Name \qquad Section \qquad
MATH 171
Exam 2B
Fall 2022
Section 502/504
P. Yasskin

Multiple Choice and Short Answer:

$1-10$	$/ 50$	13	$/ 10$
11	$/ 10$	14	$/ 25$
12	$/ 10$	Total	$/ 105$

(5 points each. Show your work in case there is part credit.)

1. Use the linear approximation to approximate $\sqrt{3.8}$.
a. 1.949
b. 1.95
c. 1.951
d. 1.975
e. 1.98
f. 2.02
g. 2.025
h. 2.049
i. 2.05
j. 2.051
2. Notice that the point $(x, y)=(2,1)$ lies on the curve $3 x^{3} y^{4}+4 x^{2} y^{3}=40$. What is the slope of the curve, $\frac{d y}{d x}$, at $(2,1) ?$

$$
\left.\frac{d y}{d x}\right|_{(2,1)}=
$$

\qquad
3. For the function $f=x^{3}-3 x$, the Mean Value Theorem says:

There is a number c in $[1,3]$ where $f^{\prime}(c)=$

$$
f^{\prime}(c)=
$$

\qquad
4. If $g(x)=\arcsin (x)$, then $g^{\prime}\left(\frac{3}{5}\right)=$
a. $\frac{3}{4}$
b. $\frac{4}{3}$
c. $\frac{3}{5}$
d. $\frac{5}{3}$
e. $\frac{4}{5}$
f. $\frac{5}{4}$
g. $\frac{9}{16}$
h. $\frac{16}{9}$
i. $\frac{9}{25}$
J. $\frac{25}{9}$
k. $\frac{16}{25}$
I. $\frac{25}{16}$
5. Suppose $f(x)=x^{5}$ and $g(x)=f^{-1}(x)$ is the inverse of $f(x)$. What is $g(32)$? (This is the function g, not its derivative.)

$$
g(32)=
$$

\qquad
6. Suppose $f(x)=4 x^{3}+\frac{1}{x^{3}}$ and $g(x)=f^{-1}(x)$ is the inverse of $f(x)$. Also notice $f(1)=5$. The inverse function theorem allows us to easily compute either $g^{\prime}(1)$ or $g^{\prime}(5)$. Which one and what is its value?
\qquad
\qquad
7. The point $x=1$ is a critical point of the function $f(x)=x^{4}-4 x^{3}+6 x^{2}-4 x$. Then the Second Derivative Test says $x=1$ is a
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. The Second Derivative Test FAILS.
8. The point $x=2$ is a critical point of the function $f(x)=x^{4}-4 x^{3}+4 x^{2}$. Then the Second Derivative Test says $x=2$ is a
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. The Second Derivative Test FAILS.
9. If $p(t)=\ln \left(t^{5}\right)$, what is $p^{\prime}(10)$?

$$
p^{\prime}(10)=
$$

\qquad
10. If $q(s)=\left(2+s^{1 / 3}\right)^{3 / 2}$, what is $q^{\prime}(8)$? (Simplify to a rational number.)

$$
q^{\prime}(8)=
$$

\qquad
11. (10 points) A conical cup is filled with water to a height $h=27 \mathrm{~cm}$ and radius $r=9 \mathrm{~cm}$, but it is leaking. If 3 cubic cm leaks out, estimate the change in the height of the water.
(Note: The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.)
$\Delta h=$ \qquad
12. (10 points) A rod is heating up and expanding. The length L and the temperature T are related by $\frac{L-L_{0}}{T-T_{0}}=\frac{L_{0}}{100}$ where $L_{0}=10 \mathrm{~m}$ is the original length and $T_{0}=30^{\circ} \mathrm{C}$ is the original temperature. When $L=12 \mathrm{~m}$ and $T=50^{\circ} \mathrm{C}$, what is $\frac{d L}{d T}$?

$$
\left.\frac{d L}{d T}\right|_{(12,50)}=
$$

13. (10 points) Find all horizontal and vertical tangents of the parametric curve $\vec{r}(t)=\left(\frac{1}{4} t^{4}-\frac{4}{3} t^{3}+2 t^{2}, \quad \frac{1}{3} t^{3}-\frac{3}{2} t^{2}+2 t\right)$.

Horizontal tangent(s) at $\quad t=$ \qquad

Vertical tangent(s) at $\quad t=$ \qquad
14. (25 points) Find the first and second derivatives of each of the following functions:
(You do not need to simplify, but you may want to simplify the first derivative if it makes it easier to compute the second derivative.)
a. (7 points) $f(x)=\sin \left(x^{4}\right)$

$$
f^{\prime}(x)=
$$

\qquad
$f^{\prime \prime}(x)=$ \qquad
b. (7 points) $g(x)=\ln \left(x^{3}+6\right)$
$g^{\prime}(x)=$ \qquad
$g^{\prime \prime}(x)=$ \qquad
c. (7 points) $p(x)=\arctan (3 x)$
$p^{\prime}(x)=$ \qquad
$p^{\prime \prime}(x)=$ \qquad
d. (4 points) $q(x)=x^{\left(x^{2}\right)}$

HINT: In the base, let $x=e^{(\ln x)}$.
ON THIS ONE YOU ONLY NEED THE FIRST DERIVATIVE.
$q^{\prime}(x)=$ \qquad

