MATH 171
Section 502/504

Exam 2B
Fall 2022
Solutions P. Yasskin
Multiple Choice and Short Answer:
(5 points each. Show your work in case there is part credit.)

1. Use the linear approximation to approximate $\sqrt{3.8}$.
a. 1.949
b. 1.95 Correct
c. 1.951
d. 1.975
e. 1.98
f. 2.02
g. 2.025
h. 2.049
i. 2.05
j. 2.051

Solution: Let $f(x)=\sqrt{x}$. Since we know $f(4)=\sqrt{4}=2$, we approximate near $x=4$.
Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}$.
$f_{\tan }(x)=f(4)+f^{\prime}(4)(x-4)=2+\frac{1}{4}(x-4) \quad \sqrt{3.8} \approx f_{\tan }(3.8)=2+\frac{1}{4}(3.8-4)=2-\frac{.2}{4}=1.95$
A calculator says: $\sqrt{3.8}=1.9494$
2. Notice that the point $(x, y)=(2,1)$ lies on the curve $3 x^{3} y^{4}+4 x^{2} y^{3}=40$.

What is the slope of the curve, $\frac{d y}{d x}$, at $(2,1) ?$
Solution: We implicitly differentiate the equation regarding $y$ as a function of $x$. We use the Product and Chain rule:

$$
9 x^{2} y^{4}+12 x^{3} y^{3} \frac{d y}{d x}+8 x y^{3}+12 x^{2} y^{2} \frac{d y}{d x}=0
$$

We plug in $(x, y)=(2,1)$ and solve for the slope:

$$
36+96 \frac{d y}{d x}+16+48 \frac{d y}{d x}=0 \quad 144 \frac{d y}{d x}=-52 \quad \frac{d y}{d x}=-\frac{52}{144}=-\frac{13}{36}
$$

3. For the function $f=x^{3}-3 x$, the Mean Value Theorem says:

There is a number $c$ in $[1,3]$ where $f^{\prime}(c)=$
Solution: Notice $f(3)=27-9=18$ and $f(1)=1-3=-2$.
So the slope between the endpoints is $m=\frac{f(3)-f(1)}{3-1}=\frac{18-(-2)}{2}=10$.
The MVT says there is a number $c$ in $[1,3]$ where $f^{\prime}(c)=10$.
4. If $g(x)=\arcsin (x)$, then $g^{\prime}\left(\frac{3}{5}\right)=$
a. $\frac{3}{4}$
g. $\frac{9}{16}$
b. $\frac{4}{3}$
h. $\frac{16}{9}$
c. $\frac{3}{5}$
i. $\frac{9}{25}$
d. $\frac{5}{3}$
j. $\frac{25}{9}$
e. $\frac{4}{5}$
k. $\frac{16}{25}$
f. $\frac{5}{4}$
Correct
I. $\frac{25}{16}$

Solution: $g^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}} \quad g^{\prime}\left(\frac{3}{5}\right)=\frac{1}{\sqrt{1-\left(\frac{3}{5}\right)^{2}}}=\frac{1}{\sqrt{1-\frac{9}{25}}}=\frac{1}{\sqrt{\frac{16}{25}}}=\frac{5}{4}$
5. Suppose $f(x)=x^{5}$ and $g(x)=f^{-1}(x)$ is the inverse of $f(x)$. What is $g(32)$ ?

Solution: We solve $x^{5}=32$ to get $x=2$. Since $f(2)=32$, we have $g(32)=2$.
6. Suppose $f(x)=4 x^{3}+\frac{1}{x^{3}}$ and $g(x)=f^{-1}(x)$ is the inverse of $f(x)$. Also notice $f(1)=5$.

The inverse function theorem allows us to easily compute either $g^{\prime}(1)$ or $g^{\prime}(5)$.
Which one and what is its value?
Solution: If $f(a)=b$ and $g(b)=a$, the inverse function theorem says $g^{\prime}(b)=\frac{1}{f^{\prime}(a)}=\frac{1}{f^{\prime}(g(b))}$. We know $f(1)=5$. So $g(5)=1$ and we can compute $g^{\prime}(5)=\frac{1}{f^{\prime}(1)}$. Since $f^{\prime}(x)=12 x^{2}-\frac{3}{x^{4}}$, we know $f^{\prime}(1)=12-3=9$ and $g^{\prime}(5)=\frac{1}{9}$.
7. The point $x=1$ is a critical point of the function $f(x)=x^{4}-4 x^{3}+6 x^{2}-4 x$. Then the Second Derivative Test says $x=1$ is a
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. The Second Derivative Test FAILS. Correct

Solution: $\quad f^{\prime}(x)=4 x^{3}-12 x^{2}+12 x-4 \quad$ Note: $f^{\prime}(1)=4-12+12-4=0$
$f^{\prime \prime}(x)=12 x^{2}-24 x+12 \quad f^{\prime \prime}(1)=12-24+12=0$
So the Second Derivative Test FAILS.
8. The point $x=2$ is a critical point of the function $f(x)=x^{4}-4 x^{3}+4 x^{2}$. Then the Second Derivative Test says $x=2$ is a
a. Local Minimum Correct
b. Local Maximum
c. Inflection Point
d. The Second Derivative Test FAILS.

Solution: $f^{\prime}(x)=4 x^{3}-12 x^{2}+8 x \quad$ Note: $f^{\prime}(2)=32-48+16=0$ $f^{\prime \prime}(x)=12 x^{2}-24 x+8 \quad f^{\prime \prime}(2)=48-48+8=8>0 \quad$ Concave up. So the Second Derivative Test says $x=2$ is a local minimum.
9. If $p(t)=\ln \left(t^{5}\right)$, what is $p^{\prime}(10)$ ?

Solution: Rewrite $p(t)=5 \ln (t)$. So $p^{\prime}(t)=5 \frac{1}{t}$ and $p^{\prime}(10)=5 \frac{1}{10}=\frac{1}{2}$
10. If $q(s)=\left(2+s^{1 / 3}\right)^{3 / 2}$, what is $q^{\prime}(8)$ ? (Simplify to a rational number.)

Solution:
$q^{\prime}(s)=\frac{3}{2}\left(2+s^{1 / 3}\right)^{1 / 2} \frac{1}{3} s^{-2 / 3} \quad q^{\prime}(8)=\frac{3}{2}\left(2+8^{1 / 3}\right)^{1 / 2} \frac{1}{3} 8^{-2 / 3}=\frac{3}{2}(2+2)^{1 / 2} \frac{1}{3} \frac{1}{4}=\frac{1}{8} 2=\frac{1}{4}$
11. (10 points) A conical cup is filled with water to a height $h=27 \mathrm{~cm}$ and radius $r=9 \mathrm{~cm}$, but it is leaking. If 3 cubic cm leaks out, estimate the change in the height of the water.
(Note: The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.)
Solution: Since $\frac{h}{r}=\frac{27}{9}=3$, we can write $r=\frac{h}{3}$. Plugging that into the volume of the cone we get $V=\frac{1}{3} \pi\left(\frac{h}{3}\right)^{2} h=\frac{1}{27} \pi h^{3}$. To get the change in the height, we first approximate the change in the volume using differentials:

$$
\Delta V \approx d V=\frac{d V}{d h} d h=\frac{1}{9} \pi h^{2} \Delta h
$$

We now solve for $\Delta h$ and plug in numbers:

$$
\Delta h=\frac{9 \Delta V}{\pi h^{2}}=\frac{9(3)}{\pi(27)^{2}}=\frac{1}{27 \pi}
$$

12. (10 points) A rod is heating up and expanding. The length $L$ and the temperature $T$ are related by $\frac{L-L_{0}}{T-T_{0}}=\frac{L_{0}}{100}$ where $L_{0}=10 \mathrm{~m}$ is the original length and $T_{0}=30^{\circ} \mathrm{C}$ is the original temperature. When $L=12 \mathrm{~m}$ and $T=50^{\circ} \mathrm{C}$, what is $\frac{d L}{d T}$ ?

Solution: We apply $\frac{d}{d T}$ to both sides using the Quotient rule and solve for $\frac{d L}{d T}$ :

$$
\begin{array}{rlr}
\frac{\left(T-T_{0}\right) \frac{d L}{d T}-\left(L-L_{0}\right) 1}{\left(T-T_{0}\right)^{2}} & =0 & \left(T-T_{0}\right) \frac{d L}{d T}-\left(L-L_{0}\right)=0 \\
\frac{d L}{d T} & =\frac{L-L_{0}}{T-T_{0}} &
\end{array}
$$

Finally we evaluate at $(L, T)=(12,50)$ with $\left(L_{0}, T_{0}\right)=(10,30)$ :

$$
\left.\frac{d L}{d T}\right|_{(12,50)}=\frac{12-10}{50-30}=\frac{2}{20}=\frac{1}{10}
$$

13. (10 points) Find all horizontal and vertical tangents of the parametric curve $\vec{r}(t)=\left(\frac{1}{4} t^{4}-\frac{4}{3} t^{3}+2 t^{2}, \quad \frac{1}{3} t^{3}-\frac{3}{2} t^{2}+2 t\right)$.

Solution: $x(t)=\frac{1}{4} t^{4}-\frac{4}{3} t^{3}+2 t^{2}$

$$
y(t)=\frac{1}{3} t^{3}-\frac{3}{2} t^{2}+2 t
$$

$y^{\prime}(t)=t^{2}-3 t+2=(t-2)(t-1) \quad$ Potential horizontal tangents are at $t=1,2$
$x^{\prime}(t)=t^{3}-4 t^{2}+4 t=t\left(t^{2}-4 t+4\right)=t(t-2)^{2} \quad$ Potential vertical tangents are at $t=0,2$
But, $t=2$ can't be both. We look at the slope:
$m=\frac{(t-1)(t-2)}{t(t-2)^{2}}=\frac{(t-1)}{t(t-2)}$
So horizontal tangents is at $t=1$.
Vertical tangents are is at $t=0,2$.
14. (25 points) Find the first and second derivatives of each of the following functions:
(You do not need to simplify, but you may want to simplify the first derivative if it makes it easier to compute the second derivative.)
a. (7 points) $f(x)=\sin \left(x^{4}\right)$

## Solution:

$f^{\prime}(x)=\cos \left(x^{4}\right) 4 x^{3}$
$f^{\prime \prime}(x)=-\sin \left(x^{4}\right) 4 x^{3} 4 x^{3}+\cos \left(x^{4}\right) 12 x^{2}$
b. (7 points) $g(x)=\ln \left(x^{3}+6\right)$

## Solution:

$g^{\prime}(x)=\frac{3 x^{2}}{x^{3}+6}$
$g^{\prime \prime}(x)=\frac{\left(x^{3}+6\right) 6 x-3 x^{2}\left(3 x^{2}\right)}{\left(x^{3}+6\right)^{2}}=\frac{36 x-3 x^{4}}{\left(x^{3}+6\right)^{2}}$
c. (7 points) $p(x)=\arctan (3 x)$

## Solution:

$$
\begin{aligned}
& p^{\prime}(x)=\frac{3}{1+9 x^{2}}=3\left(1+9 x^{2}\right)^{-1} \\
& p^{\prime \prime}(x)=3(-1)\left(1+9 x^{2}\right)^{-2}(18 x)=\frac{-54 x}{\left(1+9 x^{2}\right)^{2}}
\end{aligned}
$$

d. (4 points) $q(x)=x^{\left(x^{2}\right)}$

HINT: In the base, let $x=e^{(\ln x)}$.
ON THIS ONE YOU ONLY NEED THE FIRST DERIVATIVE.
Solution: We rewrite the function as $q(x)=x^{\left(x^{2}\right)}=\left(e^{(\ln x)}\right)^{\left(x^{2}\right)}=e^{x^{2} \ln x}$ We calculate the derivative using the Chain and Product rules:
$q^{\prime}(x)=e^{x^{2} \ln x}\left[2 x \ln x+x^{2} \frac{1}{x}\right]=(2 x \ln x+x) x^{\left(x^{2}\right)}$

