\qquad
MATH 172
Final
Spring 2018
Sections 501/502 (circle one) Solutions P. Yasskin
Multiple Choice: (4 points each. No part credit.)
HINTS: $\quad \int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C \quad \int \csc \theta d \theta=-\ln |\csc \theta+\cot \theta|+C$

1. $\int_{0}^{\pi / 2} x \cos x d x$
a. 1
b. $\frac{\pi}{2}$
c. $1-\frac{\pi}{2}$
d. $\frac{\pi}{2}-1$ correct choice
e. $1+\frac{\pi}{2}$

Solution: Use Parts with: $\begin{array}{ll}u=x & d v=\cos x d x \\ d u=d x & v=\sin x\end{array}$

$$
\begin{gathered}
d u=d x \quad v=\sin x \\
\int x \cos x d x=x \sin x-\int \sin x d x=x \sin x+\cos x+C \\
\int_{0}^{\pi / 2} x \cos x d x=[x \sin x+\cos x]_{0}^{\pi / 2}=\left(\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}\right)-(0 \sin 0+\cos 0)=\frac{\pi}{2}-1
\end{gathered}
$$

2. $\int_{0}^{\pi / 6} \cos ^{3} x d x$
a. $\frac{\pi}{6}-\frac{\pi^{3}}{3 \cdot 6^{3}}$
b. $\frac{1}{6}$
c. $\frac{11}{24}$ correct choice
d. $\frac{3}{8} \sqrt{3}$
e. $\frac{1}{64}-\frac{1}{4}$

Solution: $u=\sin x \quad d u=\cos x d x$

$$
\begin{aligned}
& \cos ^{2} x=1-\sin ^{2} x=1-u^{2} \\
& \int_{0}^{\pi / 6} \cos ^{3} x d x=\int_{0}^{1 / 2}\left(1-u^{2}\right) d u=\left[u-\frac{u^{3}}{3}\right]_{0}^{1 / 2} \\
& \quad=\left(\frac{1}{2}-\frac{1}{24}\right)=\frac{11}{24}
\end{aligned}
$$

$1-15$	$/ 60$	17	$/ 15$
16	$/ 10$	18	$/ 20$
		Total	$/ 105$

3. Which coefficient is incorrect in the partial fraction expansion

$$
\frac{4}{x^{4}+4 x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+4}
$$

a. $A=0$
b. $B=1$
c. $C=0$
d. $D=-1$
e. All coefficients are correct. correct choice

Solution: Clear the denominator: $\quad 4=A\left(x^{3}+4 x\right)+B\left(x^{2}+4\right)+(C x+D) x^{2}$
Constant term: $\quad 4=B(4) \quad B=1$
Coefficient of x : $\quad 0=4 A \quad A=0$
Coefficient of $x^{2}: \quad 0=B+D=1+D \quad D=-1$
Coefficient of $x^{3}: \quad 0=A+C=C \quad C=0 \quad$ All correct.
4. Find the average value of the function $f=x+\sin ^{2} x$ on the interval $[0,2 \pi]$.
a. $\pi+\frac{1}{2} \quad$ correct choice
b. $\pi-\frac{1}{2}$
c. $2 \pi^{2}+\pi$
d. $2 \pi^{2}-\pi$
e. $2 \pi^{2}$

Solution: $f_{\text {ave }}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x+\sin ^{2} x d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} x+\frac{1-\cos 2 x}{2} d x=\frac{1}{2 \pi}\left[\frac{x^{2}}{2}+\frac{1}{2}\left(x-\frac{\sin 2 x}{2}\right)\right]_{0}^{2 \pi}$

$$
=\frac{1}{2 \pi}\left[\frac{4 \pi^{2}}{2}+\frac{1}{2}(2 \pi)\right]=\pi+\frac{1}{2}
$$

5. Find the arclength of the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ for $1 \leq x \leq 3$.
a. 4
b. $\frac{13}{6}$
c. $\frac{13}{3}$
d. $\frac{14}{3}$ correct choice
e. $\frac{7}{3}$

Solution: $\frac{d y}{d x}=\frac{x^{2}}{2}-\frac{1}{2 x^{2}}$ So $1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{x^{4}}{4}-\frac{1}{2}+\frac{1}{2 x^{4}}=\frac{x^{4}}{4}+\frac{1}{2}+\frac{1}{2 x^{4}}=\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right)^{2}$ $L=\int_{1}^{3} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{1}^{3}\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right) d x=\left[\frac{x^{3}}{6}-\frac{1}{2 x}\right]_{1}^{3}=\left(\frac{9}{2}-\frac{1}{6}\right)-\left(\frac{1}{6}-\frac{1}{2}\right)=\frac{14}{3}$
6. Find the center of mass of an 2 cm bar with density $\rho=x^{3}$ where x is measured from one end.
a. $\bar{x}=\frac{4}{5}$
b. $\bar{x}=\frac{8}{5} \quad$ correct choice
c. $\bar{x}=\frac{32}{5}$
d. $\bar{x}=\frac{5}{4}$
e. $\bar{x}=\frac{5}{8}$

Solution: $\quad M=\int_{0}^{2} \rho d x=\int_{0}^{2} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{0}^{2}=4 \quad M_{1}=\int_{0}^{2} x \rho d x=\int_{0}^{2} x^{4} d x=\left[\frac{x^{5}}{5}\right]_{0}^{2}=\frac{32}{5}$ $\bar{x}=\frac{M_{1}}{M}=\frac{32}{5 \cdot 4}=\frac{8}{5}$
7. Find the volume of a solid whose base is the region between the curves $y=x^{2}$ and $y=-x^{2}$ for $0 \leq x \leq 1$ and whose cross sections perpendicular to the x-axis are semicircles.
a. $\frac{\pi}{6}$
b. $\frac{\pi}{8}$
c. $\frac{\pi}{10}$ correct choice

d. $\frac{\pi}{12}$
e. $\frac{\pi}{16}$

Solution: The diameter of each semicircle is $d=x^{2}-\left(-x^{2}\right)=2 x^{2}$. So the radius is $r=x^{2}$ and its area is $A=\frac{1}{2} \pi r^{2}=\frac{1}{2} \pi x^{4}$. So the volume is
$V=\int_{0}^{1} A d x=\int_{0}^{1} \frac{1}{2} \pi x^{4} d x=\left.\pi \frac{x^{5}}{10}\right|_{0} ^{1}=\frac{\pi}{10}$
8. The plot at the right is the graph of which polar function?
a. $r=2-6 \cos \theta$
b. $r=-6+2 \cos \theta$
c. $r=-4+2 \cos \theta$
d. $r=4-2 \cos \theta$
e. $r=2-4 \cos \theta$ correct choice

Solution: Check the value of r for $\theta=0$ using $\cos 0=1$ and for $\theta=\pi$ using $\cos \pi=-1$:
a: $r(0)=-4 \quad \mathrm{X}$,
$\mathrm{b}: r(0)=-4 \quad \mathrm{X}$,
c: $r(0)=-2, r(\pi)=-6$ (this is to the right) X ,
$\mathrm{d}: r(0)=2 \quad$ (this is to the right) X ,
$\mathrm{e}: r(0)=-2, r(\pi)=6$ (both are to the left)
9. The integral $\int_{0}^{1} \frac{1}{x^{2}+\sqrt{x}} d x$
a. converges by comparison with $\int_{0}^{1} \frac{1}{x^{2}} d x$
b. diverges by comparison with $\int_{0}^{1} \frac{1}{x^{2}} d x$
c. converges by comparison with $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$ correct choice
d. diverges by comparison with $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
e. diverges by the Divergence Test

Solution: For $0<x<1$, we have $\sqrt{x}>x^{2}$. (For instance, $\sqrt{\frac{1}{100}}>\frac{1}{100}$.)
So we compare to $\int_{0}^{1} \frac{1}{\sqrt{x}} d x=[2 \sqrt{x}]_{0}^{1}=2$ which is convergent.
Since $\frac{1}{x^{2}+\sqrt{x}}<\frac{1}{\sqrt{x}}$, the integral $\int_{0}^{1} \frac{1}{x^{2}+\sqrt{x}} d x$ is also convergent.
10. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+\sqrt{n}}$
a. converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad$ correct choice
b. diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
c. converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
d. diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
e. diverges by the Divergence Test

Solution: For $n>1$, we have $n^{2}>\sqrt{n}$.
So we compare to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ which is a convergent p-series since $p=2>1$.
Since $\frac{1}{n^{2}+\sqrt{n}}<\frac{1}{n^{2}}$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+\sqrt{n}}$ is also convergent.
11. $\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{n-1}-\frac{n^{2}}{n+1}\right)=$
a. -1
b. 0
c. 1
d. 2 correct choice
e. divergent

Solution: This has the indeterminate form $\infty-\infty$. We put it over a common denominator:
$\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{n-1}-\frac{n^{2}}{n+1}\right)=\lim _{n \rightarrow \infty}\left(\frac{n^{2}(n+1)-n^{2}(n-1)}{(n-1)(n+1)}\right)=\lim _{n \rightarrow \infty}\left(\frac{2 n^{2}}{n^{2}-1}\right)=2$
12. $S=\sum_{n=1}^{\infty}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)=$
a. -1
b. $-\frac{1}{2}$ correct choice
c. 0
d. $\frac{1}{2}$
e. divergent

Solution: $\quad S_{k}=\sum_{n=1}^{k}\left(\frac{n}{n+1}-\frac{n+1}{n+2}\right)=\left(\frac{1}{2}-\frac{2}{3}\right)+\left(\frac{2}{3}-\frac{3}{4}\right)+\cdots+\left(\frac{k}{k+1}-\frac{k+1}{k+2}\right)=\frac{1}{2}-\frac{k+1}{k+2}$
$S=\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(\frac{1}{2}-\frac{k+1}{k+2}\right)=\frac{1}{2}-1=-\frac{1}{2}$
13. The series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n+2}{2 n}$
a. converges by the Integral Test.
b. diverges because the related absolute series $\sum_{n=1}^{\infty} \frac{n+2}{2 n}$ diverges.
c. converges by the Alternating Series Test.
d. diverges by the Alternating Series Test.
e. diverges by the Divergence Test. correct choice

Solution: $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}(-1)^{n+1} \frac{n+2}{2 n} \neq 0$ because the terms oscillate between close to $\frac{1}{2}$ and close to $-\frac{1}{2}$. So the Alternating Series Test fails but the Divergence Test says it diverges.
14. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n}+3^{n}}{5^{n}}(x-4)^{n}$.
a. $R=\frac{5}{2}$
b. $R=\frac{5}{3} \quad$ correct choice
c. $R=\frac{2}{5}$
d. $R=\frac{3}{5}$
e. $R=\infty$

Solution: Use the Ratio Test.
$L=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left(2^{n+1}+3^{n+1}\right)|x-4|^{n+1}}{5^{n+1}} \frac{5^{n}}{\left(2^{n}+3^{n}\right)|x-4|^{n}}=\frac{|x-4|}{5} \lim _{n \rightarrow \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}}$
Divide numerator and denominator by 3^{n}.
$L=\frac{|x-4|}{5} \lim _{n \rightarrow \infty} \frac{2\left(\frac{2}{3}\right)^{n}+3}{\left(\frac{2}{3}\right)^{n}+1}=\frac{3}{5}|x-4|$
This converges for $L=\frac{3}{5}|x-4|<1 \quad$ or $|x-4|<\frac{5}{3}$. So $R=\frac{5}{3}$
15. The series $\sum_{n=0}^{\infty} \frac{1}{3^{n} \sqrt{n}}(x-5)^{n}$ has radius of convergence $R=3$. Find its interval of convergence.
a. $[2,8)$ correct choice
b. $(2,8]$
c. $[2,8]$
d. $(2,8)$

Solution: The endpoints are $x=5-3=2$ and $x=5+3=8$.
We check the convergence at each endpoint:
$x=2$: $\quad \sum_{n=0}^{\infty} \frac{1}{3^{n} \sqrt{n}}(2-5)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \quad$ which converges by the Alternating Series Test.
$x=8: \quad \sum_{n=0}^{\infty} \frac{1}{3^{n} \sqrt{n}}(8-5)^{n}=\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$ which diverges because it is a p-series with $p=\frac{1}{2}<1$.
So the interval of convergence is $[2,8)$.
16. (10 points) Compute $\int_{5}^{6} \frac{1}{9-x^{2}} d x$.

Solution: The substitution $x=3 \sin \theta$ requires $x \leq 3$ which disagrees with the limits of integration. The substitution $x=3 \sec \theta$ requires $x \geq 3$ which agrees with the limits of integration.

Then $d x=3 \sec \theta \tan \theta d \theta$ and:

$$
\begin{aligned}
\int \frac{1}{9-x^{2}} d x= & \int \frac{1}{9-9 \sec ^{2} \theta} 3 \sec \theta \tan \theta d \theta=\frac{1}{3} \int \frac{\sec \theta \tan \theta}{-\tan ^{2} \theta} d \theta=\frac{-1}{3} \int \frac{\sec \theta}{\tan \theta} d \theta \\
& =\frac{-1}{3} \int \frac{1}{\sin \theta} d \theta=\frac{-1}{3} \int \csc \theta d \theta=\frac{1}{3} \ln |\csc \theta+\cot \theta|
\end{aligned}
$$

Since $\sec \theta=\frac{x}{3}$, consider a triangle with an angle θ, an hypotenuse x and adjacent side 3 . The opposite side is $\sqrt{x^{2}-9}$. So $\csc \theta=\frac{x}{\sqrt{x^{2}-9}}$ and $\cot \theta=\frac{3}{\sqrt{x^{2}-9}}$. Thus:

$$
\begin{aligned}
& \int_{5}^{6} \frac{1}{9-x^{2}} d x=\left.\frac{1}{3} \ln \left|\frac{x}{\sqrt{x^{2}-9}}+\frac{3}{\sqrt{x^{2}-9}}\right|\right|_{5} ^{6} \\
& =\frac{1}{3} \ln \left|\frac{6}{\sqrt{36-9}}+\frac{3}{\sqrt{36-9}}\right|-\frac{1}{3} \ln \left|\frac{5}{\sqrt{25-9}}+\frac{3}{\sqrt{25-9}}\right| \\
& =\frac{1}{3} \ln \frac{9}{\sqrt{27}}-\frac{1}{3} \ln \left|\frac{8}{\sqrt{16}}\right|=\frac{1}{3} \ln \sqrt{3}-\frac{1}{3} \ln 2
\end{aligned}
$$

17. (15 points) The goal is to compute $\lim _{x \rightarrow 0} \frac{1+x^{2}-e^{x^{2}}}{x^{4}}$.
a. Write out the first 4 terms of the Maclaurin series for e^{u}.

Solution: $\quad e^{u}=1+u+\frac{u^{2}}{2}+\frac{u^{3}}{3!}+\cdots$
b. Write out the first 4 terms of the Maclaurin series for $e^{x^{2}}$.

Solution: $\quad e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{3!}+\cdots$
c. Substitute the series into $\lim _{x \rightarrow 0} \frac{1+x^{2}-e^{x^{2}}}{x^{4}}$ and compute the limit.

Solution: $\lim _{x \rightarrow 0} \frac{1+x^{2}-e^{x^{2}}}{x^{4}}=\lim _{x \rightarrow 0} \frac{1+x^{2}-\left(1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{3!}+\cdots\right)}{x^{4}}$

$$
=\lim _{x \rightarrow 0} \frac{-\frac{x^{4}}{2}-\frac{x^{6}}{3!}-\cdots}{x^{4}}=\lim _{x \rightarrow 0}\left(-\frac{1}{2}-\frac{x^{2}}{3!}-\cdots\right)=-\frac{1}{2}
$$

18. (20 points) The goal is to compute the sum of the series $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$.
a. Find the sum of the series $\sum_{n=0}^{\infty} x^{n}$. On what interval does it converge. Why?
$\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$
Converges for $|x|<1$ because it is a geometric series.
b. Differentiate both sides of this equation. On what interval does it converge. Why?
$\sum_{n=0}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}$
Converges for $|x|<1$ because
differentiating does not change the open interval of convergence.
c. Multiply both sides by x. On what interval does it converge. Why?
$\sum_{n=0}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}$
Converges for $|x|<1$ because
multiplying by a polynomial does not change the open interval of convergence.
d. Evaluate both sides at an appropriate value of x and simplify. Why does it converge for this value of x ?

$$
x=\frac{1}{2}: \quad \sum_{n=0}^{\infty} \frac{n}{2^{n}}=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=2
$$

Converges because $\underline{\left|\frac{1}{2}\right|<1}$.

