Name			
MATH 172	Quiz 2	Spring 2018	
Sections 501-502 (circle one)	Solutions	P. Yasskin	

_	1		
1	/4	5	/1
2	/5	6	/4
3	/1	7	/1
4	/4	Total	/20

Consider the recursively defined sequence

$$a_1 = 0 \qquad \qquad a_n = \sqrt{2 + a_{n-1}}$$

In this quiz, you will prove the sequence a_n converges and find the limit.

1. Write out the first 4 terms of the sequence.

Solution:
$$a_1 = \underline{0}$$
 $a_2 = \underline{\sqrt{2+0}} = \sqrt{2}$ $a_3 = \underline{\sqrt{2+\sqrt{2}}}$ $a_4 = \underline{\sqrt{2+\sqrt{2}+\sqrt{2}}}$

2. Assuming the sequence converges, find all possible values for the limit $L = \lim_{n \to \infty} a_n$.

Solution:
$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{2 + a_{n-1}} = \sqrt{2 + \lim_{n \to \infty} a_{n-1}} = \sqrt{2 + L}$$

 $L^2 = 2 + L$ $L^2 - L - 2 = 0$ $(L - 2)(L + 1) = 0$ $L = -1, 2$

3. Circle a word:

Conjecture: The sequence is decreasing

- 4. Use mathematical induction to prove your conjecture about monotonicity.
 - **a**. Check $a_1 \leq a_2 \leq a_3$ with the correct direction of the inequalities.

Solution: $0 < \sqrt{2}$. So $a_1 < a_2$. $2 < 2 + \sqrt{2}$. So $\sqrt{2} < \sqrt{2 + \sqrt{2}}$ or $a_2 < a_3$

b. Assume $a_{k-1} \leq a_k$ with the correct inequality and prove $a_k \leq a_{k+1}$ with the same inequality.

Solution: Assume $a_{k-1} < a_k$.

Then $2 + a_{k-1} < 2 + a_k$ and $\sqrt{2 + a_{k-1}} < \sqrt{2 + a_k}$ or $a_k < a_{k+1}$.

5. Circle a word and fill in a number: (Be sure your conjecture will help you prove a_n converges.)

Conjecture: The sequence is bounded $\begin{bmatrix} above \end{bmatrix}$ by $\underline{M = 2}$. below

- 6. Use mathematical induction to prove your conjecture about boundedness.
 - **a**. Check $a_1 \leq M$ and $a_2 \leq M$ with the correct direction of the inequalities.

Solution: $a_1 = 0 < 2$. $a_2 = \sqrt{2} < 2$.

b. Assume $a_{k-1} \leq M$ with the correct inequality and prove $a_k \leq M$ with the same inequality.

Solution: Assume $a_{k-1} < 2$.

Then $2 + a_{k-1} < 4$ and $\sqrt{2 + a_{k-1}} < \sqrt{4} = 2$ or $a_k < 2$.

7. State the version of the Bounded Monotonic Sequence Theorem which guarantees the sequence a_n converges.

Solution: An increasing sequence which is bounded above must converge.