| Name                  | UIN_                |                             |      |     |       |      |
|-----------------------|---------------------|-----------------------------|------|-----|-------|------|
|                       |                     |                             | 1-10 | /57 | 13    | /10  |
| MATH 171              | Exam 3              | Fall 2021                   |      |     |       |      |
| Sections 503          | Solutions           | P. Yasskin                  | 11   | /15 | 14    | /15  |
| Multiple Choice: (5 p | points each, unless | indicated. No part credit.) | 12   | /10 | Total | /107 |

Solution: By chain rule,

$$\frac{dL}{dt} = \frac{1}{2} \frac{1}{\sqrt{x^2 + y^2}} \left( 2x \frac{dx}{dt} + 2y \frac{dy}{dt} \right) = \frac{1}{\sqrt{4^2 + 3^2}} (4(1) + 3(2)) = \frac{1}{5} (10) = \underline{2}.$$

- **2**. Find the horizontal asymptotes of the function  $f(x) = \frac{6e^x + 12}{3e^x 4}$ .
  - a. y = 2 only b. y = -3 only c.  $y = \ln\left(\frac{4}{3}\right)$  only d. y = 2 and y = 2 and  $y = \ln\left(\frac{4}{3}\right)$  only g. y = 2, y = -3 and  $y = \ln\left(\frac{4}{3}\right)$  only g. y = 2, y = -3 and  $y = \ln\left(\frac{4}{3}\right)$ d. y = 2 and y = -3 only Correct Choice h. None

**Solution**:  $\lim_{x \to \infty} \frac{6e^x + 12}{3e^x - 4} = \lim_{x \to \infty} \frac{6 + 12e^{-x}}{3 - 4e^{-x}} = \frac{6 + 0}{3 - 0} = 2$   $\lim_{x \to \infty} \frac{6e^x + 12}{3e^x - 4} = \frac{0 + 12}{0 - 4} = -3$ Note:  $x = \ln\left(\frac{4}{3}\right)$  is a *vertical* asymptote.

**3**. Find the *x*-coordinate(s) on the graph of  $f(x) = x^4 + 4x^3 + 5x^2 + 3x + 1$  where the **curvature** is a minimum.

Enter one or more numbers separated by commas, no spaces.

*x* = \_\_\_\_\_

Solution: The curvature is the second derivative.

 $f'(x) = 4x^3 + 12x^2 + 10x + 3$  curvature  $= f''(x) = 12x^2 + 24x + 10$ To find where the curvature is a minimum, we set its derivative equal to 0 and solve for the critical points.

curvature' = f'''(x) = 24x + 24 = 0 at x = -1. To check it is a minimum, we substitute the critical point into the second derivative. curvature'' = f'''(x) = 24 > 0 So it is a minimum. **4**. (10 points) This is the graph of f', i.e. the derivative of f.

|    | _  | /  | $\frown$ |   |               |          |   |
|----|----|----|----------|---|---------------|----------|---|
| -4 | -3 | -2 | -1       | i | $\frac{2}{x}$ | <u> </u> | 4 |

|            | a.                                                              | Identify the interval(s) where $f$ is increasing.<br>Enter one or more intervals separated by commas, no spaces.<br>Include finite endpoints in the intervals. All numbers are integers. Type infinity for $\infty$ .                                                                                                                                                                                                                  |  |  |  |  |  |
|------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|            |                                                                 | Increasing on                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|            |                                                                 | <b>Solution</b> : The function is increasing when its derivative is positive which occurs on the interval $(-\infty, 0]$ .                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|            | b.                                                              | <b>b</b> . Identify the interval(s) where $f$ is concave up.<br>Enter one or more intervals separated by commas, no spaces.<br>Include finite endpoints in the intervals. All numbers are integers. Type infinity for $\infty$ .                                                                                                                                                                                                       |  |  |  |  |  |
|            |                                                                 | Concave Up on                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|            |                                                                 | <b>Solution</b> : The function is concave up when its second derivative is positive which means the first derivative is increasing which occurs on the intervals $(-\infty, -1]$ and $[1, \infty)$ .                                                                                                                                                                                                                                   |  |  |  |  |  |
| 5.         | The<br>The                                                      | point $x = 1$ is a critical point of the function $f(x) = x^3 - 3x^2 + 3x$ .<br>n the Second Derivative Test implies $x = 1$ is a                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|            | a.<br>b.<br>c.<br>d.                                            | Local Minimum<br>Local Maximum<br>Inflection Point<br>Test Fails Correct Choice                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|            | <b>Sol</b><br>f"(x                                              | ution: $f'(x) = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1) = 3(x - 1)^2 = 0$ at $x = 1$ .<br>f'(x) = 6x - 6 and so $f''(1) = 6 - 6 = 0$ . The Second Derivative Test FAILS.                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| <b>6</b> . | (6 p<br>of _                                                    | oints) Find the locations of the absolute maximum and minimum $f(x) = x^3 - 6x^2 + 9x$ on the interval [-2,2].                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|            | The                                                             | absolute minimum occurs at $x = $                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|            | The                                                             | absolute maximum occurs at $x = $                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|            | <b>Sol</b><br>The<br>We<br><i>f</i> (1)<br><i>f</i> (2)<br>So f | ution: $f'(x) = 3x^2 - 12x + 9 = 3(x^2 - 4x + 3) = 3(x - 1)(x - 3) = 0.$<br>critical point $x = 3$ is not in the interval $[-2, 2]$ so we ignore it.<br>evaluate the function at the other critical point $x = 1$ and the endpoints:<br>$= 1 - 6 + 9 = 4$ $f(-2) = (-2)^3 - 6(-2)^2 + 9(-2) = -8 - 24 - 18 = -50$<br>$= (2)^3 - 6(2)^2 + 9(2) = 8 - 24 + 18 = 2$<br>the minimum occurs at $x = -2$ and the maximum occurs at $x = 1$ . |  |  |  |  |  |

7. Use a Riemann Sum with 4 equal intervals and right endpoints to approximate  $\int_{-\infty}^{9} (x^2 + 1) dx$ .

$$\int_{1}^{9} (x^2 + 1) \, dx \approx \underline{\qquad}$$

**Solution**: The function is  $f(x) = x^2 + 1$ . The width of the intervals is  $\Delta x = \frac{9-1}{4} = 2$ . The right endpoints are 3, 5, 7 and 9. The function values are f(3) = 10, f(5) = 26, f(7) = 50 and f(9) = 82. So the Riemann sum is  $\sum_{n=1}^{4} f(x_i)\Delta x = (10 + 26 + 50 + 82)2 = 336$ .  $\int_{-1}^{9} (x^2 + 1) dx \approx \underline{336}$ .

8. (6 points) A rocket starts with an initial height y(0) = 8 m and an initial velocity of v(0) = 0  $\frac{m}{\sec}$ . If its acceleration is  $a(t) = 5e^t$ , find its velocity and height at time  $t = \ln 3$ . Put an integer in each blank.

 $v(\ln 3) = \underline{\qquad} + \underline{\qquad} \ln 3$ 

 $y(\ln 3) = \underline{\qquad} + \underline{\qquad} \ln 3$ 

**Solution**:  $\frac{dv}{dt} = a(t) = 5e^t$   $v(t) = 5e^t + C$  v(0) = 5 + C = 0 C = -5  $v(t) = 5e^t - 5$  $\frac{dy}{dt} = v(t) = 5e^t - 5$   $y(t) = 5e^t - 5t + K$  y(0) = 5 + K = 8 K = 3  $y(t) = 5e^t - 5t + 3$  $v(\ln 3) = 5e^{\ln 3} - 5 = 15 - 5 = 10 + 0\ln 3$   $y(\ln 3) = 5e^{\ln 3} - 5\ln 3 + 3 = 18 - 5\ln 3$ 

- **9**. Find the area between the curves  $y = 3x^2$  and y = 6x.
  - *A* = \_\_\_\_\_

**Solution**: To find the intersections, we equate the functions:  $3x^2 = 6x$   $3x^2 - 6x = 3x(x - 2) = 0$  So they intersect at x = 0, 2.  $3x^2$  bends upward while 6x is a straight line. So  $3x^2$  is on the bottom and 6x is on top.  $A = \int_0^2 (6x - 3x^2) dx = \left[3x^2 - x^3\right]_0^2 = (12 - 8) - 0 = 4$ .

**10**. Find the mass of a bar of length  $\pi$  cm, if its linear density is  $\delta = 1 + \sin x$  where x is measured from one end. Put an rational number in each blank.

$$M = \underline{\qquad} + \underline{\qquad} \pi$$
  
Solution:  $M = \int_0^{\pi} (1 + \sin x) \, dx = \left[ x - \cos x \right]_0^{\pi} = (\pi - 1) - (0 - 1) = \pi + 2$ 

- **11.** (15 points) A cone with the vertex at the bottom has height H = 6 cm and radius R = 3 cm at the top. It is being filled with water at the rate  $dV = cm^{3}$ 
  - of  $\frac{dV}{dt} = 2\pi \frac{\text{cm}^3}{\text{sec}}$ .

How fast is the height of the water increasing when it is 4 cm deep?

HINT: The volume of a cone is  $V = \frac{1}{3}\pi r^2 h$ .

**Solution**: Let *h* and *r* be the height and radius of the water. By similar triangles,  $\frac{r}{h} = \frac{R}{H} = \frac{3}{6} = \frac{1}{2}$ . So  $r = \frac{1}{2}h$  and  $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{1}{12}\pi h^3$ . Then  $\frac{dV}{dt} = \frac{1}{4}\pi h^2 \frac{dh}{dt}$ . So  $\frac{dh}{dt} = \frac{4}{\pi h^2} \frac{dV}{dt} = \frac{4}{\pi (4)^2} 2\pi = \frac{1}{2}$ .

12. (10 points) Find the perimeter of the rectangle in the first quadrant with the smallest perimeter having one edge on the *x*-axis and one on the *y*-axis and the opposite vertex on the curve  $y = \frac{4}{x^2}$ .



**Solution**:  $P = 2x + 2y = 2x + \frac{8}{x^2}$   $P' = 2 - \frac{16}{x^3} = \frac{2x^3 - 16}{x^3} = 0$  at  $x^3 = 8$  or x = 2. So  $y = \frac{4}{x^2} = \frac{4}{2^2} = 1$  and P = 2x + 2y = 2(2) + 2(1) = 6 $P'' = \frac{48}{x^4} > 0$  So x = 2 is a minimum.

**13.** (10 points) If  $f(x) = \int_{x^2}^{x^3} \frac{1}{t^3 + 1} dt$ , find f'(1).

**Solution**: Let F(t) be an antiderivative of  $\frac{1}{t^3+1}$ . In other words,  $F'(t) = \frac{1}{t^3+1}$ . Then  $f(x) = \int_{x^2}^{x^3} \frac{1}{t^3+1} dt = F(x^3) - F(x^2)$ . So by the chain rule,  $f'(x) = F'(x^3)3x^2 - F'(x^2)2x = \frac{1}{(x^3)^3+1}3x^2 - \frac{1}{(x^2)^3+1}2x$  $f'(1) = \frac{1}{1+1}3 - \frac{1}{1+1}2 = \frac{1}{2}$ 

14. (15 points) Compute each integral.

**a**.  $\int x^3 \cos(x^4) \, dx$ 

**Solution**: 
$$u = x^4$$
  $du = 4x^3 dx$   $\frac{1}{4} du = x^3 dx$   
 $\int x^3 \cos(x^4) dx = \frac{1}{4} \int \cos u \, du = \frac{1}{4} \sin u + C = \frac{1}{4} \sin(x^4) + C$ 

**b**.  $\int \frac{x^2 + 1}{x^3 + 3x} dx$ 

**Solution**:  $u = x^3 + 3x$   $du = (3x^2 + 3) dx = 3(x^2 + 1) dx$   $\frac{1}{3} du = (x^2 + 1) dx$  $\int \frac{x^2 + 1}{x^3 + 3x} dx = \frac{1}{3} \int \frac{1}{u} du = \frac{1}{3} \ln|u| + C = \frac{1}{3} \ln|x^3 + 3x| + C$ 

c.  $\int_0^3 2x\sqrt{16+x^2} \, dx$  Simplify to a rational number.

**Solution**:  $u = 16 + x^2$   $du = 2x \, dx$  x = 0 @ u = 16 x = 3 @ u = 25 $\int_{0}^{3} 2x \sqrt{16 + x^2} \, dx = \int_{16}^{25} \sqrt{u} \, du = \frac{2u^{3/2}}{3} \Big|_{16}^{25} = \frac{2}{3} (25^{3/2} - 16^{3/2}) = \frac{2}{3} (125 - 64) = \frac{122}{3}$