Name	Section					
MATH 171	Exam 2B	Fall 2022	1-10	/50	13	/10
Section 502/504	Solutions	P. Yasskin	11	/10	14	/25
Multiple Choice and Short Answer:			12	/10	Total	/105

(5 points each. Show your work in case there is part credit.)

1. Use the linear approximation to approximate $\sqrt{3.8}$.

a.	1.949		f . 2.02
b.	1.95	Correct	g . 2.025
C .	1.951		h . 2.049
d.	1.975		i . 2.05
е.	1.98		j . 2.051

Solution: Let $f(x) = \sqrt{x}$. Since we know $f(4) = \sqrt{4} = 2$, we approximate near x = 4. Then $f'(x) = \frac{1}{2\sqrt{x}}, f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}.$ $f_{\tan}(x) = f(4) + f'(4)(x-4) = 2 + \frac{1}{4}(x-4) \qquad \sqrt{3.8} \approx f_{\tan}(3.8) = 2 + \frac{1}{4}(3.8-4) = 2 - \frac{.2}{.4} = 1.95$ A calculator says: $\sqrt{3.8} = 1.9494$

2. Notice that the point (x,y) = (2,1) lies on the curve $3x^3y^4 + 4x^2y^3 = 40$. What is the slope of the curve, $\frac{dy}{dr}$, at (2,1)?

Solution: We implicitly differentiate the equation regarding y as a function of x. We use the Product and Chain rule:

$$9x^2y^4 + 12x^3y^3\frac{dy}{dx} + 8xy^3 + 12x^2y^2\frac{dy}{dx} = 0$$

We plug in (x,y) = (2,1) and solve for the slope:

 $36 + 96\frac{dy}{dx} + 16 + 48\frac{dy}{dx} = 0 \qquad 144\frac{dy}{dx} = -52 \qquad \frac{dy}{dx} = -\frac{52}{144} = -\frac{13}{36}$

3. For the function $f = x^3 - 3x$, the Mean Value Theorem says: There is a number c in [1,3] where f'(c) =

Solution: Notice f(3) = 27 - 9 = 18 and f(1) = 1 - 3 = -2. So the slope between the endpoints is $m = \frac{f(3) - f(1)}{3 - 1} = \frac{18 - (-2)}{2} = 10.$ The MVT says there is a number c in [1,3] where f'(c) = 10.

4. If $g(x) = \arcsin(x)$, then $g'\left(\frac{3}{5}\right) =$

a.	$\frac{3}{4}$		g . $\frac{9}{16}$
b.	$\frac{4}{3}$		h . <u>16</u> <u>9</u>
C .	$\frac{3}{5}$		i. <u>9</u> 25
d.	$\frac{5}{3}$		j. <u>25</u> 9
e .	$\frac{4}{5}$		k . $\frac{16}{25}$
f.	<u>5</u> 4	Correct	I. <u>25</u> <u>16</u>

Solution:
$$g'(x) = \frac{1}{\sqrt{1 - x^2}}$$
 $g'\left(\frac{3}{5}\right) = \frac{1}{\sqrt{1 - \left(\frac{3}{5}\right)^2}} = \frac{1}{\sqrt{1 - \frac{9}{25}}} = \frac{1}{\sqrt{\frac{16}{25}}} = \frac{5}{4}$

5. Suppose $f(x) = x^5$ and $g(x) = f^{-1}(x)$ is the inverse of f(x). What is g(32)?

Solution: We solve $x^5 = 32$ to get x = 2. Since f(2) = 32, we have g(32) = 2.

6. Suppose $f(x) = 4x^3 + \frac{1}{x^3}$ and $g(x) = f^{-1}(x)$ is the inverse of f(x). Also notice f(1) = 5. The inverse function theorem allows us to easily compute either g'(1) or g'(5). Which one and what is its value?

Solution: If f(a) = b and g(b) = a, the inverse function theorem says $g'(b) = \frac{1}{f'(a)} = \frac{1}{f'(g(b))}$. We know f(1) = 5. So g(5) = 1 and we can compute $g'(5) = \frac{1}{f'(1)}$. Since $f'(x) = 12x^2 - \frac{3}{x^4}$, we know f'(1) = 12 - 3 = 9 and $g'(5) = \frac{1}{9}$.

- 7. The point x = 1 is a critical point of the function $f(x) = x^4 4x^3 + 6x^2 4x$. Then the Second Derivative Test says x = 1 is a
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. The Second Derivative Test FAILS. Correct

Solution: $f'(x) = 4x^3 - 12x^2 + 12x - 4$ Note: f'(1) = 4 - 12 + 12 - 4 = 0 $f''(x) = 12x^2 - 24x + 12$ f''(1) = 12 - 24 + 12 = 0So the Second Derivative Test FAILS.

- 8. The point x = 2 is a critical point of the function $f(x) = x^4 4x^3 + 4x^2$. Then the Second Derivative Test says x = 2 is a
 - a. Local Minimum Correct
 - b. Local Maximum
 - c. Inflection Point
 - d. The Second Derivative Test FAILS.

Solution: $f'(x) = 4x^3 - 12x^2 + 8x$ Note: f'(2) = 32 - 48 + 16 = 0 $f''(x) = 12x^2 - 24x + 8$ f''(2) = 48 - 48 + 8 = 8 > 0 Concave up. So the Second Derivative Test says x = 2 is a local minimum.

9. If $p(t) = \ln(t^5)$, what is p'(10)?

Solution: Rewrite $p(t) = 5\ln(t)$. So $p'(t) = 5\frac{1}{t}$ and $p'(10) = 5\frac{1}{10} = \frac{1}{2}$

10. If $q(s) = (2 + s^{1/3})^{3/2}$, what is q'(8)? (Simplify to a rational number.)

Solution:

$$q'(s) = \frac{3}{2}(2+s^{1/3})^{1/2}\frac{1}{3}s^{-2/3} \qquad q'(8) = \frac{3}{2}(2+8^{1/3})^{1/2}\frac{1}{3}8^{-2/3} = \frac{3}{2}(2+2)^{1/2}\frac{1}{3}\frac{1}{4} = \frac{1}{8}2 = \frac{1}{4}$$

11. (10 points) A conical cup is filled with water to a height h = 27 cm and radius r = 9 cm, but it is leaking. If 3 cubic cm leaks out, estimate the change in the height of the water. (Note: The volume of a cone is $V = \frac{1}{3}\pi r^2 h$.)

Solution: Since $\frac{h}{r} = \frac{27}{9} = 3$, we can write $r = \frac{h}{3}$. Plugging that into the volume of the cone we get $V = \frac{1}{3}\pi \left(\frac{h}{3}\right)^2 h = \frac{1}{27}\pi h^3$. To get the change in the height, we first approximate the change in the volume using differentials:

$$\Delta V \approx dV = \frac{dV}{dh}dh = \frac{1}{9}\pi h^2 \Delta h$$

We now solve for Δh and plug in numbers:

$$\Delta h = \frac{9\Delta V}{\pi h^2} = \frac{9(3)}{\pi (27)^2} = \frac{1}{27\pi}$$

12. (10 points) A rod is heating up and expanding. The length L and the temperature T are related by $\frac{L-L_0}{T-T_0} = \frac{L_0}{100}$ where $L_0 = 10$ m is the original length and $T_0 = 30^{\circ}$ C is the original temperature. When L = 12 m and $T = 50^{\circ}$ C, what is $\frac{dL}{dT}$?

Solution: We apply $\frac{d}{dT}$ to both sides using the Quotient rule and solve for $\frac{dL}{dT}$: $\frac{(T-T_0)\frac{dL}{dT} - (L-L_0)1}{(T-T_0)^2} = 0 \qquad (T-T_0)\frac{dL}{dT} - (L-L_0) = 0$ $\frac{dL}{dT} = \frac{L-L_0}{T-T_0}$ Finally we evaluate at (L,T) = (12,50) with $(L_0,T_0) = (10,30)$: $\frac{dL}{dT}\Big|_{(12,50)} = \frac{12-10}{50-30} = \frac{2}{20} = \frac{1}{10}$

13. (10 points) Find all horizontal and vertical tangents of the parametric curve $\vec{r}(t) = \left(\frac{1}{4}t^4 - \frac{4}{3}t^3 + 2t^2, \frac{1}{3}t^3 - \frac{3}{2}t^2 + 2t\right).$

Solution: $x(t) = \frac{1}{4}t^4 - \frac{4}{3}t^3 + 2t^2$ $y(t) = \frac{1}{3}t^3 - \frac{3}{2}t^2 + 2t$ $y'(t) = t^2 - 3t + 2 = (t - 2)(t - 1)$ Potential horizontal tangents are at t = 1, 2 $x'(t) = t^3 - 4t^2 + 4t = t(t^2 - 4t + 4) = t(t - 2)^2$ Potential vertical tangents are at t = 0, 2But, t = 2 can't be both. We look at the slope: $m = \frac{(t - 1)(t - 2)}{t(t - 2)^2} = \frac{(t - 1)}{t(t - 2)}$ So horizontal tangents is at t = 1.

Vertical tangents are is at t = 0, 2.

- 14. (25 points) Find the first and second derivatives of each of the following functions: (You do not need to simplify, but you may want to simplify the first derivative if it makes it easier to compute the second derivative.)
 - **a**. (7 points) $f(x) = \sin(x^4)$

Solution:

$$f'(x) = \cos(x^4)4x^3$$
$$f''(x) = -\sin(x^4)4x^34x^3 + \cos(x^4)12x^2$$

b. (7 points) $g(x) = \ln(x^3 + 6)$

Solution:

$$g'(x) = \frac{3x^2}{x^3 + 6}$$
$$g''(x) = \frac{(x^3 + 6)6x - 3x^2(3x^2)}{(x^3 + 6)^2} = \frac{36x - 3x^4}{(x^3 + 6)^2}$$

c. (7 points) $p(x) = \arctan(3x)$

Solution:

$$p'(x) = \frac{3}{1+9x^2} = 3(1+9x^2)^{-1}$$
$$p''(x) = 3(-1)(1+9x^2)^{-2}(18x) = \frac{-54x}{(1+9x^2)^2}$$

d. (4 points) $q(x) = x^{(x^2)}$ HINT: In the base, let $x = e^{(\ln x)}$. ON THIS ONE YOU ONLY NEED THE FIRST DERIVATIVE.

Solution: We rewrite the function as $q(x) = x^{(x^2)} = (e^{(\ln x)})^{(x^2)} = e^{x^2 \ln x}$ We calculate the derivative using the Chain and Product rules:

$$q'(x) = e^{x^2 \ln x} \left[2x \ln x + x^2 \frac{1}{x} \right] = (2x \ln x + x) x^{(x^2)}$$