\sim		
50	sot.	inr
·) 🗖		ЮЛ

MATH 171	Exam 2B	Fall 2022	1-10	/50	13	/10	
Section 502/504		P. Yasskin	11	/10	14	/25	
Multiple Choice and Short Answer:		12	/10	Total	/105		
(5 points each. Show your work in case there is part credit.)							

1. Use the linear approximation to approximate $\sqrt{3.8}$.

a .	1.949	f . 2.02
b.	1.95	g . 2.025
C .	1.951	h . 2.049
d.	1.975	i. 2.05

Name_____

e. 1.98 **j**. 2.051

2. Notice that the point (x,y) = (2,1) lies on the curve $3x^3y^4 + 4x^2y^3 = 40$. What is the slope of the curve, $\frac{dy}{dx}$, at (2,1)?

There is a number c in [1,3] where f'(c) =

3. For the function $f = x^3 - 3x$, the Mean Value Theorem says:

$$f'(c) =$$

$$\left.\frac{dy}{dx}\right|_{(2,1)} = ----$$

4. If $g(x) = \arcsin(x)$, then $g'\left(\frac{3}{5}\right) =$

а.	$\frac{3}{4}$	g . $\frac{9}{16}$
b.	$\frac{4}{3}$	h . <u>16</u> <u>9</u>
C .	$\frac{3}{5}$	i. <u>9</u> 25
d.	$\frac{5}{3}$	j. <u>25</u> 9
e .	$\frac{4}{5}$	k . $\frac{16}{25}$
f.	$\frac{5}{4}$	I. <u>25</u> <u>16</u>

5. Suppose $f(x) = x^5$ and $g(x) = f^{-1}(x)$ is the inverse of f(x). What is g(32)? (This is the function *g*, not its derivative.)

6. Suppose $f(x) = 4x^3 + \frac{1}{x^3}$ and $g(x) = f^{-1}(x)$ is the inverse of f(x). Also notice f(1) = 5. The inverse function theorem allows us to easily compute either g'(1) or g'(5). Which one and what is its value?

g(32) = _____

- 7. The point x = 1 is a critical point of the function $f(x) = x^4 4x^3 + 6x^2 4x$. Then the Second Derivative Test says x = 1 is a
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. The Second Derivative Test FAILS.

- 8. The point x = 2 is a critical point of the function $f(x) = x^4 4x^3 + 4x^2$. Then the Second Derivative Test says x = 2 is a
 - a. Local Minimum
 - **b**. Local Maximum
 - c. Inflection Point
 - d. The Second Derivative Test FAILS.

9. If $p(t) = \ln(t^5)$, what is p'(10)?

p′(10) = _____

10. If $q(s) = (2 + s^{1/3})^{3/2}$, what is q'(8)? (Simplify to a rational number.)

q′(8) = _____

Work Out: (Points indicated. Part credit possible. Show all work.)

11. (10 points) A conical cup is filled with water to a height h = 27 cm and radius r = 9 cm, but it is leaking. If 3 cubic cm leaks out, estimate the change in the height of the water. (Note: The volume of a cone is $V = \frac{1}{3}\pi r^2 h$.)

 $\Delta h =$ _____

12. (10 points) A rod is heating up and expanding. The length L and the temperature T are related by $\frac{L-L_0}{T-T_0} = \frac{L_0}{100}$ where $L_0 = 10$ m is the original length and $T_0 = 30^{\circ}$ C is the original temperature. When L = 12 m and $T = 50^{\circ}$ C, what is $\frac{dL}{dT}$?

 $\frac{dL}{dT}\Big|_{(12,50)} = \underline{\qquad}$

13. (10 points) Find all horizontal and vertical tangents of the parametric curve $\vec{r}(t) = \left(\frac{1}{4}t^4 - \frac{4}{3}t^3 + 2t^2, \frac{1}{3}t^3 - \frac{3}{2}t^2 + 2t\right).$

Horizontal tangent(s) at t =_____

Vertical tangent(s) at t =_____

- 14. (25 points) Find the first and second derivatives of each of the following functions: (You do not need to simplify, but you may want to simplify the first derivative if it makes it easier to compute the second derivative.)
 - **a**. (7 points) $f(x) = \sin(x^4)$

ON THIS ONE YOU ONLY NEED THE FIRST DERIVATIVE.

q '(*x*) = _____