Name \qquad Section

MATH 171
Section 502/504
Exam 3B
Fall 2022
Solutions P. Yasskin
Short Answer: Points indicated.
Show your work in case there is part credit.

$1-4$	$/ 40$	7	$/ 20$
5	$/ 10$	8	$/ 10$
6	$/ 10$	9	$/ 15$
		Total	$/ 105$

1. (20 points) Consider a function, $y=f(x)$. At the right is the graph of its derivative, $y=f^{\prime}(x)$. Give answers to the nearest integer.

a. (5 points) Find the interval(s) where $f(x)$ is increasing.

Solution: $f(x)$ is increasing where $f^{\prime}(x)$ is positive which is on $[-2,0]$ and $[2,3]$.
b. (5 points) Find the location(s) of all local maxima of $f(x)$.

Solution: $f(x)$ has a local maximum where $f^{\prime}(x)$ changes from positive to negative, which is at $x=0$.
c. (5 points) Find the interval(s) where $f(x)$ is concave down.

Solution: $f(x)$ is concave down when $f^{\prime \prime}(x)$ is negative or $f^{\prime}(x)$ is decreasing which is on $[-1,1]$.
d. (5 points) Which of these is the graph of $y=f(x)$?

A

B

C

D

Solution: The derivative is negative, positive, negative, positive.
So the function is decreasing, increasing, decreasing, increasing, which is plot B.
2. (9 points) Find the general antiderivative of $p(x)=12 x^{3}+\sin x+\frac{x}{1+x^{2}}$.

Solution: Since $\frac{d}{d x} x^{4}=4 x^{3} \quad \frac{d}{d x} \cos x=-\sin x \quad \frac{d}{d x} \ln \left(1+x^{2}\right)=\frac{2 x}{1+x^{2}}$, the general antiderivative of $p(x)$ is:

$$
P(x)=3 x^{4}-\cos x+\frac{1}{2} \ln \left(1+x^{2}\right)+C
$$

3. (5 points) Find the area under the curve $y=\sec ^{2} x$ above the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$. (Evaluate all trig functions.)

Solution: $\quad A=\int_{-\pi / 4}^{\pi / 4} \sec ^{2} x d x=[\tan x]_{-\pi / 4}^{\pi / 4}=\tan \left(\frac{\pi}{4}\right)-\tan \left(-\frac{\pi}{4}\right)=1--1=2$
4. (6 points) Use a right Riemann sum with 3 equal width intervals to estimate $\int_{1}^{7} \frac{1}{1+x} d x$.

Solution: The width of each interval is $\Delta x=\frac{7-1}{3}=2$.
The partition points are $x_{i}=1,3,5,7$.
The function values at right endpoints are $f\left(x_{i}\right)=\frac{1}{4}, \frac{1}{6}, \frac{1}{8}$.
The right Riemann sum approximation is

$$
\int_{1}^{7} \frac{1}{1+x} d x \approx \sum_{i=1}^{3} f\left(x_{i}\right) \Delta x=\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right) 2=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{6+4+3}{12}=\frac{13}{12}
$$

5. (10 points) A right triangle has sides $a=5 \mathrm{~cm}$ and $b=12 \mathrm{~cm}$ and hypotenuse $c=13 \mathrm{~cm}$. If b is increasing at $\frac{d b}{d t}=3 \frac{\mathrm{~cm}}{\mathrm{sec}}$ while c is increasing at $\frac{d c}{d t}=2 \frac{\mathrm{~cm}}{\mathrm{sec}}$, at what rate is a changing? Is it increasing or decreasing?

Solution: The sides satisfy $a^{2}+b^{2}=c^{2}$. We differentiate this, simplify, plug in numbers and solve for $\frac{d a}{d t}$.

$$
\begin{array}{lll}
2 a \frac{d a}{d t}+2 b \frac{d b}{d t}=2 c \frac{d c}{d t} & a \frac{d a}{d t}+b \frac{d b}{d t}=c \frac{d c}{d t} & 5 \frac{d a}{d t}+12(3)=13(2) \\
5 \frac{d a}{d t}=26-36=-10 & \frac{d a}{d t}=-2 \quad \text { decreasing }
\end{array}
$$

6. (10 points) If $g(x)=\int_{e^{-x}}^{e^{x}} \frac{1}{1+\ln t} d t$, find $g^{\prime}(x)$ and $g^{\prime}(0)$.

Solution: Let $G(t)$ be an antiderivative of $\frac{1}{1+\ln t}$. So $G^{\prime}(t)=\frac{1}{1+\ln t}$. Then

$$
g(x)=[G(t)]_{e^{-x}}^{e^{x}}=G\left(e^{x}\right)-G\left(e^{-x}\right)
$$

By the chain rule:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left[G\left(e^{x}\right)-G\left(e^{-x}\right)\right] \\
& =G^{\prime}\left(e^{x}\right) e^{x}+G^{\prime}\left(e^{-x}\right) e^{-x} \\
& =\frac{1}{1+\ln e^{x}} e^{x}+\frac{1}{1+\ln e^{-x}} e^{-x} \\
& =\frac{1}{1+x} e^{x}+\frac{1}{1-x} e^{-x}
\end{aligned}
$$

Finally:

$$
\begin{aligned}
g^{\prime}(0) & =\frac{1}{1+0} e^{0}+\frac{1}{1-0} e^{-0} \\
& =1+1=2
\end{aligned}
$$

7. (20 points) For each limit, identify the indeterminate form and then compute the limit:
a. (10 points) $\lim _{x \rightarrow 3} \frac{x \ln x-x-x \ln 3+3}{(x-3)^{2}}$

Solution: The limit of the numerator is $3 \ln 3-3-3 \ln 3+3=0$ and of the denominator is 0 . So the limit has the indeterminate form $\frac{0}{0}$.
$\lim _{x \rightarrow 3} \frac{x \ln x-x-x \ln 3+3}{(x-3)^{2}} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow 3} \frac{x \frac{1}{x}+\ln x-1-\ln 3}{2(x-3)}=\lim _{x \rightarrow 3} \frac{\ln x-\ln 3}{2(x-3)} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow 3} \frac{\frac{1}{x}}{2}=\frac{1}{6}$
b. (10 points) $\lim _{x \rightarrow 0^{+}}\left(1+\frac{2 x}{3}\right)^{8 / x}$

Solution: The limit of the base is 1 and of the exponent is ∞. So the limit has the indeterminate form 1^{∞}. We do the limit by inserting $e^{\ln }$ and using the identity $\ln a^{b}=b \ln a$.
$\lim _{x \rightarrow 0^{+}}\left(1+\frac{2 x}{3}\right)^{8 / x}=\lim _{x \rightarrow 0^{+}} e^{\ln \left(1+\frac{2 x}{3}\right)^{8 / x}}=\lim _{x \rightarrow 0^{+}} e^{\frac{8}{x} \ln \left(1+\frac{2 x}{3}\right)} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow 0^{+}} e^{\frac{\frac{8}{1+\frac{2 x}{3}} \frac{2}{3}}{1}}=e^{\frac{16}{3}}$
8. (10 points) Find the smallest value of $f=6 x+y$ on the curve $x^{3} y=2$ in the first quadrant. How do you know this is the minimum?

Solution: The curve is $y=\frac{2}{x^{3}}$. So we need to minimize $f=6 x+\frac{2}{x^{3}}$.
We set the derivative equal to 0 and solve for x :
$f^{\prime}=6-\frac{6}{x^{4}}=0 \quad 6=\frac{6}{x^{4}} \quad x^{4}=1 \quad x=1 \quad y=2 \quad f=6(1)+(2)=8$
We check the second derivative: $\quad f^{\prime \prime}=\frac{24}{x^{5}} \quad$ At the critical point $\quad f^{\prime \prime}(1)=24>0$.
This is concave up, so minimum.
9. (15 points) Evaluate each integral.
a. (5 points) $\int \cos x \sin ^{5} x d x$

Solution: Let $u=\sin x$. Then $d u=\cos x d x$.
$\int \cos x \sin ^{5} x d x=\int u^{5} d u=\frac{1}{6} u^{6}+C=\frac{1}{6} \sin ^{6} x+C$
b. (5 points) $\int_{0}^{1} x^{2} e^{6 x^{3}} d x$

Solution: Let $u=6 x^{3}$. Then $d u=18 x^{2} d x$ and $x^{2} d x 0=\frac{1}{18} d u$.
If $x=0$, then $u=0$. If $x=1$, then $u=6$.
$\int_{0}^{1} x^{2} e^{6 x^{3}} d x=\frac{1}{18} \int_{0}^{6} e^{u} d u=\left.\frac{1}{18} e^{u}\right|_{0} ^{6}=\frac{1}{18}\left(e^{6}-e^{0}\right)=\frac{1}{18}\left(e^{6}-1\right) \quad$ OR
$\int_{0}^{1} x^{2} e^{6 x^{3}} d x=\frac{1}{18} \int_{x=0}^{1} e^{u} d u=\left.\frac{1}{18} e^{u}\right|_{x=0} ^{1}=\left.\frac{1}{18} e^{6 x^{3}}\right|_{0} ^{1}=\frac{1}{18}\left(e^{6}-e^{0}\right)=\frac{1}{18}\left(e^{6}-1\right)$
c. (5 points) $\int x^{5} \sqrt{1+x^{3}} d x$

Solution: Let $u=1+x^{3}$. Then $d u=3 x^{2} d x$ and $\frac{1}{3} d u=x^{2} d x$ and $x^{3}=u-1$.
$\int x^{5} \sqrt{1+x^{3}} d x=\frac{1}{3} \int(u-1) \sqrt{u} d u=\frac{1}{3} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u=\frac{1}{3}\left[\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right]+C$
$=\frac{1}{3}\left[\frac{2}{5}\left(1+x^{3}\right)^{5 / 2}-\frac{2}{3}\left(1+x^{3}\right)^{3 / 2}\right]+C$

