Name	Section					
			1-4	/40	7	/20
MATH 171	Exam 3A	Fall 2022	5	/10	8	/10
Section 502/504		P. Yasskin				
Short Answer: Points indicated.			6	/10	9	/15
Show your work in case there is part credit.					Total	/105
 (20 points) Consider At the right is the grader 	er a function, $y = f(x)$ aph of its derivative,	v = f'(x).			y $\begin{bmatrix} 10\\5\\\end{bmatrix}$	~

a. (5 points) Find the interval(s) where f(x) is decreasing.

Intervals:_____

Give answers to the nearest integer.

b. (5 points) Find the location(s) of all local minima of f(x).

Minima at: x =

c. (5 points) Find the interval(s) where f(x) is concave up. Intervals:

d. (5 points) Which of these is the graph of y = f(x)?

Circle your answer.

2. (9 points) Find the general antiderivative of $p(x) = 6x^2 + \sec^2 x + xe^{x^2}$.

P(x) =______

3. (5 points) Find the area under the curve $y = \frac{2x}{1+x^2}$ above the interval [1,3].

4. (6 points) Use a right Riemann sum with 3 equal width intervals to estimate $\int_{3}^{9} \frac{1}{x-1} dx$.

$$\int_{3}^{9} \frac{1}{x-1} dx \approx \underline{\qquad}$$

A =_____

5. (10 points) The volume of a square pyramid is $V = \frac{1}{3}s^2h$ where *s* is the length of the side of the square base and *h* is the height. Currently, s = 40 cm and h = 30 cm. If the volume is held fixed while the height decreases at $\frac{dh}{dt} = -3 \frac{\text{cm}}{\text{sec}}$, how fast is the side, *s*, changing? Is it increasing or decreasing?

$$\frac{ds}{dt} =$$
 ______ increasing decreasing

6. (10 points) If
$$g(x) = \int_{\sin x}^{\cos x} \frac{1}{1+t^4} dt$$
, find $g'(x)$ and $g'(0)$.

g'(x) = _____

g'(0) =_____

- 7. (20 points) For each limit, identify the indeterminate form and then compute the limit:
 - a. (10 points) $\lim_{x \to \pi} \frac{x \cos x \sin x + \pi}{(x \pi)^2}$

b. (10 points) $\lim_{x \to 0^+} (1 - 5x)^{3/x}$

8. (10 points) Find the smallest value of f = 8x + y on the curve $x^2y = 4$ in the first quadrant. How do you know this is the minimum? **9**. (15 points) Evaluate each integral.

a. (5 points)
$$\int \frac{(\ln x)^3}{x} dx$$

b. (5 points)
$$\int_0^1 x \sin(\pi x^2) dx$$

c. (5 points)
$$\int x^3 (1+x^2)^{499} dx$$