Name_____

MATH 172	Quiz 2	Spring 2018
Sections 501-502 (circle one)		P. Yasskin

1	/4	5	/1
2	/5	6	/4
3	/1	7	/1
4	/4	Total	/20

Consider the recursively defined sequence

$$a_1 = 0 \qquad \qquad a_n = \sqrt{2 + a_{n-1}}$$

In this quiz, you will prove the sequence a_n converges and find the limit.

1. Write out the first 4 terms of the sequence.

 $a_1 = _ a_2 = _ a_3 = _ a_4 = _$

2. Assuming the sequence converges, find all possible values for the limit $L = \lim_{n \to \infty} a_n$.

3. Circle a word:

Conjecture: The sequence is decreasing

- 4. Use mathematical induction to prove your conjecture about monotonicity.
 - **a**. Check $a_1 \leq a_2 \leq a_3$ with the correct direction of the inequalities.
 - **b**. Assume $a_{k-1} \leq a_k$ with the correct inequality and prove $a_k \leq a_{k+1}$ with the same inequality.

5. Circle a word and fill in a number: (Be sure your conjecture will help you prove a_n converges.)

Conjecture: The sequence is bounded $\begin{array}{c} \text{above} \\ \text{below} \end{array}$ by $\underline{M} = \underline{M} = \underline{M}$.

- 6. Use mathematical induction to prove your conjecture about boundedness.
 - **a**. Check $a_1 \leq M$ and $a_2 \leq M$ with the correct direction of the inequalities.
 - **b**. Assume $a_{k-1} \leq M$ with the correct inequality and prove $a_k \leq M$ with the same inequality.

7. State the version of the Bounded Monotonic Sequence Theorem which guarantees the sequence a_n converges.