$ only
c. $y=\ln \left(\frac{4}{3}\right)$ only
g. $y=2, \quad y=-3 \quad$ and $y=\ln \left(\frac{4}{3}\right)$
d. $y=2$ and $y=-3$ only
h. None
3. Find the x-coordinate(s) on the graph of $f(x)=x^{4}+4 x^{3}+5 x^{2}+3 x+1$ where the curvature is a minimum.
Enter one or more numbers separated by commas, no spaces.
$x=$ \qquad
4. (10 points) This is the graph of f^{\prime}, i.e. the derivative of f.

a. Identify the interval(s) where f is increasing.

Enter one or more intervals separated by commas, no spaces.
Include finite endpoints in the intervals. All numbers are integers. Type infinity for ∞.
Increasing on \qquad .
b. Identify the interval(s) where f is concave up.

Enter one or more intervals separated by commas, no spaces.
Include finite endpoints in the intervals. All numbers are integers. Type infinity for ∞.
Concave Up on \qquad .
5. The point $x=1$ is a critical point of the function $f(x)=x^{3}-3 x^{2}+3 x$.

Then the Second Derivative Test implies $x=1$ is a
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Test Fails
6. (6 points) Find the locations of the absolute maximum and minimum of $f(x)=x^{3}-6 x^{2}+9 x$ on the interval $[-2,2]$.

The absolute minimum occurs at
$x=$ \qquad .

The absolute maximum occurs at

$$
x=
$$

\qquad .
7. Use a Riemann Sum with 4 equal intervals and right endpoints to approximate $\int_{1}^{9}\left(x^{2}+1\right) d x$.

$$
\int_{1}^{9}\left(x^{2}+1\right) d x \approx
$$

8. (6 points) A rocket starts with an initial height $y(0)=8 \mathrm{~m}$ and an initial velocity of $v(0)=0 \frac{\mathrm{~m}}{\mathrm{sec}}$. If its acceleration is $a(t)=5 e^{t}$, find its velocity and height at time $t=\ln 3$. Put an integer in each blank.
$v(\ln 3)=$ \qquad $+$ \qquad $\ln 3$
$y(\ln 3)=$ \qquad $+$ \qquad $\ln 3$
9. Find the area between the curves $y=3 x^{2}$ and $y=6 x$.
$A=$ \qquad
10. Find the mass of a bar of length $\pi \mathrm{cm}$, if its linear density is $\delta=1+\sin x$ where x is measured from one end.
Put an rational number in each blank.
$M=$ \qquad $+$ \qquad π
11. (15 points) A cone with the vertex at the bottom has height $H=6 \mathrm{~cm}$ and radius $R=3 \mathrm{~cm}$ at the top. It is being filled with water at the rate of $\frac{d V}{d t}=2 \pi \frac{\mathrm{~cm}^{3}}{\mathrm{sec}}$.
How fast is the height of the water increasing when it is 4 cm deep?
HINT: The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.
12. (10 points) Find the perimeter of the rectangle in the first quadrant with the smallest perimeter having one edge on the x-axis and one on the y-axis and the opposite vertex on the curve $y=\frac{4}{x^{2}}$.

13. (10 points) If $f(x)=\int_{x^{2}}^{x^{3}} \frac{1}{t^{3}+1} d t$, find $f^{\prime}(1)$.
14. (15 points) Compute each integral.
a. $\int x^{3} \cos \left(x^{4}\right) d x$
b. $\int \frac{x^{2}+1}{x^{3}+3 x} d x$
c. $\int_{0}^{3} 2 x \sqrt{16+x^{2}} d x \quad$ Simplify to a rational number.
