Name \qquad
MATH 172
Exam $2 \quad$ Spring 2019
Sections 501
P. Yasskin

11 Multiple Choice: (5 points each. No part credit.)

1. Consider the integrals:

$$
A=\int_{3}^{4} \frac{1}{(x-3)^{2 / 3}} d x \quad B=\int_{3}^{4} \frac{1}{(x-3)^{4 / 3}} d x \quad C=\int_{4}^{\infty} \frac{1}{(x-3)^{2 / 3}} d x \quad D=\int_{4}^{\infty} \frac{1}{(x-3)^{4 / 3}} d x
$$

Which are finite? Which are infinite?
a. A and B are finite. C and D are infinite.
b. B and C are finite. A and D are infinite.
c. B and D are finite. A and C are infinite.
d. A and D are finite. B and C are infinite.
e. A and C are finite. B and D are infinite.
2. Compute $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$.
a. π
b. $\frac{\pi}{2}$
c. $\frac{\pi}{4}$
d. 0
e. divergent

$1-11$	$/ 55$	14	$/ 12$
12	$/ 15$	15	$/ 12$
13	$/ 10$	Total	$/ 104$

3. Which of the following terms does NOT belong in the general partial fraction expansion of $\frac{x^{3}-6 x^{2}+7}{(x-4)(x-3)^{2}\left(x^{2}+4\right)\left(x^{2}+9\right)^{3}}$
a. $\frac{A}{(x-4)}$
b. $\frac{B}{(x-3)^{2}}$
c. $\frac{C x+D}{\left(x^{2}+9\right)}$
d. $\frac{E x+F}{\left(x^{2}+9\right)^{3}}$
e. They all belong.
4. In the partial fraction expansion $\frac{x}{(x-2)(x-3)^{3}}=\frac{A}{x-2}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}+\frac{D}{(x-3)^{3}}$ which coefficient is INCORRECT?
a. $A=-2$
b. $B=2$
c. $C=-3$
d. $D=3$
e. They are all correct.
5. Find the location of the vertical tangents to the parametric curve:

$$
x=t^{3}-3 t \quad y=t^{2}-4 t
$$

a. $(-2,-3)$ and $(2,5)$ only
b. $(-2,-3),(2,-4)$ and $(2,5)$ only
c. $(-2,-3)$ and $(2,-4)$ only
d. $(2,-4)$ only
e. $(2,-4)$ and $(2,5)$ only
6. The base of a solid is the region between $y=x^{2}$ and the x-axis for $0 \leq x \leq 3$. The cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
a. $\frac{3^{4}}{4}$
b. $\frac{3^{5}}{5}$
c. 9
d. 27
e. 81
7. The region between $y=x^{2}$ and the x-axis for $0 \leq x \leq 4$ is rotated about the y-axis. Find the volume swept out.
a. 8π
b. 16π
c. 32π
d. 64π
e. 128π
8. The region between $y=x^{2}$ and the x-axis for $0 \leq x \leq 4$ is rotated about the x-axis. Find the volume swept out.
a. $\frac{1024 \pi}{5}$
b. 64π
c. $\frac{64 \pi}{3}$
d. 32π
e. $\frac{32 \pi}{3}$
9. It takes a 40 N force to stretch a certain spring to 8 m from its rest position. How much work does it take to stretch this spring from 1 m from rest to 9 m from rest.
a. 25 J
b. 50 J
c. 100 J
d. 200 J
e. 400 J
10. A 100 foot rope weighs $\delta=2 \frac{\mathrm{lb}}{\text { foot }}$. It is hanging from the top of a 100 foot tall building. How much work is done to pull it up to the top of the building.
a. 5000
b. 10000
c. 20000
d. $\frac{100^{3}}{3}$
e. $2 \frac{100^{3}}{3}$
11. Find the area inside the spiral $r=\theta$ for $0 \leq \theta \leq \pi$.
a. $\frac{\pi^{3}}{2}$
b. $\frac{\pi^{3}}{3}$
c. $\frac{\pi^{3}}{6}$

d. $\frac{\pi^{2}}{2}$
e. $\frac{\pi^{2}}{4}$

Work Out: (Points indicated. Part credit possible. Show all work.)
12. (15 points) A water trough is 18 meters long. Its end is an isoceles triangle with vertex down whose width is 8 meters and height is 12 meters. The trough is filled with water to a depth of 6 meters. How much work is done to pump the water out the top of the tank?
Answers can be given as a multiple of δg where
δ is the densty of water g is the acceleration of gravity is g.

13. (10 points) Find the length of the spiral $r=\theta^{2}$ for $0 \leq \theta \leq \pi$.
14. (12 points) Plot the graph of the limaçon $r=2+4 \sin \theta$.

15. (12 points) Given the partial fraction expansion $\frac{10 x^{2}-60}{(x-4)^{2}\left(x^{2}+4\right)}=\frac{2}{x-4}+\frac{5}{(x-4)^{2}}+\frac{-2 x-3}{x^{2}+4}$ Compute $\int \frac{10 x^{2}-60}{(x-4)^{2}\left(x^{2}+4\right)} d x$.

