Name \qquad Section \qquad
MATH 171
Section 502/504
Exam 3A Fall 2022

Solutions P. Yasskin
Short Answer: Points indicated.
Show your work in case there is part credit.

$1-4$	$/ 40$	7	$/ 20$
5	$/ 10$	8	$/ 10$
6	$/ 10$	9	$/ 15$
		Total	$/ 105$

1. (20 points) Consider a function, $y=f(x)$.

At the right is the graph of its derivative, $y=f^{\prime}(x)$.
Give answers to the nearest integer.

a. (5 points) Find the interval(s) where $f(x)$ is decreasing.

Solution: $f(x)$ is decreasing where $f^{\prime}(x)$ is negative which is on $[-1,1]$ and $[3,4]$.
b. (5 points) Find the location(s) of all local minima of $f(x)$.

Solution: $f(x)$ has a local minimum where $f^{\prime}(x)$ changes from negative to positive, which is at $x=1$.
c. (5 points) Find the interval(s) where $f(x)$ is concave up.

Solution: $f(x)$ is concave up when $f^{\prime \prime}(x)$ is positive or $f^{\prime}(x)$ is increasing which is on $[0,2]$.
d. (5 points) Which of these is the graph of $y=f(x)$?

A

B

C

D

Solution: The derivative is positive, negative, positive, negative.
So the function is increasing, decreasing, increasing, decreasing, which is plot C .
2. (9 points) Find the general antiderivative of $p(x)=6 x^{2}+\sec ^{2} x+x e^{x^{2}}$.

Solution: Since $\frac{d}{d x} x^{3}=3 x^{2} \quad \frac{d}{d x} \tan x=\sec ^{2} x \quad \frac{d}{d x} e^{x^{2}}=2 x e^{x^{2}}$, the general antiderivative of $p(x)$ is:

$$
P(x)=2 x^{3}+\tan x+\frac{1}{2} e^{x^{2}}+C
$$

3. (5 points) Find the area under the curve $y=\frac{2 x}{1+x^{2}}$ above the interval $[1,3]$.

Solution: $A=\int_{1}^{3} \frac{2 x}{1+x^{2}} d x=\left[\ln \left(1+x^{2}\right)\right]_{1}^{3}=\ln 10-\ln 2=\ln 5$
4. (6 points) Use a right Riemann sum with 3 equal width intervals to estimate $\int_{3}^{9} \frac{1}{x-1} d x$.

Solution: The width of each interval is $\Delta x=\frac{9-3}{3}=2$.
The partition points are $x_{i}=3,5,7,9$.
The function values at right endpoints are $f\left(x_{i}\right)=\frac{1}{4}, \frac{1}{6}, \frac{1}{8}$.
The right Riemann sum approximation is
$\int_{3}^{9} \frac{1}{x-1} d x \approx \sum_{i=1}^{3} f\left(x_{i}\right) \Delta x=\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right) 2=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{6+4+3}{12}=\frac{13}{12}$
5. (10 points) The volume of a square pyramid is $V=\frac{1}{3} s^{2} h$ where s is the length of the side of the square base and h is the height. Currently, $s=40 \mathrm{~cm}$ and $h=30 \mathrm{~cm}$. If the volume is held fixed while the height decreases at $\frac{d h}{d t}=-3 \frac{\mathrm{~cm}}{\mathrm{sec}}$, how fast is the side, s, changing? Is it increasing or decreasing?

Solution: We differentiate the volume formula using the product rule:
$\frac{d V}{d t}=\frac{1}{3} 2 s \frac{d s}{d t} h+\frac{1}{3} s^{2} \frac{d h}{d t}$
We plug in $s=40, \quad h=30, \quad \frac{d V}{d t}=0 \quad$ and $\quad \frac{d h}{d t}=-3$, and solve for $\frac{d s}{d t}$:
$0=\frac{1}{3} 2(40) \frac{d s}{d t}(30)+\frac{1}{3}(40)^{2}(-3) \quad \frac{1}{3} 2(40) \frac{d s}{d t}(30)=\frac{1}{3}(40)^{2}(3)$
$2 \frac{d s}{d t}(30)=(40)(3) \quad \frac{d s}{d t}=\frac{120}{60}=2 \quad$ increasing
6. (10 points) If $g(x)=\int_{\sin x}^{\cos x} \frac{1}{1+t^{4}} d t$, find $g^{\prime}(x)$ and $g^{\prime}(0)$.

Solution: Let $G(t)$ be an antiderivative of $\frac{1}{1+t^{4}}$. So $G^{\prime}(t)=\frac{1}{1+t^{4}}$.
Then

$$
g(x)=[G(t)]_{\sin x}^{\cos x}=G(\cos x)-G(\sin x)
$$

By the chain rule:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}[G(\cos x)-G(\sin x)] \\
& =-G^{\prime}(\cos x) \sin x-G^{\prime}(\sin x) \cos x \\
& =-\frac{1}{1+\cos ^{4} x} \sin x-\frac{1}{1+\sin ^{4} x} \cos x
\end{aligned}
$$

Finally

$$
\begin{aligned}
g^{\prime}(0) & =-\frac{1}{1+\cos ^{4} 0} \sin 0-\frac{1}{1+\sin ^{4} 0} \cos 0 \\
& =0-\frac{1}{1+0} 1=-1
\end{aligned}
$$

7. (20 points) For each limit, identify the indeterminate form and then compute the limit:
a. (10 points) $\lim _{x \rightarrow \pi} \frac{x \cos x-\sin x+\pi}{(x-\pi)^{2}}$

Solution: The limit of the numerator is $\pi \cos \pi-\sin \pi+\pi=-\pi-0+\pi=0$ and of the denominator is 0 . So the limit has the indeterminate form $\frac{0}{0}$.
$\lim _{x \rightarrow \pi} \frac{x \cos x-\sin x+\pi}{(x-\pi)^{2}} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow \pi} \frac{\cos x-x \sin x-\cos x}{2(x-\pi)}=\lim _{x \rightarrow \pi} \frac{-x \sin x}{2(x-\pi)} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow \pi} \frac{-\sin x-x \cos x}{2}=\frac{\pi}{2}$
b. $(10$ points $) \lim _{x \rightarrow 0^{+}}(1-5 x)^{3 / x}$

Solution: The limit of the base is 1 and of the exponent is ∞. So the limit has the indeterminate form 1^{∞}. We do the limit by inserting $e^{\ln }$ and using the identity $\ln a^{b}=b \ln a$. $\lim _{x \rightarrow 0^{+}}(1-5 x)^{3 / x}=\lim _{x \rightarrow 0^{+}} e^{\ln (1-5 x)^{3 / x}}=\lim _{x \rightarrow 0^{+}} e^{\frac{3}{x} \ln (1-5 x)} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow 0^{+}} e^{\frac{3}{1-5 x}(-5)} 1 \quad=e^{-15}$
8. (10 points) Find the smallest value of $f=8 x+y$ on the curve $x^{2} y=4$ in the first quadrant. How do you know this is the minimum?

Solution: The curve is $y=\frac{4}{x^{2}}$. So we need to minimize $f=8 x+\frac{4}{x^{2}}$.
We set the derivative equal to 0 and solve for x :
$f^{\prime}=8-\frac{8}{x^{3}}=0 \quad 8=\frac{8}{x^{3}} \quad x^{3}=1 \quad x=1 \quad y=4 \quad f=8(1)+(4)=12$
We check the second derivative: $\quad f^{\prime \prime}=\frac{24}{x^{4}} \quad$ At the critical point $\quad f^{\prime \prime}(1)=24>0$.
This is concave up, so minimum.
9. (15 points) Evaluate each integral.
a. (5 points) $\int \frac{(\ln x)^{3}}{x} d x$

Solution: Let $u=\ln x$. Then $d u=\frac{1}{x} d x$.
$\int \frac{(\ln x)^{3}}{x} d x=\int u^{3} d u=\frac{1}{4} u^{4}+C=\frac{1}{4}(\ln x)^{4}+C$
b. (5 points) $\int_{0}^{1} x \sin \left(\pi x^{2}\right) d x$

Solution: Let $u=\pi x^{2}$. Then $d u=2 \pi x d x$ and $x d x=\frac{1}{2 \pi} d u$.
If $x=0$, then $u=0$. If $x=1$, then $u=\pi$.
$\int_{0}^{1} x \sin \left(\pi x^{2}\right) d x=\frac{1}{2 \pi} \int_{0}^{\pi} \sin (u) d u=\left.\frac{-1}{2 \pi} \cos u\right|_{0} ^{\pi}=\frac{-1}{2 \pi}(\cos \pi-\cos 0)=\frac{-1}{2 \pi}(-2)=\frac{1}{\pi} \quad$ OR
$\int_{0}^{1} x \sin \left(\pi x^{2}\right) d x=\frac{1}{2 \pi} \int_{x=0}^{1} \sin (u) d u=\left.\frac{-1}{2 \pi} \cos u\right|_{x=0} ^{1}=\left.\frac{-1}{2 \pi} \cos \left(\pi x^{2}\right)\right|_{0} ^{1}=\frac{-1}{2 \pi}(\cos \pi-\cos 0)=\frac{1}{\pi}$
c. (5 points) $\int x^{3}\left(1+x^{2}\right)^{499} d x$

Solution: Let $u=1+x^{2}$. Then $d u=2 x d x$ and $\frac{1}{2} d u=x d x$ and $x^{2}=u-1$.

$$
\begin{aligned}
& \int x^{3}\left(1+x^{2}\right)^{499} d x=\frac{1}{2} \int(u-1) u^{499} d u=\frac{1}{2} \int u^{500}-u^{499} d u=\frac{1}{2}\left(\frac{u^{501}}{501}-\frac{u^{500}}{500}\right)+C \\
& \quad=\frac{1}{2}\left(\frac{1}{501}\left(1+x^{2}\right)^{501}-\frac{1}{500}\left(1+x^{2}\right)^{500}\right)+C
\end{aligned}
$$

