Name \qquad Section \qquad
MATH 171
Exam 3B
Fall 2022
Section 502/504
P. Yasskin

Short Answer: Points indicated.
Show your work in case there is part credit.

$1-4$	$/ 40$	7	$/ 20$
5	$/ 10$	8	$/ 10$
6	$/ 10$	9	$/ 15$
		Total	$/ 105$

1. (20 points) Consider a function, $y=f(x)$.

At the right is the graph of its derivative, $y=f^{\prime}(x)$.
Give answers to the nearest integer.

a. (5 points) Find the interval(s) where $f(x)$ is increasing.

Intervals: \qquad
b. (5 points) Find the location(s) of all local maxima of $f(x)$.

Maxima at: $\quad x=$ \qquad
c. (5 points) Find the interval(s) where $f(x)$ is concave down.

Intervals: \qquad
d. (5 points) Which of these is the graph of $y=f(x)$?

Circle your answer.

A

B

C

D
2. (9 points) Find the general antiderivative of $p(x)=12 x^{3}+\sin x+\frac{x}{1+x^{2}}$.

$$
P(x)=
$$

\qquad
3. (5 points) Find the area under the curve $y=\sec ^{2} x$ above the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$. (Evaluate all trig functions.)

$$
A=
$$

\qquad
4. (6 points) Use a right Riemann sum with 3 equal width intervals to estimate $\int_{1}^{7} \frac{1}{1+x} d x$.

$$
\int_{1}^{7} \frac{1}{1+x} d x \approx
$$

5. (10 points) A right triangle has sides $a=5 \mathrm{~cm}$ and $b=12 \mathrm{~cm}$ and hypotenuse $c=13 \mathrm{~cm}$. If b is increasing at $\frac{d b}{d t}=3 \frac{\mathrm{~cm}}{\mathrm{sec}}$ while c is increasing at $\frac{d c}{d t}=2 \frac{\mathrm{~cm}}{\mathrm{sec}}$, at what rate is a changing? Is it increasing or decreasing?

6. (10 points) If $g(x)=\int_{e^{-x}}^{e^{x}} \frac{1}{1+\ln t} d t$, find $g^{\prime}(x)$ and $g^{\prime}(0)$.
\qquad $g^{\prime}(0)=$ \qquad
7. (20 points) For each limit, identify the indeterminate form and then compute the limit:
a. (10 points) $\lim _{x \rightarrow 3} \frac{x \ln x-x-x \ln 3+3}{(x-3)^{2}}$
b. (10 points) $\lim _{x \rightarrow 0^{+}}\left(1+\frac{2 x}{3}\right)^{8 / x}$
8. (10 points) Find the smallest value of $f=6 x+y$ on the curve $x^{3} y=2$ in the first quadrant. How do you know this is the minimum?
9. (15 points) Evaluate each integral.
a. (5 points) $\int \cos x \sin ^{5} x d x$
b. (5 points) $\int_{0}^{1} x^{2} e^{6 x^{3}} d x$
c. (5 points) $\int x^{5} \sqrt{1+x^{3}} d x$
