Name	Section					
MATH 171	Exam 1B	Fall 2022	1-7	/70	9	/ 5
Section 502/504	Solutions	P. Yasskin	8	/10	10	/15
Multiple Choice and Short Answer:					Total	/100

(Show your work in case there is part credit.)

1. (5 points) Find the angle between the vectors $\vec{u} = \langle \sqrt{3}, -3 \rangle$ and $\vec{v} = \langle 1, \sqrt{3} \rangle$.

θ = ____

Solution: $|\vec{u}| = \sqrt{3+9} = \sqrt{12} = 2\sqrt{3}$ $|\vec{v}| = \sqrt{1+3} = 2$ $\vec{u} \cdot \vec{v} = \sqrt{3} - 3\sqrt{3} = -2\sqrt{3}$ $\cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} = \frac{-2\sqrt{3}}{2\sqrt{3} \cdot 2} = \frac{-1}{2} \qquad \theta = 120^{\circ}$

2. (10 points) Write $\vec{a} = \langle 3, 7 \rangle$ as the sum of two vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{b} = \langle 10, 4 \rangle$ and \vec{q} is perpendicular to $\vec{b} = \langle 10, 4 \rangle$.

 $\vec{a} = \vec{p} + \vec{q}$ where...... $\vec{p} = \langle ___, ___ \rangle$ and $\vec{q} = \langle ___, ___ \rangle$

Solution: $\vec{p} = \text{proj}_{\vec{b}}\vec{a} = \frac{\vec{b} \cdot \vec{a}}{|\vec{b}|^2}\vec{b} = \frac{30 + 28}{100 + 16}\langle 10, 4 \rangle = \frac{58}{116}\langle 10, 4 \rangle = \langle 5, 2 \rangle$ $\vec{q} = \text{proj}_{\vec{k}}\vec{a} = \vec{a} - \text{proj}_{\vec{k}}\vec{a} = \langle 3,7 \rangle - \langle 5,2 \rangle = \langle -2,5 \rangle$

Check: $\vec{p} + \vec{q} = \langle 5, 2 \rangle + \langle -2, 5 \rangle = \langle 3, 7 \rangle = \vec{a}$ $\vec{p} = \langle 5, 2 \rangle$ is a multiple of $\vec{b} = \langle 10, 4 \rangle$ $\vec{q} \cdot \vec{b} = \langle -2, 5 \rangle \cdot \langle 10, 4 \rangle = -20 + 20 = 0$

- **3**. (5 points) A line passes through the point P = (4, -1) and is tangent to the direction $\vec{v} = \langle 6, 4 \rangle$. Which of the following points are on the line? (Circle your one answer.)
 - **a**. (10,6)
 - **b**. (7,3)
 - **c**. (−2,−5)
 - **d**. (1,3)

Solution: The general point on the line is $X(t) = P + t\vec{v} = (4, -1) + t(6, 4)$. We try the values of t which make the *x*-components work.

X(1) = (4,-1) + 1(6,4) = (10,3) which agrees with the x-component in (a) but not the y-component.

 $X\left(\frac{1}{2}\right) = (4,-1) + \frac{1}{2}\langle 6,4 \rangle = (7,1)$ which agrees with the *x*-component in (b) but not the v-component.

X(-1) = (4,-1) - 1(6,4) = (-2,-5) which agrees with (c).

 $X\left(-\frac{1}{2}\right) = (4,-1) - \frac{1}{2}\langle 6,4 \rangle = (1,-3)$ which agrees with the x-component in (d) but not the *y*-component.

4. (5 points) Find the part of the real line where the function $f(x) = \sqrt{16 - x^2} + \frac{1}{\sqrt{9 - x^2}}$ is continuous.

Continuous on:

Solution: Since the function is constructed using elementary operations, it is continuous where it is defined. The square roots require their arguments to be non-negative. So we need both $|x| \le 4$ and $|x| \le 3$. Since the denominator must be non-zero, we need $x \ne 3$. All together, these say |x| < 3 or -3 < x < 3 or (-3,3) or draw a number line with round brackets at -3 and 3.

- 5. Compute each of the following limits:
 - **a**. (5 points) $\lim_{x \to 3} \frac{x^2 x 6}{x^2 5x + 6}$

Solution: Factor and cancel.

 $\lim_{x \to 3} \frac{x^2 - x - 6}{x^2 - 5x + 6} = \lim_{x \to 3} \frac{(x - 3)(x + 2)}{(x - 3)(x - 2)} = \lim_{x \to 3} \frac{(x + 2)}{(x - 2)} = 5$

b. (5 points) $\lim_{h \to 0} \frac{e^{2+h} - e^2}{h}$

Solution: You should recognize this as the derivative of $f(x) = e^x$ at x = 2. Since $f'(x) = e^x$, $\lim_{h \to 0} \frac{e^{2+h} - e^2}{h} = f'(2) = e^2.$

c. (5 points) $\lim_{x \to \infty} \left(\sqrt{x^2 - 3x} - \sqrt{x^2 + 2x} \right)$

Solution: Multiply by the conjugate. Then divide by the largest term in the denominator.

$$\lim_{x \to \infty} \left(\sqrt{x^2 - 3x} - \sqrt{x^2 + 2x} \right) \frac{\left(\sqrt{x^2 - 3x} + \sqrt{x^2 + 2x} \right)}{\left(\sqrt{x^2 - 3x} + \sqrt{x^2 + 2x} \right)} = \lim_{x \to \infty} \frac{\left(x^2 - 3x \right) - \left(x^2 + 2x \right)}{\sqrt{x^2 - 3x} + \sqrt{x^2 + 2x}}$$
$$= \lim_{x \to \infty} \frac{-5x}{\sqrt{x^2 - 3x} + \sqrt{x^2 + 2x}} \cdot \frac{x^{-1}}{x^{-1}} = \lim_{x \to \infty} \frac{-5}{\sqrt{1 - \frac{3}{x}} + \sqrt{1 + \frac{2}{x}}} = \frac{-5}{2}$$

Solution: Divide by the largest term in the denominator. Near x = 0, $x^3 > x^4$. So we divide top and bottom by x^3 : $\lim_{x \to 0} \frac{8x^4 + 6x^3}{4x^4 + 2x^3} \frac{x^{-3}}{x^{-3}} = \lim_{x \to 0} \frac{8x + 6}{4x + 2} = 3$ 6. (5 points) Find the horizontal asymptotes of the function $g(x) = \frac{3 \cdot 2^x + 4 \cdot 3^x}{2^x + 2 \cdot 3^x}$.

The horizontal asymptote as $x \to \infty$ is y =_____.

The horizontal asymptote as $x \to -\infty$ is y =_____.

Solution:
$$\lim_{x \to \infty} \frac{3 \cdot 2^x + 4 \cdot 3^x}{2^x + 2 \cdot 3^x} \frac{\left(\frac{1}{3^x}\right)}{\left(\frac{1}{3^x}\right)} = \lim_{x \to \infty} \frac{3 \cdot \left(\frac{2}{3}\right)^x + 4}{\left(\frac{2}{3}\right)^x + 2} = 2 \quad \text{Asymptote is} \quad y = 2.$$
$$\lim_{x \to \infty} \frac{3 \cdot 2^x + 4 \cdot 3^x}{2^x + 2 \cdot 3^x} \frac{\left(\frac{1}{2^x}\right)}{\left(\frac{1}{2^x}\right)} = \lim_{x \to \infty} \frac{3 + 4 \cdot \left(\frac{3}{2}\right)^x}{1 + 2 \cdot \left(\frac{3}{2}\right)^x} = 3 \quad \text{Asymptote is} \quad y = 3.$$

- 7. Compute each of the following derivatives:
 - **a**. (5 points) $f(x) = 4x^3 + \frac{3}{x^4}$f'(x) =______ **Solution**: $f'(x) = 12x^2 - \frac{12}{x^5}$
 - **b**. (5 points) $g(x) = (\sin x + \cos x)^5$g'(x) = **Solution**: By the Extended Power Rule: $g'(x) = 5(\sin x + \cos x)^4(\cos x - \sin x)$

Solution: The first term is a power rule. The second term is an exponential with base π . $p'(x) = \pi x^{\pi-1} + (\ln \pi)\pi^x$

v =

8. (10 points) Find the tangent line to the graph of $y = g(x) = \tan x$ at $x = \frac{\pi}{3}$.

Solution:
$$g\left(\frac{\pi}{3}\right) = \tan\frac{\pi}{3} = \sqrt{3}$$
 $g'(x) = \sec^2 x$ $g'\left(\frac{\pi}{3}\right) = \sec^2\left(\frac{\pi}{3}\right) = 2^2 = 4$
 $y = g\left(\frac{\pi}{3}\right) + g'\left(\frac{\pi}{3}\right)\left(x - \frac{\pi}{3}\right) = \sqrt{3} + 4\left(x - \frac{\pi}{3}\right) = 4x + \sqrt{3} - \frac{4\pi}{3}$

9. (5 points) Use the limit definition of the derivative to prove $\frac{d}{dx}\cos x = -\sin x$.

Solution: We use the limit definition of a derivative and the identities

$$\cos(x+h) = \cos x \cos h - \sin x \sin h, \qquad \lim_{h \to 0} \frac{\sin h}{h} = 1, \qquad \lim_{h \to 0} \frac{1 - \cos h}{h} = 0$$
$$\frac{d}{dx} \cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$
$$= -\sin x \lim_{h \to 0} \frac{\sin h}{h} + \cos x \lim_{h \to 0} \frac{\cos h - 1}{h} = -\sin x(1) + \cos x(0) = -\sin x$$

- **10**. (15 points) Prove $\lim_{x\to 3} (2+4x) = 14$ by completing the following three steps.
 - **a**. Write out the definition.

Solution: $\lim_{x \to 3} (2 + 4x) = 14$ means: For all $\epsilon > 0$ there is a $\delta > 0$ such that

if $0 < |x-3| < \delta$ then $|(2+4x) - 14| < \epsilon$.

b. Work backwards to find δ in terms of ε .

Solution: $|(2+4x) - 14| < \epsilon \iff |4x - 12| < \epsilon \iff 4|x - 3| < \epsilon \iff |x - 3| < \frac{\epsilon}{4}$ So we need $\delta = \frac{\epsilon}{4}$.

c. Complete the proof.

Solution: Given $\epsilon > 0$, let $\delta = \frac{\epsilon}{4}$. Then if $0 < |x - 3| < \delta$ then $|x - 3| < \frac{\epsilon}{4} \implies 4|x - 3| < \epsilon \implies |4x - 12| < \epsilon \implies |(7 - 3x) + 5| < \epsilon$