Name_____Section____

 MATH 171
 Exam 3A
 Fall 2022

 Section 502/504
 Solutions
 P. Yasskin

 Short Answer: Points indicated.

1-4	/40	7	/20
5	/10	8	/10
6	/10	9	/15
		Total	/105

Show your work in case there is part credit.

1. (20 points) Consider a function, y = f(x). At the right is the graph of its derivative, y = f'(x). Give answers to the nearest integer.

a. (5 points) Find the interval(s) where f(x) is decreasing.

Solution: f(x) is decreasing where f'(x) is negative which is on [-1,1] and [3,4].

b. (5 points) Find the location(s) of all local minima of f(x).

Solution: f(x) has a local minimum where f'(x) changes from negative to positive, which is at x = 1.

c. (5 points) Find the interval(s) where f(x) is concave up.

Solution: f(x) is concave up when f''(x) is positive or f'(x) is increasing which is on [0,2].

d. (5 points) Which of these is the graph of y = f(x)?

Solution: The derivative is positive, negative, positive, negative. So the function is increasing, decreasing, increasing, decreasing, which is plot C.

2. (9 points) Find the general antiderivative of $p(x) = 6x^2 + \sec^2 x + xe^{x^2}$.

Solution: Since $\frac{d}{dx}x^3 = 3x^2$ $\frac{d}{dx}\tan x = \sec^2 x$ $\frac{d}{dx}e^{x^2} = 2xe^{x^2}$, the general antiderivative of p(x) is: $P(x) = 2x^3 + \tan x + \frac{1}{2}e^{x^2} + C$

3. (5 points) Find the area under the curve $y = \frac{2x}{1+x^2}$ above the interval [1,3].

Solution:
$$A = \int_{1}^{3} \frac{2x}{1+x^2} dx = \left[\ln(1+x^2) \right]_{1}^{3} = \ln 10 - \ln 2 = \ln 5$$

4. (6 points) Use a right Riemann sum with 3 equal width intervals to estimate $\int_{2}^{9} \frac{1}{r-1} dx$.

Solution: The width of each interval is $\Delta x = \frac{9-3}{3} = 2$. The partition points are $x_i = 3, 5, 7, 9$. The function values at right endpoints are $f(x_i) = \frac{1}{4}, \frac{1}{6}, \frac{1}{8}$. The right Riemann sum approximation is $\int_{3}^{9} \frac{1}{x-1} dx \approx \sum_{i=1}^{3} f(x_i) \Delta x = \left(\frac{1}{4} + \frac{1}{6} + \frac{1}{8}\right) 2 = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{6+4+3}{12} = \frac{13}{12}$ 5. (10 points) The volume of a square pyramid is $V = \frac{1}{3}s^2h$ where *s* is the length of the side of the square base and *h* is the height. Currently, s = 40 cm and h = 30 cm. If the volume is held fixed while the height decreases at $\frac{dh}{dt} = -3 \frac{\text{cm}}{\text{sec}}$, how fast is the side, *s*, changing? Is it increasing or decreasing?

Solution: We differentiate the volume formula using the product rule:

$$\frac{dV}{dt} = \frac{1}{3} 2s \frac{ds}{dt} h + \frac{1}{3} s^2 \frac{dh}{dt}$$
We plug in $s = 40$, $h = 30$, $\frac{dV}{dt} = 0$ and $\frac{dh}{dt} = -3$, and solve for $\frac{ds}{dt} = \frac{1}{3} 2(40) \frac{ds}{dt} (30) + \frac{1}{3} (40)^2 (-3)$
 $1 = \frac{1}{3} 2(40) \frac{ds}{dt} (30) + \frac{1}{3} (40)^2 (-3)$
 $2 \frac{ds}{dt} (30) = (40)(3)$
 $\frac{ds}{dt} = \frac{120}{60} = 2$ increasing

6. (10 points) If $g(x) = \int_{\sin x}^{\cos x} \frac{1}{1+t^4} dt$, find g'(x) and g'(0).

Solution: Let G(t) be an antiderivative of $\frac{1}{1+t^4}$. So $G'(t) = \frac{1}{1+t^4}$. Then

$$g(x) = \left[G(t)\right]_{\sin x}^{\cos x} = G(\cos x) - G(\sin x)$$

By the chain rule:

$$g'(x) = \frac{d}{dx} \Big[G(\cos x) - G(\sin x) \Big]$$
$$= -G'(\cos x) \sin x - G'(\sin x) \cos x$$
$$= -\frac{1}{1 + \cos^4 x} \sin x - \frac{1}{1 + \sin^4 x} \cos x$$

Finally

$$g'(0) = -\frac{1}{1 + \cos^4 0} \sin 0 - \frac{1}{1 + \sin^4 0} \cos 0$$
$$= 0 - \frac{1}{1 + 0} = -1$$

- 7. (20 points) For each limit, identify the indeterminate form and then compute the limit:
 - **a**. (10 points) $\lim_{x \to \pi} \frac{x \cos x \sin x + \pi}{(x \pi)^2}$

Solution: The limit of the numerator is $\pi \cos \pi - \sin \pi + \pi = -\pi - 0 + \pi = 0$ and of the denominator is 0. So the limit has the indeterminate form $\frac{0}{0}$.

$$\lim_{x \to \pi} \frac{x \cos x - \sin x + \pi}{(x - \pi)^2} \stackrel{l'H}{=} \lim_{x \to \pi} \frac{\cos x - x \sin x - \cos x}{2(x - \pi)} = \lim_{x \to \pi} \frac{-x \sin x}{2(x - \pi)} \stackrel{l'H}{=} \lim_{x \to \pi} \frac{-\sin x - x \cos x}{2} = \frac{\pi}{2}$$

b. (10 points) $\lim_{x\to 0^+} (1-5x)^{3/x}$

Solution: The limit of the base is 1 and of the exponent is ∞ . So the limit has the indeterminate form 1^{∞} . We do the limit by inserting e^{\ln} and using the identity $\ln a^b = b \ln a$.

$$\lim_{x \to 0^+} (1 - 5x)^{3/x} = \lim_{x \to 0^+} e^{\ln(1 - 5x)^{3/x}} = \lim_{x \to 0^+} e^{\frac{3}{x}\ln(1 - 5x)} \stackrel{l'H}{=} \lim_{x \to 0^+} e^{\frac{3}{1 - 5x}(-5)} = e^{-15}$$

8. (10 points) Find the smallest value of f = 8x + y on the curve $x^2y = 4$ in the first quadrant. How do you know this is the minimum?

Solution: The curve is $y = \frac{4}{x^2}$. So we need to minimize $f = 8x + \frac{4}{x^2}$. We set the derivative equal to 0 and solve for x: $f' = 8 - \frac{8}{x^3} = 0$ $8 = \frac{8}{x^3}$ $x^3 = 1$ x = 1 y = 4 f = 8(1) + (4) = 12We check the second derivative: $f'' = \frac{24}{x^4}$ At the critical point f''(1) = 24 > 0. This is concave up, so minimum.

- 9. (15 points) Evaluate each integral.
 - **a**. (5 points) $\int \frac{(\ln x)^3}{x} dx$

Solution: Let
$$u = \ln x$$
. Then $du = \frac{1}{x} dx$.
 $\int \frac{(\ln x)^3}{x} dx = \int u^3 du = \frac{1}{4}u^4 + C = \frac{1}{4}(\ln x)^4 + C$

b. (5 points) $\int_{0}^{1} x \sin(\pi x^2) dx$

Solution: Let $u = \pi x^2$. Then $du = 2\pi x dx$ and $x dx = \frac{1}{2\pi} du$. If x = 0, then u = 0. If x = 1, then $u = \pi$. $\int_0^1 x \sin(\pi x^2) dx = \frac{1}{2\pi} \int_0^\pi \sin(u) du = \frac{-1}{2\pi} \cos u \Big|_0^\pi = \frac{-1}{2\pi} (\cos \pi - \cos 0) = \frac{-1}{2\pi} (-2) = \frac{1}{\pi} \text{ OR}$ $\int_0^1 x \sin(\pi x^2) dx = \frac{1}{2\pi} \int_{x=0}^1 \sin(u) du = \frac{-1}{2\pi} \cos u \Big|_{x=0}^1 = \frac{-1}{2\pi} \cos(\pi x^2) \Big|_0^1 = \frac{-1}{2\pi} (\cos \pi - \cos 0) = \frac{1}{\pi}$

c. (5 points) $\int x^3 (1+x^2)^{499} dx$

Solution: Let
$$u = 1 + x^2$$
. Then $du = 2x \, dx$ and $\frac{1}{2} \, du = x \, dx$ and $x^2 = u - 1$.

$$\int x^3 (1 + x^2)^{499} \, dx = \frac{1}{2} \int (u - 1) u^{499} \, du = \frac{1}{2} \int u^{500} - u^{499} \, du = \frac{1}{2} \left(\frac{u^{501}}{501} - \frac{u^{500}}{500} \right) + C$$

$$= \frac{1}{2} \left(\frac{1}{501} (1 + x^2)^{501} - \frac{1}{500} (1 + x^2)^{500} \right) + C$$