Name \qquad

MATH 172
Sections 501/502 (circle one)

Final Spring 2018
P. Yasskin

Multiple Choice: (4 points each. No part credit.)
HINTS:
$\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C$
$\int \csc \theta d \theta=-\ln |\csc \theta+\cot \theta|+C$

1. $\int_{0}^{\pi / 2} x \cos x d x$
a. 1
b. $\frac{\pi}{2}$
c. $1-\frac{\pi}{2}$
d. $\frac{\pi}{2}-1$
e. $1+\frac{\pi}{2}$
2. $\int_{0}^{\pi / 6} \cos ^{3} x d x$
a. $\frac{\pi}{6}-\frac{\pi^{3}}{3 \cdot 6^{3}}$
b. $\frac{1}{6}$
c. $\frac{11}{24}$
d. $\frac{3}{8} \sqrt{3}$
e. $\frac{1}{64}-\frac{1}{4}$

$1-15$	$/ 60$	17	$/ 15$
16	$/ 10$	18	$/ 20$
		Total	$/ 105$

3. Which coefficient is incorrect in the partial fraction expansion

$$
\frac{4}{x^{4}+4 x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+4}
$$

a. $A=0$
b. $B=1$
c. $C=0$
d. $D=-1$
e. All coefficients are correct.
4. Find the average value of the function $f=x+\sin ^{2} x$ on the interval $[0,2 \pi]$.
a. $\pi+\frac{1}{2}$
b. $\pi-\frac{1}{2}$
c. $2 \pi^{2}+\pi$
d. $2 \pi^{2}-\pi$
e. $2 \pi^{2}$
5. Find the arclength of the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ for $1 \leq x \leq 3$.
a. 4
b. $\frac{13}{6}$
c. $\frac{13}{3}$
d. $\frac{14}{3}$
e. $\frac{7}{3}$
6. Find the center of mass of an 2 cm bar with density $\rho=x^{3}$ where x is measured from one end.
a. $\bar{x}=\frac{4}{5}$
b. $\bar{x}=\frac{8}{5}$
c. $\bar{x}=\frac{32}{5}$
d. $\bar{x}=\frac{5}{4}$
e. $\bar{x}=\frac{5}{8}$
7. Find the volume of a solid whose base is the region between
the curves $y=x^{2}$ and $y=-x^{2}$ for $0 \leq x \leq 1$ and whose cross sections perpendicular to the x-axis are semicircles.
a. $\frac{\pi}{6}$
b. $\frac{\pi}{8}$
c. $\frac{\pi}{10}$
d. $\frac{\pi}{12}$
e. $\frac{\pi}{16}$
8. The plot at the right is the graph of which polar function?
a. $r=2-6 \cos \theta$
b. $r=-6+2 \cos \theta$
c. $r=-4+2 \cos \theta$
d. $r=4-2 \cos \theta$
e. $r=2-4 \cos \theta$

9. The integral $\int_{0}^{1} \frac{1}{x^{2}+\sqrt{x}} d x$
a. converges by comparison with $\int_{0}^{1} \frac{1}{x^{2}} d x$
b. diverges by comparison with $\int_{0}^{1} \frac{1}{x^{2}} d x$
c. converges by comparison with $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
d. diverges by comparison with $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
e. diverges by the Divergence Test
10. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+\sqrt{n}}$
a. converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
b. diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
c. converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
d. diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
e. diverges by the Divergence Test
11. $\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{n-1}-\frac{n^{2}}{n+1}\right)=$
a. -1
b. 0
c. 1
d. 2
e. divergent
12. $S=\sum_{n=1}^{\infty}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)=$
a. -1
b. $-\frac{1}{2}$
c. 0
d. $\frac{1}{2}$
e. divergent
13. The series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n+2}{2 n}$
a. converges by the Integral Test.
b. diverges because the related absolute series $\sum_{n=1}^{\infty} \frac{n+2}{2 n}$ diverges.
c. converges by the Alternating Series Test.
d. diverges by the Alternating Series Test.
e. diverges by the Divergence Test.
14. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n}+3^{n}}{5^{n}}(x-4)^{n}$.
a. $R=\frac{5}{2}$
b. $R=\frac{5}{3}$
c. $R=\frac{2}{5}$
d. $R=\frac{3}{5}$
e. $R=\infty$
15. The series $\sum_{n=0}^{\infty} \frac{1}{3^{n} \sqrt{n}}(x-5)^{n}$ has radius of convergence $R=3$. Find its interval of convergence.
a. $[2,8)$
b. $(2,8]$
c. $[2,8]$
d. $(2,8)$

Work Out: (Points indicated. Part credit possible. Show all work.)
16. (10 points) Compute $\int_{5}^{6} \frac{1}{9-x^{2}} d x$. (Also substitutes for Exam 1 \#14.)
17. (15 points) The goal is to compute $\lim _{x \rightarrow 0} \frac{1+x^{2}-e^{x^{2}}}{x^{4}}$.
a. Write out the first 4 terms of the Maclaurin series for e^{u}.
b. Write out the first 4 terms of the Maclaurin series for $e^{x^{2}}$.
c. Substitute the series into $\lim _{x \rightarrow 0} \frac{1+x^{2}-e^{x^{2}}}{x^{4}}$ and compute the limit.
18. (20 points) The goal is to compute the sum of the series $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$.
a. Find the sum of the series $\sum_{n=0}^{\infty} x^{n}$. On what interval does it converge. Why?
$\sum_{n=0}^{\infty} x^{n}=\square$

b. Differentiate both sides of this equation. On what interval does it converge. Why?

$$
\sum_{n=0}^{\infty} n x^{n-1}=\square
$$

c. Multiply both sides by x. On what interval does it converge. Why?

d. Evaluate both sides at an appropriate value of x and simplify. Why does it converge for this value of x ?

Converges because...

