Name_____

MATH 172	Final Exam	Spring 2019

Sections 501

P. Yasskin

15 Multiple Choice: (4 points each. No part credit.)

1. Compute $\int 3x^2 \ln x \, dx$.

a.
$$6x \ln x - 6x + C$$

b. $x^3 \ln x - \frac{x^3}{3} + C$
c. $6x \ln x + 6x + C$
d. $x^3 \ln x + \frac{x^3}{3} + C$
e. $\frac{x^3}{3} \ln x - \frac{x^3}{9} + C$

2. Compute $\int \sec^4\theta \, d\theta$.

a.
$$\frac{(\ln|\sec\theta + \tan\theta|)^5}{5} + C$$

b.
$$\frac{\tan^5\theta}{5} - \frac{2\tan^3\theta}{3} + \tan\theta + C$$

c.
$$\frac{\tan^5\theta}{5} + \frac{2\tan^3\theta}{3} + \tan\theta + C$$

d.
$$\frac{\tan^3\theta}{3} - \tan\theta + C$$

e.
$$\frac{\tan^3\theta}{3} + \tan\theta + C$$

1-15	/60	17	/15
16	/15	18	/15
		Total	/105

3. Compute $\int \sqrt{4-x^2} \, dx$. a. $\arcsin \frac{x}{2} + \frac{x}{3} (4 - x^2)^{3/2} + C$ b. $2 \arcsin \frac{x}{2} - x\sqrt{4 - x^2} + C$ c. $2 \arcsin \frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + C$ d. $\arcsin \frac{x}{2} - x\sqrt{4 - x^2} + C$ e. $\arcsin \frac{x}{2} + x(4-x^2)^{3/2} + C$

4. The integral $\int_{1}^{\infty} \frac{1}{x^3 + \sqrt[3]{x}} dx$. converges by comparison to $\int_{1}^{\infty} \frac{1}{x^3} dx$. a. diverges by comparison to $\int_{1}^{\infty} \frac{1}{x^3} dx$. b. converges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} dx$. c. d. diverges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} dx$.

5. Find the average value of the function $f(x) = \frac{1}{1+x^2}$ on the interval $[0, \sqrt{3}]$.

- a. $\frac{\ln 4}{\sqrt{3}}$
b. $\frac{\ln 4}{2\sqrt{3}}$
c. $\frac{\pi}{6\sqrt{3}}$
d. $\frac{\pi}{3\sqrt{3}}$

- e. $\frac{\pi}{2\sqrt{3}}$

6. The region between $y = \sin x$ and $y = \frac{2x}{\pi}$ for $0 \le x \le \frac{\pi}{2}$ is rotated about the *y*-axis. Which integral gives the volume swept out?

a.
$$V = \int_{0}^{\pi/2} 2\pi x \left(\frac{2x}{\pi} - \sin x\right) dx$$

b. $V = \int_{0}^{\pi/2} 2\pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$
c. $V = \int_{0}^{\pi/2} 2\pi x \left(\sin x - \frac{2x}{\pi}\right) dx$
d. $V = \int_{0}^{\pi/2} \pi \left(\frac{4x^2}{\pi^2} - \sin^2 x\right) dx$
e. $V = \int_{0}^{\pi/2} \pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$

x

7. The region between $y = \sin x$ and $y = \frac{2x}{\pi}$ for $0 \le x \le \frac{\pi}{2}$ is rotated about the *x*-axis. Which integral gives the volume swept out?

a.
$$V = \int_{0}^{\pi/2} 2\pi x \left(\frac{2x}{\pi} - \sin x\right) dx$$

b. $V = \int_{0}^{\pi/2} 2\pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$
c. $V = \int_{0}^{\pi/2} 2\pi x \left(\sin x - \frac{2x}{\pi}\right) dx$
d. $V = \int_{0}^{\pi/2} \pi \left(\frac{4x^2}{\pi^2} - \sin^2 x\right) dx$
e. $V = \int_{0}^{\pi/2} \pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$

- 8. Find the area inside the first loop of the spiral $r = \theta$ for $0 \le \theta \le 2\pi$.
 - **a**. $2\pi^2$

b.
$$\frac{4\pi^3}{3}$$

c.
$$\frac{4\pi^2}{2}$$

d.
$$\frac{2\pi^2}{3}$$

e. $\frac{8\pi^3}{3}$

- 9. Find the center of mass of a bar which is 6 cm long and has density $\delta = x + x^2$ where x is measured from one end.

 - a. $\frac{22}{5}$ b. $\frac{5}{22}$ c. $\frac{11}{5}$ d. $\frac{5}{11}$

 - e. $\frac{8}{5}$

10. The series $\sum_{n=0}^{\infty} \frac{(x-3)^n}{2^n (n^3 + \sqrt[3]{n})}$ has radius of convergence R = 2. Find its interval of convergence. a. (1,5) b. [1,5) c. (1,5]

d. [1,5]

11. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n!}{(2n)!} (x-3)^n.$

- a. 0
- 1 b.
- 2 c.
- d. 4
- e. ∞

.

- 12. Compute $\lim_{n \to \infty} \frac{(-1)^n 4n^3 + n}{(-1)^n 2n^3 + 3n}$. $\frac{\frac{1}{3}}{\frac{4}{5}}$ a. b. 2 c. ∞ d.
 - divergent but not to $\pm \infty$ e.

13. The series
$$\sum_{n=1}^{\infty} \frac{3n^2}{n^3 + 2}$$

converges by Simple Comparison with $\sum_{n=1}^{\infty} \frac{3}{n}$. diverges by Simple Comparison with $\sum_{n=1}^{\infty} \frac{3}{n}$. a.

- converges by the Integral Test. c.
- diverges by the Integral Test. d.
- diverges by the n^{th} Term Divergence Test. e.

14. If the series
$$S = \sum_{n=1}^{\infty} \frac{2n}{(n^2 + 2)^2}$$
 is approximated by its 100th partial sum $S_{100} = \sum_{n=1}^{100} \frac{2n}{(n^2 + 2)^2}$
find a bound on the error $E_{100} = \sum_{n=101}^{\infty} \frac{2n}{(n^2 + 2)^2}$.
a. $|E_{100}| < \frac{2 \cdot 100}{(100^2 + 2)^2}$
b. $|E_{100}| < \frac{2 \cdot 01}{(101^2 + 2)^2}$
c. $|E_{100}| < \frac{1}{99^2 + 2}$
d. $|E_{100}| < \frac{1}{100^2 + 2}$
e. $|E_{100}| < \frac{1}{101^2 + 2}$

15. Compute $\lim_{x\to 0} \frac{\sin(x^3) - x^3}{x^9}$.

a. $-\frac{1}{3}$ b. $-\frac{1}{6}$ c. 0 d. $\frac{1}{6}$ e. ∞

Work Out: (Points indicated. Part credit possible. Show all work.)

16. (15 points) Compute
$$\int \frac{2}{x^3 - x} dx$$
.

a. Find the general partial fraction expansion. (Do not find the coefficients.)

$$\frac{2}{x^3 - x} =$$

b. Find the coefficients and plug them back into the expansion.

$$\frac{2}{x^3 - x} =$$

c. Compute the integral.

$$\int \frac{2}{x^3 - x} dx =$$

17. (15 points) A water tank has the shape of a cone with the vertex at the top. Its height is H = 20 ft and its radius is R = 10 ft.
It is filled with salt water to a depth of 10 ft which weighs δ = 64 1b/ft³. Find the work done to pump the water out the top of the tank.

18. (15 points) Consider the function $f(x) = \frac{1}{x^2}$.

a. Find the 3^{rd} degree Taylor polynomial for f(x) centered at x = 2 by taking derivatives.

 $T_{3}f(x) =$

b. Find the general term of its Taylor series and write the series in summation notation.

Tf(x) =_____

c. Find the radius of convergence.