Name_____Section___

MATH 171

Exam 1B

Fall 2022

P. Yasskin

 1-7
 /70
 9
 /5

 8
 /10
 10
 /15

Total

Section 502/504

Multiple Choice and Short Answer:

(Show your work in case there is part credit.)

1. (5 points) Find the angle between the vectors $\vec{u} = \langle \sqrt{3}, -3 \rangle$ and $\vec{v} = \langle 1, \sqrt{3} \rangle$.

 $\theta =$ _____

/100

2. (10 points) Write $\vec{a} = \langle 3, 7 \rangle$ as the sum of two vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{b} = \langle 10, 4 \rangle$ and \vec{q} is perpendicular to $\vec{b} = \langle 10, 4 \rangle$.

- 3. (5 points) A line passes through the point P = (4,-1) and is tangent to the direction $\vec{v} = \langle 6,4 \rangle$. Which of the following points are on the line? (Circle your one answer.)
 - **a**. (10,6)
 - **b**. (7,3)
 - **c**. (-2,-5)
 - **d**. (1,3)

4 .	(5 points)	Find the part of the real line where the function	$f(x) = \sqrt{16-x^2} + \frac{1}{\sqrt{9-x^2}}$ is continuous.
			$\sqrt{9-x^2}$

Continuous on:

5. Compute each of the following limits:

a. (5 points)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x^2 - 5x + 6}$$
...

b. (5 points)
$$\lim_{h \to 0} \frac{e^{2+h} - e^2}{h}$$
...

c. (5 points)
$$\lim_{x \to \infty} \left(\sqrt{x^2 - 3x} - \sqrt{x^2 + 2x} \right)$$
 = _____

d. (5 points)
$$\lim_{x\to 0} \frac{8x^4 + 6x^3}{4x^4 + 2x^3}$$
...

6. (5 points) Find the horizontal asymptotes of the function $g(x) = \frac{3 \cdot 2^x + 4 \cdot 3^x}{2^x + 2 \cdot 3^x}$.

The horizontal asymptote as $x \to \infty$ is y =_____.

The horizontal asymptote as $x \to -\infty$ is $y = \underline{\hspace{1cm}}$.

7. Compute each of the following derivatives:

b. (5 points)
$$g(x) = (\sin x + \cos x)^5$$
..... $g'(x) =$

d. (5 points) Find
$$f'(1)$$
, if $f(x) = \frac{p(x)q(x)}{r(x)}$, given that $p(1) = 7$, $p'(1) = 6$, $q(1) = 9$, $q'(1) = 6$, $r(1) = 3$, $r'(1) = 2$

Work Out: (Points indicated. Part credit possible. Show all work.)

8. (10 points) Find the tangent line to the graph of $y = g(x) = \tan x$ at $x = \frac{\pi}{3}$.

9. (5 points) Use the limit definition of the derivative to prove $\frac{d}{dx}\cos x = -\sin x$.

- **10**. (15 points) Prove $\lim_{x\to 3} (2+4x) = 14$ by completing the following three steps.
 - **a**. Write out the definition.

$$\lim_{x\to 3} (2+4x) = 14$$
 means:

b. Work backwards to find δ in terms of ε .

c. Complete the proof.