Name \qquad UIN \qquad

MATH 171
Exam 3
Fall 2021
Sections 503
Solutions
P. Yasskin

Multiple Choice: (5 points each, unless indicated. No part credit.)

$1-10$	$/ 57$	13	$/ 10$
11	$/ 15$	14	$/ 15$
12	$/ 10$	Total	$/ 107$

1. If $L=\sqrt{x^{2}+y^{2}}$, find $\frac{d L}{d t}$ given that

$$
x=4 \quad y=3 \quad \frac{d x}{d t}=1 \quad \frac{d y}{d t}=2
$$

$\frac{d L}{d t}=$ \qquad
Solution: By chain rule,
$\frac{d L}{d t}=\frac{1}{2} \frac{1}{\sqrt{x^{2}+y^{2}}}\left(2 x \frac{d x}{d t}+2 y \frac{d y}{d t}\right)=\frac{1}{\sqrt{4^{2}+3^{2}}}(4(1)+3(2))=\frac{1}{5}(10)=2$.
2. Find the horizontal asymptotes of the function $f(x)=\frac{6 e^{x}+12}{3 e^{x}-4}$.
a. $y=2$ only
e. $y=2$ and $y=\ln \left(\frac{4}{3}\right)$ only
b. $y=-3$ only
f. $y=-3$ and $y=\ln \left(\frac{4}{3}\right)$ only
c. $y=\ln \left(\frac{4}{3}\right)$ only
g. $y=2, \quad y=-3$ and $y=\ln \left(\frac{4}{3}\right)$
d. $y=2$ and $y=-3$ only Correct Choice
h. None

Solution: $\lim _{x \rightarrow \infty} \frac{6 e^{x}+12}{3 e^{x}-4}=\lim _{x \rightarrow \infty} \frac{6+12 e^{-x}}{3-4 e^{-x}}=\frac{6+0}{3-0}=2 \quad \lim _{x \rightarrow-\infty} \frac{6 e^{x}+12}{3 e^{x}-4}=\frac{0+12}{0-4}=-3$
Note: $x=\ln \left(\frac{4}{3}\right)$ is a vertical asymptote.
3. Find the x-coordinate(s) on the graph of $f(x)=x^{4}+4 x^{3}+5 x^{2}+3 x+1$ where the curvature is a minimum.
Enter one or more numbers separated by commas, no spaces.
$x=$ \qquad
Solution: The curvature is the second derivative.

$$
f^{\prime}(x)=4 x^{3}+12 x^{2}+10 x+3 \quad \text { curvature }=f^{\prime \prime}(x)=12 x^{2}+24 x+10
$$

To find where the curvature is a minimum, we set its derivative equal to 0 and solve for the critical points.
curvature $^{\prime}=f^{\prime \prime \prime}(x)=24 x+24=0$ at $x=$ \qquad .
To check it is a minimum, we substitute the critical point into the second derivative.
curvature ${ }^{\prime \prime}=f^{\prime \prime \prime \prime}(x)=24>0 \quad$ So it is a minimum.
4. (10 points) This is the graph of f^{\prime}, i.e. the derivative of f.

a. Identify the interval(s) where f is increasing.

Enter one or more intervals separated by commas, no spaces.
Include finite endpoints in the intervals. All numbers are integers. Type infinity for ∞.
Increasing on \qquad .

Solution: The function is increasing when its derivative is positive which occurs on the interval $\quad(-\infty, 0]$.
b. Identify the interval(s) where f is concave up.

Enter one or more intervals separated by commas, no spaces. Include finite endpoints in the intervals. All numbers are integers. Type infinity for ∞.

Concave Up on \qquad .

Solution: The function is concave up when its second derivative is positive which means the first derivative is increasing which

5. The point $x=1$ is a critical point of the function $f(x)=x^{3}-3 x^{2}+3 x$.

Then the Second Derivative Test implies $x=1$ is a
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Test Fails Correct Choice

Solution: $f^{\prime}(x)=3 x^{2}-6 x+3=3\left(x^{2}-2 x+1\right)=3(x-1)^{2}=0 \quad$ at $\quad x=1$.
$f^{\prime \prime}(x)=6 x-6$ and so $f^{\prime \prime}(1)=6-6=0$. The Second Derivative Test FAILS.
6. (6 points) Find the locations of the absolute maximum and minimum of $f(x)=x^{3}-6 x^{2}+9 x$ on the interval $[-2,2]$.

The absolute minimum occurs at $\quad x=$ \qquad .

The absolute maximum occurs at $\quad x=$ \qquad .

Solution: $f^{\prime}(x)=3 x^{2}-12 x+9=3\left(x^{2}-4 x+3\right)=3(x-1)(x-3)=0$.
The critical point $x=3$ is not in the interval $[-2,2]$ so we ignore it.
We evaluate the function at the other critical point $x=1$ and the endpoints:
$f(1)=1-6+9=4 \quad f(-2)=(-2)^{3}-6(-2)^{2}+9(-2)=-8-24-18=-50$
$f(2)=(2)^{3}-6(2)^{2}+9(2)=8-24+18=2$
So the minimum occurs at $x=-2$ and the maximum occurs at $x=$ \qquad .
7. Use a Riemann Sum with 4 equal intervals and right endpoints to approximate $\int_{1}^{9}\left(x^{2}+1\right) d x$.
$\int_{1}^{9}\left(x^{2}+1\right) d x \approx$ \qquad
Solution: The function is $f(x)=x^{2}+1$. The width of the intervals is $\Delta x=\frac{9-1}{4}=2$.
The right endpoints are $3,5,7$ and 9 .
The function values are $f(3)=10, f(5)=26, f(7)=50$ and $f(9)=82$.
So the Riemann sum is $\quad \sum_{n=1}^{4} f\left(x_{i}\right) \Delta x=(10+26+50+82) 2=336$.
$\int_{1}^{9}\left(x^{2}+1\right) d x \approx 336$.
8. (6 points) A rocket starts with an initial height $y(0)=8 \mathrm{~m}$ and an initial velocity of $v(0)=0 \frac{\mathrm{~m}}{\mathrm{sec}}$. If its acceleration is $a(t)=5 e^{t}$, find its velocity and height at time $t=\ln 3$.
Put an integer in each blank.
$v(\ln 3)=$ \qquad $+$ \qquad $\ln 3$
$y(\ln 3)=$ \qquad $+$ \qquad $\ln 3$
Solution: $\quad \frac{d v}{d t}=a(t)=5 e^{t} \quad v(t)=5 e^{t}+C \quad v(0)=5+C=0 \quad C=-5 \quad v(t)=5 e^{t}-5$ $\frac{d y}{d t}=v(t)=5 e^{t}-5 \quad y(t)=5 e^{t}-5 t+K \quad y(0)=5+K=8 \quad K=3 \quad y(t)=5 e^{t}-5 t+3$
$v(\ln 3)=5 e^{\ln 3}-5=15-5=\underline{10+0 \ln 3 \quad y(\ln 3)=5 e^{\ln 3}-5 \ln 3+3=\underline{18-5 \ln 3}}$
9. Find the area between the curves $y=3 x^{2}$ and $y=6 x$.
$A=$ \qquad
Solution: To find the intersections, we equate the functions:
$3 x^{2}=6 x \quad 3 x^{2}-6 x=3 x(x-2)=0 \quad$ So they intersect at $x=0,2$.
$3 x^{2}$ bends upward while $6 x$ is a straight line. So $3 x^{2}$ is on the bottom and $6 x$ is on top.
$A=\int_{0}^{2}\left(6 x-3 x^{2}\right) d x=\left[3 x^{2}-x^{3}\right]_{0}^{2}=(12-8)-0=$ \qquad —.
10. Find the mass of a bar of length $\pi \mathrm{cm}$, if its linear density is $\delta=1+\sin x$ where x is measured from one end.
Put an rational number in each blank.
$M=$ \qquad $+$ \qquad π

Solution: $\quad M=\int_{0}^{\pi}(1+\sin x) d x=[x-\cos x]_{0}^{\pi}=(\pi--1)-(0-1)=\pi+2$
11. (15 points) A cone with the vertex at the bottom has height $H=6 \mathrm{~cm}$ and radius $R=3 \mathrm{~cm}$ at the top. It is being filled with water at the rate of $\frac{d V}{d t}=2 \pi \frac{\mathrm{~cm}^{3}}{\mathrm{sec}}$.
How fast is the height of the water increasing when it is 4 cm deep?
HINT: The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.
Solution: Let h and r be the height and radius of the water.
By similar triangles, $\frac{r}{h}=\frac{R}{H}=\frac{3}{6}=\frac{1}{2}$. So $r=\frac{1}{2} h$ and $V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h=\frac{1}{12} \pi h^{3}$.
Then $\frac{d V}{d t}=\frac{1}{4} \pi h^{2} \frac{d h}{d t}$. So $\frac{d h}{d t}=\frac{4}{\pi h^{2}} \frac{d V}{d t}=\frac{4}{\pi(4)^{2}} 2 \pi=\frac{1}{2}$.
12. (10 points) Find the perimeter of the rectangle in the first quadrant with the smallest perimeter having one edge on the x-axis and one on the y-axis and the opposite vertex on the curve $y=\frac{4}{x^{2}}$.

Solution: $P=2 x+2 y=2 x+\frac{8}{x^{2}} \quad P^{\prime}=2-\frac{16}{x^{3}}=\frac{2 x^{3}-16}{x^{3}}=0 \quad$ at $\quad x^{3}=8 \quad$ or $\quad x=2$.
So $y=\frac{4}{x^{2}}=\frac{4}{2^{2}}=1$ and $P=2 x+2 y=2(2)+2(1)=6$
$P^{\prime \prime}=\frac{48}{x^{4}}>0 \quad$ So $x=2$ is a minimum.
13. (10 points) If $f(x)=\int_{x^{2}}^{x^{3}} \frac{1}{t^{3}+1} d t$, find $f^{\prime}(1)$.

Solution: Let $F(t)$ be an antiderivative of $\frac{1}{t^{3}+1}$. In other words, $\quad F^{\prime}(t)=\frac{1}{t^{3}+1}$.
Then $f(x)=\int_{x^{2}}^{x^{3}} \frac{1}{t^{3}+1} d t=F\left(x^{3}\right)-F\left(x^{2}\right)$. So by the chain rule,
$f^{\prime}(x)=F^{\prime}\left(x^{3}\right) 3 x^{2}-F^{\prime}\left(x^{2}\right) 2 x=\frac{1}{\left(x^{3}\right)^{3}+1} 3 x^{2}-\frac{1}{\left(x^{2}\right)^{3}+1} 2 x$
$f^{\prime}(1)=\frac{1}{1+1} 3-\frac{1}{1+1} 2=\frac{1}{2}$
14. (15 points) Compute each integral.
a. $\int x^{3} \cos \left(x^{4}\right) d x$

Solution: $u=x^{4} \quad d u=4 x^{3} d x \quad \frac{1}{4} d u=x^{3} d x$
$\int x^{3} \cos \left(x^{4}\right) d x=\frac{1}{4} \int \cos u d u=\frac{1}{4} \sin u+C=\frac{1}{4} \sin \left(x^{4}\right)+C$
b. $\int \frac{x^{2}+1}{x^{3}+3 x} d x$

Solution: $u=x^{3}+3 x \quad d u=\left(3 x^{2}+3\right) d x=3\left(x^{2}+1\right) d x \quad \frac{1}{3} d u=\left(x^{2}+1\right) d x$ $\int \frac{x^{2}+1}{x^{3}+3 x} d x=\frac{1}{3} \int \frac{1}{u} d u=\frac{1}{3} \ln |u|+C=\frac{1}{3} \ln \left|x^{3}+3 x\right|+C$
c. $\int_{0}^{3} 2 x \sqrt{16+x^{2}} d x \quad$ Simplify to a rational number.

Solution: $u=16+x^{2} d u=2 x d x \quad x=0$ @ $u=16 \quad x=3$ @ $u=25$
$\int_{0}^{3} 2 x \sqrt{16+x^{2}} d x=\int_{16}^{25} \sqrt{u} d u=\left.\frac{2 u^{3 / 2}}{3}\right|_{16} ^{25}=\frac{2}{3}\left(25^{3 / 2}-16^{3 / 2}\right)=\frac{2}{3}(125-64)=\frac{122}{3}$

