Name_____Section____

MATH 171

Exam 1A

Fall 2022

P. Yasskin

1-7	/70	9	/5
8	/10	10 Total	/15

Section 502/504

Multiple Choice and Short Answer:

(Show your work in case there is part credit.)

1. (5 points) Find the angle between the vectors $\vec{u} = \langle \sqrt{3}, 1 \rangle$ and $\vec{v} = \langle \sqrt{3}, 3 \rangle$.

$$\theta = \underline{\hspace{1cm}}$$

2. (10 points) Write $\vec{a} = \langle -1, 7 \rangle$ as the sum of two vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{b} = \langle 8, -6 \rangle$ and \vec{q} is perpendicular to $\vec{b} = \langle 8, -6 \rangle$.

$$\vec{a} = \vec{p} + \vec{q}$$
 where...... $\vec{p} = \langle \underline{\hspace{1cm}}, \underline{\hspace{1cm}} \rangle$ and $\vec{q} = \langle \underline{\hspace{1cm}}, \underline{\hspace{1cm}} \rangle$

- **3**. (5 points) A line passes through the point P = (2, -6) and is tangent to the direction $\vec{v} = \langle 4, 2 \rangle$. Which of the following points are on the line? (Circle your one answer.)
 - **a**. (6,2)
 - **b**. (4,-5)
 - **c**. (-2,-6)
 - **d**. (0,-5)

4. (5 points) Find the part of the real line where the function $f(x) = \sqrt{9-x^2} + \frac{1}{\sqrt{4-x^2}}$ is continuous.

Continuous on:

5. Compute each of the following limits:

a. (5 points)
$$\lim_{x \to 3} \frac{(x+3)^2 - 36}{x-3}$$
...

b. (5 points)
$$\lim_{x\to 2} \frac{e^x - e^2}{x-2}$$
...

c. (5 points)
$$\lim_{x \to 4} \frac{\sqrt{20-x}-4}{x-4}$$
 = _____

d. (5 points)
$$\lim_{x \to -\infty} \frac{3 \cdot 2^x + 4 \cdot 3^x}{2^x + 2 \cdot 3^x}$$
 = _____

6. (5 points) Find the smallest interval with integer endpoints in which there is a solution of the equation $x^5 + 3x^3 = 200$.

There is a solution in the interval $I = [\underline{\hspace{1cm}}, \underline{\hspace{1cm}}]$.

7. Compute each of the following derivatives:

d. (5 points) Find
$$f'(1)$$
, if $f(x) = \frac{p(x)q(x)}{r(x)}$, given that $p(1) = 2$, $p'(1) = 3$, $q(1) = 4$, $q'(1) = 6$, $r(1) = 4$, $r'(1) = 2$

$$f'(1) =$$

Work Out: (Points indicated. Part credit possible. Show all work.)

8. (10 points) Find the tangent line to the graph of $y = g(x) = \sec x$ at $x = \frac{\pi}{4}$.

9. (5 points) Use the limit definition of the derivative to prove $\frac{d}{dx}\sin x = \cos x$.

- **10**. (15 points) Prove $\lim_{x\to 4} (7-3x) = -5$ by completing the following three steps.
 - a. Write out the definition.

$$\lim_{x \to 4} (7 - 3x) = -5$$
 means:

b. Work backwards to find δ in terms of ε .

c. Complete the proof.