_Section__ Name_____

MATH 171

Exam 2A

Fall 2022

Section 502/504

P. Yasskin

1-10	/50	13	/10
11	/10	14	/25
12	/10	Total	/105

Multiple Choice and Short Answer:

(5 points each. Show your work in case there is part credit.)

- 1. Use the linear approximation to approximate $\sqrt{4.2}$.
 - **a**. 1.949

f. 2.02

b. 1.95

g. 2.025

c. 1.951

h. 2.049

d. 1.975

i. 2.05

e. 1.98

j. 2.051

2. Notice that the point (x,y) = (1,2) lies on the curve $3x^4y^3 + 4x^3y^2 = 40$. What is the slope of the curve, $\frac{dy}{dx}$, at (1,2)?

$$\left. \frac{dy}{dx} \right|_{(1,2)} = \underline{\hspace{1cm}}$$

3. For the function $f = x^4 - 4x$, the Mean Value Theorem says: There is a number c in [2,4] where f'(c) =

4. If
$$g(x) = \arctan(x)$$
, then $g'\left(\frac{3}{4}\right) =$

a.
$$\frac{3}{4}$$

g.
$$\frac{9}{16}$$

b.
$$\frac{4}{3}$$

g.
$$\frac{9}{16}$$

h. $\frac{16}{9}$
i. $\frac{9}{25}$
j. $\frac{25}{9}$
k. $\frac{16}{25}$
l. $\frac{25}{16}$

c.
$$\frac{3}{5}$$

i.
$$\frac{9}{25}$$

d.
$$\frac{5}{3}$$

j.
$$\frac{25}{9}$$

e.
$$\frac{4}{5}$$

k.
$$\frac{16}{25}$$

f.
$$\frac{5}{4}$$

I.
$$\frac{25}{16}$$

5. Suppose
$$f(x) = \frac{1}{x^3}$$
 and $g(x) = f^{-1}(x)$ is the inverse of $f(x)$. What is $g(8)$? (This is the function g , not its derivative.)

$$g(8) =$$

6. Suppose
$$f(x) = 2x^5 + \frac{1}{x^5}$$
 and $g(x) = f^{-1}(x)$ is the inverse of $f(x)$. Also notice $f(1) = 3$. The inverse function theorem allows us to easily compute either $g'(1)$ or $g'(3)$. Which one and what is its value?

- 7. The point x = 2 is a critical point of the function $f(x) = x^4 8x^3 + 24x^2 32x$. Then the Second Derivative Test says x = 2 is a
 - a. Local Minimum
 - **b**. Local Maximum
 - c. Inflection Point
 - d. The Second Derivative Test FAILS.

- **8**. The point x = 1 is a critical point of the function $f(x) = x^4 4x^3 + 4x^2$. Then the Second Derivative Test says x = 1 is a
 - a. Local Minimum
 - **b**. Local Maximum
 - c. Inflection Point
 - d. The Second Derivative Test FAILS.

9. If $p(t) = \ln(t^4)$, what is p'(2)?

$$p'(2) =$$

10. If
$$q(s) = (5 + s^{2/3})^{3/2}$$
, what is $q'(8)$? (Simplify to a rational number.)

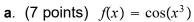
$$q'(8) =$$

Work Out: (Points indicated. Part credit possible. Show all work.)

11. (10 points) A conical cup is filled with water to a height h=16 cm and radius r=4 cm, but it is leaking. If 2 cubic cm leaks out, estimate the change in the height of the water. (Note: The volume of a cone is $V=\frac{1}{3}\pi r^2h$.)

 $\Delta h =$

12. (10 points) For a pendulum, the period T and the acceleration of gravity g are related by $T\sqrt{g}=2\pi\sqrt{L}$ where L is the (constant) length of the pendulum. The pendulum is put on a rocket ship so that g and hence T are changing. When g=2 $\frac{\text{m}}{\text{sec}^2}$ and T=1 sec, what is $\frac{dT}{dg}$?


$$\left. \frac{dT}{dg} \right|_{(2,1)} = \underline{\hspace{1cm}}$$

13. (10 points) Find all horizontal and vertical tangents of the parametric curve $\vec{r}(t) = \left(\frac{1}{3}t^3 - \frac{3}{2}t^2 + 2t, \frac{1}{4}t^4 - \frac{4}{3}t^3 + 2t^2\right)$.

Horizontal tangent(s) at t =

Vertical tangent(s) at t =_____

14.	(25 points)	Find the firs	st and second	derivatives of	f each of th	ne following	functions:	
	(You do not compute the			nay want to s	implify the	first deriva	tive if it ma	kes it easier to
	· /= · ·	\	, 3)					

$$f'(x) =$$

$$f''(x) = \underline{\hspace{1cm}}$$

b. (7 points)
$$g(x) = \ln(x^2 + 4)$$

$$g'(x) =$$

$$g''(x) =$$

c. (7 points) $p(x) = \arcsin(4x)$

$$p'(x) = \underline{\hspace{1cm}}$$

$$p''(x) = \underline{\hspace{1cm}}$$

d. (4 points)
$$q(x) = x^{(x^3)}$$

HINT: In the base, let $x = e^{(\ln x)}$.

ON THIS ONE YOU ONLY NEED THE FIRST DERIVATIVE.

$$q'(x) = \underline{\hspace{1cm}}$$