1	$/ 4$	3	14
2	$/ 6$	4	16
		Total	120

1. Find the mass of a 5 cm bar with linear density $\rho(x)=x^{3} \frac{\mathrm{gm}}{\mathrm{cm}}$ where x is measured from one end.

Solution: $\quad M=\int \rho(x) d x=\int_{0}^{5} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{0}^{5}=\frac{5^{4}}{4}=\frac{625}{4} \mathrm{gm}$
2. Find the center of mass of a 5 cm bar with linear density $\rho=x^{3} \frac{\mathrm{gm}}{\mathrm{cm}}$ where x is measured from one end.

Solution: $\quad M_{1}=\int x \rho(x) d x=\int_{0}^{5} x^{4} d x=\left[\frac{x^{5}}{5}\right]_{0}^{5}=\frac{5^{5}}{5}=625 \mathrm{gm}-\mathrm{cm}$

$$
\bar{x}=\frac{M_{1}}{M}=\frac{625}{1} \frac{4}{625}=4 \mathrm{~cm}
$$

3. Complete each of these identities.

The first two are in terms of $\sin (A), \cos (A), \sin (B)$ and $/$ or $\cos (B)$:
Solutions:
a. $\sin (A+B)=$
$\sin (A) \cos (B)+\cos (A) \sin (B)$
b. $\cos (A+B)=$

$$
\cos (A) \cos (B)-\sin (A) \sin (B)
$$

The last two are in terms of $\sin (2 A)$ and/or $\cos (2 A)$:
c. $\sin ^{2}(A)=$

$$
\frac{1-\cos (2 A)}{2}
$$

d. $\cos ^{2}(A)=$

$$
\frac{1+\cos (2 A)}{2}
$$

4. Compute: $\int x^{5} \ln x d x$. Check your answer.

Solution: $\quad \begin{aligned} & u=\ln x \quad d v=x^{5} d x\end{aligned}$
Solution: Use the Parts: $d u=\frac{1}{x} d x \quad v=\frac{x^{6}}{6}$
$\int x^{5} \ln x d x=\frac{x^{6}}{6} \ln x-\frac{1}{6} \int x^{6} \frac{1}{x} d x=\frac{x^{6}}{6} \ln x-\frac{1}{6} \int x^{5} d x=\frac{x^{6}}{6} \ln x-\frac{x^{6}}{36}+C$
Check: $\quad \frac{d}{d x}\left(\frac{x^{6}}{6} \ln x-\frac{x^{6}}{36}\right)=x^{5} \ln x+\frac{x^{6}}{6} \frac{1}{x}-\frac{6 x^{5}}{36}=x^{5} \ln x$

