Name_____

MATH 172	Exam 3	Spring 2019
Sections 501	Solutions	P. Yasskin

15 Multiple Choice: (4 points each. No part credit.)

1. Compute
$$\lim_{n \to \infty} \frac{(-2)^n - (-3)^n}{(-3)^n}$$
.

- a. –2
- b. -1 correct choice
- **c**. 1
- d. 2
- e. diverges

Solution:
$$\lim_{n \to \infty} \frac{(-2)^n - (-3)^n}{(-3)^n} \cdot \frac{\frac{1}{(-3)^n}}{\frac{1}{(-3)^n}} = \lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n - 1}{1} = -1$$

- 2. Compute $\lim_{n\to\infty} \left(\sqrt{n^4 + 4n^2} \sqrt{n^4 2n^2}\right).$
 - a. –∞
 - b. -6
 - c. 3 correct choice
 - d. 6
 - e. ∞

Solution:
$$\lim_{n \to \infty} \left(\sqrt{n^4 + 4n^2} - \sqrt{n^4 - 2n^2} \right) \frac{\sqrt{n^4 + 4n^2} + \sqrt{n^4 - 2n^2}}{\sqrt{n^4 + 4n^2} + \sqrt{n^4 - 2n^2}} = \lim_{n \to \infty} \frac{(n^4 + 4n^2) - (n^4 - 2n^2)}{\sqrt{n^4 + 4n^2} + \sqrt{n^4 - 2n^2}}$$
$$= \lim_{n \to \infty} \frac{6n^2}{\sqrt{n^4 + 4n^2} + \sqrt{n^4 - 2n^2}} \cdot \frac{1}{\frac{n^2}{n^2}} = \lim_{n \to \infty} \frac{6}{\sqrt{1 + 4n^2} + \sqrt{1 - 2n^2}} = \frac{6}{2} = 3$$

1-15	/60	17	/25
16	/20	Total	/105

- 3. Compute $\lim_{n \to \infty} \left(1 \frac{2}{n^2} \right)^n$
 - a. 0
 - b. *e*⁻⁴
 - c. *e*⁻²
 - d. e^{-1}
 - e. 1 correct choice

Solution: $\lim_{n \to \infty} \left(1 - \frac{2}{n^2}\right)^n = e^L$ where $L = \lim_{n \to \infty} n \ln\left(1 - \frac{2}{n^2}\right) = \lim_{n \to \infty} \frac{\ln\left(1 - \frac{2}{n^2}\right)}{\frac{1}{n}} \stackrel{\text{I'H}}{=} \lim_{n \to \infty} \frac{\frac{\frac{4}{n^3}}{1 - \frac{2}{n^2}}}{\frac{-1}{2}} = \lim_{n \to \infty} \frac{\frac{4}{n^3}}{1 - \frac{2}{n^2}} (-n^2) = \lim_{n \to \infty} \frac{\frac{-4}{n}}{1 - \frac{2}{n^2}} = 0$ So $\lim_{n \to \infty} \left(1 - \frac{2}{n^2} \right)^n = e^L = e^0 = 1$ 4. If $S = \sum_{n=1}^{\infty} a_n$ and $S_k = \frac{6k^3 - 2k}{3k^3 + k}$, then a. S = 6b. S = 4c. S = 2correct choice d. S = 1e. S = -2Solution: $S = \lim_{k \to \infty} S_k = \lim_{k \to \infty} \frac{6k^3 - 2k}{3k^3 + k} \cdot \frac{\frac{1}{k^3}}{\frac{1}{k^3}} = \lim_{k \to \infty} \frac{6 - \frac{2}{k^2}}{3 + \frac{1}{k^2}} = 2$ 5. Compute $\sum_{n=1}^{\infty} \left(\frac{2n+1}{n} - \frac{2n+3}{n+1} \right)$ a. $\frac{1}{2}$ b. $\frac{3}{2}$ correct choice c. 2 d. -2 e. 0 Solution: Telescoping

$$S_{k} = \sum_{n=2}^{k} \left(\frac{2n+1}{n} - \frac{2n+3}{n+1} \right) = \left(\frac{5}{2} - \frac{7}{3} \right) + \left(\frac{7}{3} - \frac{9}{4} \right) + \dots + \left(\frac{2k+1}{k} - \frac{2k+3}{k+1} \right) = \frac{5}{2} - \frac{2k+3}{k+1}$$
$$S = \lim_{k \to \infty} S_{k} = \lim_{k \to \infty} \left(\frac{5}{2} - \frac{2k+3}{k+1} \right) = \frac{5}{2} - 2 = \frac{1}{2}$$

6. For this and the next problem, consider the series $\sum_{n=0}^{\infty} \frac{1}{e^n + 1}$. This series

a. converges to a number less than e^{-1}

b. converges to a number less than $\frac{e}{e-1}$ correct choice c. converges to a number greater than $\frac{e}{e-1}$

- d. diverges to ∞
- e. diverges but not to ∞

Solution: Compare to $\sum_{n=0}^{\infty} \frac{1}{e^n} = \sum_{n=0}^{\infty} \left(\frac{1}{e}\right)^n$ which is a geometric series which converges because $\frac{1}{e} < 1$. Then $\sum_{n=0}^{\infty} \frac{1}{e^n + 1} < \sum_{n=0}^{\infty} \frac{1}{e^n} = \frac{1}{1 - e^{-1}} = \frac{e}{e - 1}$

- 7. Which test did you use in the previous problem?
 - a. Integral Test
 - b. Simple Comparison Test correct choice
 - c. Limit (but not Simple) Comparison Test
 - d. Alternating Series Test
 - e. *n*th Term Divergence Test

Solution: $\frac{1}{e^n + 1} < \frac{1}{e^n}$ So we only needed the Simple Comparison Test.

8. The series
$$\sum_{n=1}^{\infty} \frac{2n+2}{n^2+2n}$$

- a. converges by the Integral Test
- b. diverges by the Integral Test correct choice
- c. converges by a Simple Comparison with $\sum_{n=1}^{\infty} \frac{2}{n^2}$
- d. diverges by a Simple Comparison with $\sum_{n=1}^{\infty} \frac{2}{n}$
- e. converges by the Ratio Test

Solution: $\frac{2n+2}{n^2+2n}$ is positive, decreasing and continuous. $\int_{1}^{\infty} \frac{2n+2}{n^2+2n} dn = \left[\ln(n^2+2n)\right]_{1}^{\infty} = \infty \qquad \text{So} \qquad \sum_{n=1}^{\infty} \frac{2n+2}{n^2+2n} \quad \text{diverges by the Integral Test.}$ 9. The series $S = \sum_{n=1}^{\infty} \frac{2n+2}{(n^2+2n)^2}$ converges by the Integral Test. If we approximate S by $S_{10} = \sum_{n=1}^{10} \frac{2n+2}{(n^2+2n)^2}$, find a bound on the error $E_{10} = S - S_{10} = \sum_{n=11}^{\infty} \frac{2n+2}{(n^2+2n)^2}$. a. $|E_{10}| < \frac{1}{120}$ correct choice b. $|E_{10}| < \frac{1}{143}$ c. $|E_{10}| < \frac{1}{150}$ d. $|E_{10}| < \frac{1}{160}$ e. $|E_{10}| < \frac{1}{180}$ Solution: $|E_{10}| < \int_{10}^{\infty} \frac{2n+2}{(n^2+2n)^2} dn = \left[-\frac{1}{n^2+2n}\right]_{10}^{\infty} = 0 - -\frac{1}{100+20} = \frac{1}{120}$

10. For this and the next problem, consider the series $\sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}}$. This series

- a. converges correct choice
- b. diverges to ∞
- c. diverges to $-\infty$
- d. diverges but not to $\pm \infty$

Solution: For $n \ge 2$, $n^2 > \sqrt{n}$. Compare to $\sum_{n=2}^{\infty} \frac{1}{n^2}$ which converges because it is a *p*-series with p = 2 > 1. Since $\frac{1}{n^2 - \sqrt{n}} > \frac{1}{n^2}$, we cannot use the Simple Comparison test. We use the Limit Comparison Test.

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{n^2 - \sqrt{n}} \frac{n^2}{1} = 1$$

Since $0 < 1 < \infty$, $\sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}}$ also converges.

- 11. Which test did you use in the previous problem?
 - a. Integral Test
 - b. Simple Comparison Test
 - c. Limit Comparison Test but not the Simple Comparison Test correct choice
 - d. Alternating Series Test
 - e. n^{th} Term Divergence Test

Solution: See the previous solution.

12. The series
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n + \sqrt{n}}$$
 is

- a. absolutely convergent
- b. conditionally convergent correct choice
- c. divergent
- d. conditionally divergent

Solution: The series is convergent by the Alternating Series Test because $\frac{1}{n + \sqrt{n}}$ is positive, decreasing

and $\lim_{n \to \infty} \frac{1}{n + \sqrt{n}} = 0$. The related absolute series is $\sum_{n=2}^{\infty} \frac{1}{n + \sqrt{n}}$ which is divergent by the Limit Comparison Test with the harmonic series $\sum_{n=2}^{\infty} \frac{1}{n}$.

- 13. The series $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ is convergent by
 - a. the Alternating Series Test
 - b. the Related Absolute Series Test, the Simple Comparison Test and the *p*-Series Test correct choice
 - c. the Related Absolute Series Test, the Limit (but not Simple) Comparison Test and the p-Series Test
 - d. the n^{th} Term Divergence Test

Solution: The series is not alternating because $\cos n$ does not alternate. The related absolute series is $\sum_{n=1}^{\infty} \frac{|\cos n|}{n^2}$ which we compare to $\sum_{n=1}^{\infty} \frac{1}{n^2}$ which is a convergent *p*-series because p = 2 > 1. Since $\frac{|\cos n|}{n^2} < \frac{1}{n^2}$, the series $\sum_{n=1}^{\infty} \frac{|\cos n|}{n^2}$ converges by the Simple Comparison Test and $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ by the Related Absolute Series Test.

Note: The Limit Comparison Test will not work because $\lim_{n \to \infty} |\cos n|$ does not exist.

- 14. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{3n+2}{(-4)^n} (x-2)^n$
 - a. $R = \infty$
 - b. R = 3
 - c. R = 4 correct choice
 - d. $R = \frac{1}{3}$
 - e. $R = \frac{1}{4}$

Solution: We apply the Ratio Test. $|a_n| = \frac{3n+2}{4^n} |x-2|^n$ $|a_{n+1}| = \frac{3n+5}{4^{n+1}} |x-2|^{n+1}$ $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(3n+5)|x-2|^{n+1}}{4^{n+1}} \frac{4^n}{(3n+2)|x-2|^n} = \frac{|x-2|}{4} \lim_{n \to \infty} \frac{3n+5}{3n+2} = \frac{|x-2|}{4} < 1$ |x-2| < 4 So R = 4. 15. Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{3^n}{(n+1)!} (x-5)^n$$

- a. $R = \infty$ correct choice
- b. R = 3
- c. R = 5
- d. $R = \frac{1}{3}$
- e. R = 0

Solution: We apply the Ratio Test. $|a_n| = \frac{3^n |x-5|^n}{(n+1)!}$ $|a_{n+1}| = \frac{3^{n+1} |x-5|^{n+1}}{(n+2)!}$ $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{3^{n+1} |x-5|^{n+1}}{(n+2)!} \frac{(n+1)!}{3^n |x-5|^n} = 3|x-5| \lim_{n \to \infty} \frac{(n+1)!}{(n+2)!} = 3|x-5| \lim_{n \to \infty} \frac{1}{(n+2)} = 0 < 1$ for all x. So $R = \infty$.

Work Out: (Points indicated. Part credit possible. Show all work.)

- 16. (20 points) Determine whether the recursively defined sequence $a_1 = 4$ and $a_{n+1} = 3\sqrt{a_n}$ is convergent or divergent. If convergent, find the limit.
 - a. Find the first 3 terms: $a_1 = _ a_2 = _ a_3 = _$
 - **Solution**: $a_1 = __4__$ $a_2 = __6__$ $a_3 = __3\sqrt{6}__$
 - b. Assuming the limit $\lim_{n\to\infty} a_n$ exists, find the possible limits.

Solution: Assume $\lim_{n \to \infty} a_n = L$. Then $\lim_{n \to \infty} a_{n+1} = L$ also. From the recursion relation: $L = 3\sqrt{L}$ $L^2 = 9L$ $L^2 - 9L = 0$ L = 0,9

c. Prove the sequence is increasing or decreasing (as appropriate).

Solution: From the first 3 terms, we expect the sequence is increasing. So we want to prove $a_{n+1} > a_n > 0$. Initialization Step: $a_2 = 6 > a_1 = 4 > 0$ Induction Step: Assume $a_{k+1} > a_k > 0$. We need to prove $a_{k+2} > a_{k+1} > 0$. Proof: $a_{k+1} > a_k > 0 \implies \sqrt{a_{k+1}} > \sqrt{a_k} > 0 \implies 3\sqrt{a_{k+1}} > 3\sqrt{a_k} > 0 \implies a_{k+2} > a_{k+1} > 0$

d. Prove the sequence is bounded or unbounded above or below (as appropriate).

Solution: From the possible limits, we expect the sequence is bounded above by 9. So we want to prove $a_n < 9$. Initialization Step: $a_1 = 4 < 9$ Induction Step: Assume $a_k < 9$. We need to prove $a_{k+1} < 9$. Proof:

- $a_k < 9 \implies \sqrt{a_k} < 3 \implies 3\sqrt{a_k} < 9 \implies a_{k+1} < 9$
- e. State whether the sequence is convergent or divergent and name the theorem. If convergent, state the limit.

Solution: The sequence is convergent by the Bounded Monotonic Sequence Theorem and $\lim_{n \to \infty} a_n = 9$.

- (25 points) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{(n+1)3^n} (x-5)^n.$ 17.
 - Find the radius of convergence and state the open interval of absolute convergence. a.

$$R =$$
____. Absolutely convergent on (_____, ____).

Solution: To find the radius, we use the Ratio Test. $|a_n| = \frac{\sqrt{n}|x-5|^n}{(n+1)3^n}$ $|a_{n+1}| = \frac{\sqrt{n+1}|x-5|^{n+1}}{(n+2)3^{n+1}}$ $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\sqrt{n+1} |x-5|^{n+1}}{(n+2)3^{n+1}} \frac{(n+1)3^n}{\sqrt{n} |x-5|^n} = \frac{|x-5|}{3} \lim_{n \to \infty} \frac{n+1}{n+2} \sqrt{\frac{n+1}{n}} = \frac{|x-5|}{3} > 1$ |x-5| < 3 So R = 3. Absolutely convergent on (2,8)

Check the Left Endpoint: b.

$$x = _$$
 The series is _____
 Circle one:

 Reasons:
 Convergent

 Divergent

Solution:
$$x = 2$$
:
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{(n+1)3^n} (-3)^n = \sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{(n+1)}$$

This converges by the Alternating Series Test because $\frac{\sqrt{n}}{(n+1)}$ is positive, decreasing and

$$\lim_{n\to\infty}\frac{\sqrt{n}}{(n+1)}=0$$

c. Check the **Right** Endpoint:

The series is_ Circle one: *x* =____ Reasons: Convergent

Divergent

Solution:
$$x = 8$$
:

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{(n+1)3^n} (3)^n = \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$$
Compare this to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is a *p*-series with $p = \frac{1}{2} < 1$ and so diverges.
We can't use the Simple Comparison Test because $\frac{\sqrt{n}}{n+1} < \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$. So we compute:
 $L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt{n}}{n+1} \cdot \frac{\sqrt{n}}{1} = \lim_{n \to \infty} \frac{n}{n+1} = 1.$
Since $0 < 1 < \infty$, the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$ diverges by the Limit Comparison Test.

State the Interval of Convergence. d.

> **Solution**: The Interval of Convergence.is: [2, 8)

Interval=