Name_____Section____

MATH 171

Exam 1A

Fall 2022

Section 502/504

Solutions

P. Yasskin

1-7	/70	9	/ 5
8	/10	10	/15
		Total	/100

Multiple Choice and Short Answer:

(Show your work in case there is part credit.)

1. (5 points) Find the angle between the vectors $\vec{u} = \langle \sqrt{3}, 1 \rangle$ and $\vec{v} = \langle \sqrt{3}, 3 \rangle$.

$$\theta =$$

Solution:
$$|\vec{u}| = \sqrt{3+1} = 2$$
 $|\vec{v}| = \sqrt{3+9} = \sqrt{12} = 2\sqrt{3}$ $\vec{u} \cdot \vec{v} = 3+3=6$ $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} = \frac{6}{2 \cdot 2\sqrt{3}} = \frac{\sqrt{3}}{2}$ $\theta = 30^{\circ}$

2. (10 points) Write $\vec{a} = \langle -1, 7 \rangle$ as the sum of two vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{b} = \langle 8, -6 \rangle$ and \vec{q} is perpendicular to $\vec{b} = \langle 8, -6 \rangle$.

Solution: $\vec{p} = \operatorname{proj}_{\vec{b}} \vec{a} = \frac{\vec{b} \cdot \vec{a}}{|\vec{b}|^2} \vec{b} = \frac{-8 - 42}{64 + 36} \langle 8, -6 \rangle = \frac{-50}{100} \langle 8, -6 \rangle = \langle -4, 3 \rangle$ $\vec{q} = \operatorname{proj}_{\vec{b}} \vec{a} = \vec{a} - \operatorname{proj}_{\vec{b}} \vec{a} = \langle -1, 7 \rangle - \langle -4, 3 \rangle = \langle 3, 4 \rangle$

Check:
$$\vec{p} + \vec{q} = \langle -4, 3 \rangle + \langle 3, 4 \rangle = \langle -1, 7 \rangle = \vec{a}$$

 $\vec{p} = \langle -4, 3 \rangle$ is a multiple of $\vec{b} = \langle 8, -6 \rangle$ $\vec{q} \cdot \vec{b} = \langle 3, 4 \rangle \cdot \langle 8, -6 \rangle = 24 - 24 = 0$

- **3**. (5 points) A line passes through the point P = (2, -6) and is tangent to the direction $\vec{v} = \langle 4, 2 \rangle$. Which of the following points are on the line? (Circle your one answer.)
 - **a**. (6,2)
 - **b**. (4,-5)
 - **c**. (-2,-6)
 - **d**. (0,-5)

Solution: The general point on the line is $X(t) = P + t\vec{v} = (2,-6) + t\langle 4,2 \rangle$.

We try the values of t which make the x-components work.

 $X(1) = (2,-6) + 1\langle 4,2 \rangle = (6,-4)$ which agrees with the *x*-component in (a) but not the *y*-component.

$$X(\frac{1}{2}) = (2,-6) + \frac{1}{2}(4,2) = (4,-5)$$
 which is answer (b).

 $X(-1) = (2,-6) - 1\langle 4,2 \rangle = (-2,-8)$ which agrees with the *x*-component in (c) but not the *y*-component.

 $X\left(-\frac{1}{2}\right)=(2,-6)-\frac{1}{2}\langle 4,2\rangle=(0,-7)$ which agrees with the *x*-component in (d) but not the *y*-component.

4. (5 points) Find the part of the real line where the function $f(x) = \sqrt{9 - x^2} + \frac{1}{\sqrt{4 - x^2}}$ is continuous.

Continuous on:

Solution: Since the function is constructed using elementary operations, it is continuous where it is defined. The square roots require their arguments to be non-negative. So we need both $|x| \le 3$ and $|x| \le 2$. Since the denominator must be non-zero, we need $x \ne 2$. All together, these say |x| < 2 or -2 < x < 2 or (-2,2) or draw a number line with round brackets at -2 and 2.

5. Compute each of the following limits:

a. (5 points)
$$\lim_{x \to 3} \frac{(x+3)^2 - 36}{x-3}$$
...

Solution: Expand and cancel:

$$\lim_{x \to 3} \frac{(x+3)^2 - 36}{x-3} = \lim_{x \to 3} \frac{x^2 + 6x - 27}{x-3} = \lim_{x \to 3} \frac{(x-3)(x+9)}{x-3} = 12$$

b. (5 points)
$$\lim_{x\to 2} \frac{e^x - e^2}{x-2}$$
 = _____

Solution: You should recognize this as the derivative of $f(x) = e^x$ at x = 2. Since $f'(x) = e^x$, $\lim_{x \to 2} \frac{e^x - e^2}{x - 2} = f'(2) = e^2$.

c. (5 points) $\lim_{x \to 4} \frac{\sqrt{20-x}-4}{x-4}$ = _____

Solution: Multiply by the conjugate.

$$\lim_{x \to 4} \frac{\sqrt{20 - x} - 4}{x - 4} \frac{\sqrt{20 - x} + 4}{\sqrt{20 - x} + 4} = \lim_{x \to 4} \frac{20 - x - 16}{(x - 4)(\sqrt{20 - x} + 4)} = \lim_{x \to 4} \frac{-(x - 4)}{(x - 4)(\sqrt{20 - x} + 4)}$$
$$= \frac{-1}{\sqrt{20 - 4} + 4} = \frac{-1}{8}$$

d. (5 points)
$$\lim_{x \to -\infty} \frac{3 \cdot 2^x + 4 \cdot 3^x}{2^x + 2 \cdot 3^x}$$
 = _____

Solution: Divide by the largest term in the denominator.

$$\lim_{x \to -\infty} \frac{3 \cdot 2^x + 4 \cdot 3^x}{2^x + 2 \cdot 3^x} \frac{\left(\frac{1}{2^x}\right)}{\left(\frac{1}{2^x}\right)} = \lim_{x \to -\infty} \frac{3 + 4 \cdot \left(\frac{3}{2}\right)^x}{1 + 2 \cdot \left(\frac{3}{2}\right)^x} = 3$$

6. (5 points) Find the smallest interval with integer endpoints in which there is a solution of the equation $x^5 + 3x^3 = 200$.

There is a solution in the interval $I = [\underline{\hspace{1cm}}, \underline{\hspace{1cm}}]$.

Solution: Let $f(x) = x^5 + 3x^3$. We plug in values:

$$f(0) = 0$$
 $f(1) = 4$ $f(2) = 32 + 24 = 56$ $f(3) = 243 + 81 = 324$

Since f(x) is continuous and 56 < 200 < 324, the Intermediate Value Theorem guarantees there is a solution to f(x) = 200 in the interval I = [2,3].

- 7. Compute each of the following derivatives:

Solution: $f'(x) = 15x^4 + 4\pi x^{\pi-1}$

Solution: $g(x) = (\sin x + \cos x)^{-3}$ By the Extended Power Rule:

$$g'(x) = -3(\sin x + \cos x)^{-4}(\cos x - \sin x) = -3\frac{\cos x - \sin x}{(\sin x + \cos x)^4}$$

Solution: Everything is constant. So p'(x) = 0.

d. (5 points) Find f'(1), if $f(x) = \frac{p(x)q(x)}{r(x)}$, given that

$$p(1) = 2$$
, $p'(1) = 3$, $q(1) = 4$, $q'(1) = 6$, $r(1) = 4$, $r'(1) = 2$

f'(1) =

Solution: By the Product and Quotient Rules: $f' = \frac{r[p'q + pq'] - pqr'}{r^2}$

$$f'(1) = \frac{r(1)[p'(1)q(1) + p(1)q'(1)] - p(1)q(1)r'(1)}{r(1)^2} = \frac{4[3 \cdot 4 + 2 \cdot 6] - 2 \cdot 4 \cdot 2}{4^2} = \frac{12 + 12 - 4}{4} = 5$$

Work Out: (Points indicated. Part credit possible. Show all work.)

8. (10 points) Find the tangent line to the graph of $y = g(x) = \sec x$ at $x = \frac{\pi}{4}$.

Solution:
$$g\left(\frac{\pi}{4}\right) = \sec\frac{\pi}{4} = \sqrt{2}$$
 $g'(x) = \sec x \tan x$ $g'\left(\frac{\pi}{4}\right) = \sec\frac{\pi}{4}\tan\frac{\pi}{4} = \sqrt{2}$ $y = g\left(\frac{\pi}{4}\right) + g'\left(\frac{\pi}{4}\right)\left(x - \frac{\pi}{4}\right) = \sqrt{2} + \sqrt{2}\left(x - \frac{\pi}{4}\right) = \sqrt{2}x + \sqrt{2} - \frac{\pi}{4}\sqrt{2}$

9. (5 points) Use the limit definition of the derivative to prove $\frac{d}{dx}\sin x = \cos x$.

Solution: We use the limit definition of a derivative and the identities

$$\sin(x+h) = \sin x \cos h + \cos x \sin h, \qquad \lim_{h \to 0} \frac{\sin h}{h} = 1, \qquad \lim_{h \to 0} \frac{1 - \cos h}{h} = 0$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$
$$= \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin h}{h} = \sin x(0) + \cos x(1) = \cos x$$

- **10**. (15 points) Prove $\lim_{x\to 4} (7-3x) = -5$ by completing the following three steps.
 - a. Write out the definition.

Solution:
$$\lim_{x\to 4} (7-3x) = -5$$
 means:

For all
$$\ \epsilon > 0$$
 there is a $\ \delta > 0$ such that

if
$$0 < |x - 4| < \delta$$
 then $|(7 - 3x) + 5| < \epsilon$.

b. Work backwards to find δ in terms of ε .

Solution:
$$|(7-3x)+5| < \epsilon \iff |12-3x| < \epsilon \iff 3|4-x| < \epsilon \iff |x-4| < \frac{\epsilon}{3}$$

So we need $\delta = \frac{\epsilon}{3}$.

c. Complete the proof.

Solution: Given
$$\epsilon > 0$$
, let $\delta = \frac{\epsilon}{3}$. Then if $0 < |x - 4| < \delta$ then

$$|x-4| < \frac{\epsilon}{3} \implies 3|4-x| < \epsilon \implies |12-3x| < \epsilon \implies |(7-3x)+5| < \epsilon$$