Name_____Section____

MATH 171

Exam 3B

Fall 2022

Section 502/504

P. Yasskin

Short Answer: Points indicated.

Show your work in case there is part credit.

1-4	/40	7	/20
5	/10	8	/10
6	/10	9	/15
		Total	/105

1. (20 points) Consider a function, y = f(x). At the right is the graph of its derivative, y = f'(x). Give answers to the nearest integer.

a. (5 points) Find the interval(s) where f(x) is increasing.

Intervals:

b. (5 points) Find the location(s) of all local maxima of f(x).

Maxima at: x =

c. (5 points) Find the interval(s) where f(x) is concave down.

Intervals:_____

d. (5 points) Which of these is the graph of y = f(x)?

Circle your answer.

2. (9 points) Find the general antiderivative of $p(x) = 12x^3 + \sin x + \frac{x}{1+x^2}$.

P(x) =

3. (5 points) Find the area under the curve $y = \sec^2 x$ above the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$. (Evaluate all trig functions.)

A =_____

4. (6 points) Use a right Riemann sum with 3 equal width intervals to estimate $\int_{1}^{7} \frac{1}{1+x} dx$.

 $\int_{1}^{7} \frac{1}{1+x} dx \approx \underline{\hspace{1cm}}$

Work Out: (Points indicated. Part credit possible. Show all work.)

5. (10 points) A right triangle has sides a = 5 cm and b = 12 cm and hypotenuse c = 13 cm. If b is increasing at $\frac{db}{dt} = 3 \frac{\text{cm}}{\text{sec}}$ while c is increasing at $\frac{dc}{dt} = 2 \frac{\text{cm}}{\text{sec}}$, at what rate is a changing? Is it increasing or decreasing?

$$\frac{da}{dt} =$$
 increasing decreasing

6. (10 points) If $g(x) = \int_{e^{-x}}^{e^x} \frac{1}{1 + \ln t} dt$, find g'(x) and g'(0).

7. (20 points) For each limit, identify the indeterminate form and then compute the limit:

a. (10 points)
$$\lim_{x \to 3} \frac{x \ln x - x - x \ln 3 + 3}{(x - 3)^2}$$

b. (10 points)
$$\lim_{x \to 0^+} \left(1 + \frac{2x}{3}\right)^{8/x}$$

8. (10 points) Find the smallest value of f = 6x + y on the curve $x^3y = 2$ in the first quadrant. How do you know this is the minimum?

- 9. (15 points) Evaluate each integral.
 - **a**. (5 points) $\int \cos x \sin^5 x \, dx$

b. (5 points) $\int_0^1 x^2 e^{6x^3} dx$

c. (5 points) $\int x^5 \sqrt{1+x^3} \, dx$