Name \qquad Section \qquad
MATH 171
Exam 3A
Fall 2022
Section 502/504
P. Yasskin

Short Answer: Points indicated.
Show your work in case there is part credit.

$1-4$	$/ 40$	7	$/ 20$
5	$/ 10$	8	$/ 10$
6	$/ 10$	9	$/ 15$
		Total	$/ 105$

1. (20 points) Consider a function, $y=f(x)$. At the right is the graph of its derivative, $y=f^{\prime}(x)$. Give answers to the nearest integer.

a. (5 points) Find the interval(s) where $f(x)$ is decreasing.

Intervals: \qquad
b. (5 points) Find the location(s) of all local minima of $f(x)$.

Minima at: $\quad x=$ \qquad
c. (5 points) Find the interval(s) where $f(x)$ is concave up.

Intervals: \qquad
d. (5 points) Which of these is the graph of $y=f(x)$?

Circle your answer.

A

B

C

D
2. (9 points) Find the general antiderivative of $p(x)=6 x^{2}+\sec ^{2} x+x e^{x^{2}}$.

$$
P(x)=
$$

\qquad
3. (5 points) Find the area under the curve $y=\frac{2 x}{1+x^{2}}$ above the interval $[1,3]$.

$$
A=
$$

4. (6 points) Use a right Riemann sum with 3 equal width intervals to estimate $\int_{3}^{9} \frac{1}{x-1} d x$.

$$
\int_{3}^{9} \frac{1}{x-1} d x \approx
$$

\qquad
5. (10 points) The volume of a square pyramid is $V=\frac{1}{3} s^{2} h$ where s is the length of the side of the square base and h is the height. Currently, $s=40 \mathrm{~cm}$ and $h=30 \mathrm{~cm}$. If the volume is held fixed while the height decreases at $\frac{d h}{d t}=-3 \frac{\mathrm{~cm}}{\mathrm{sec}}$, how fast is the side, s, changing? Is it increasing or decreasing?

6. (10 points) If $g(x)=\int_{\sin x}^{\cos x} \frac{1}{1+t^{4}} d t$, find $g^{\prime}(x)$ and $g^{\prime}(0)$.

$$
g^{\prime}(x)=
$$

\qquad

$$
g^{\prime}(0)=
$$

\qquad
7. (20 points) For each limit, identify the indeterminate form and then compute the limit:
a. (10 points) $\lim _{x \rightarrow \pi} \frac{x \cos x-\sin x+\pi}{(x-\pi)^{2}}$
b. $(10$ points $) \lim _{x \rightarrow 0^{+}}(1-5 x)^{3 / x}$
8. (10 points) Find the smallest value of $f=8 x+y$ on the curve $x^{2} y=4$ in the first quadrant. How do you know this is the minimum?
9. (15 points) Evaluate each integral.
a. (5 points) $\int \frac{(\ln x)^{3}}{x} d x$
b. (5 points) $\int_{0}^{1} x \sin \left(\pi x^{2}\right) d x$
c. $(5$ points $) \int x^{3}\left(1+x^{2}\right)^{499} d x$

