Name___

MATH 172	Final Exam	Spring 2019
Sections 501	Solutions	P. Yasskin

15 Multiple Choice: (4 points each. No part credit.)

- 1. Compute $\int 3x^2 \ln x \, dx$.
 - a. $6x \ln x 6x + C$ b. $x^3 \ln x - \frac{x^3}{3} + C$ correct choice c. $6x \ln x + 6x + C$ d. $x^3 \ln x + \frac{x^3}{3} + C$ e. $\frac{x^3}{3} \ln x - \frac{x^3}{9} + C$

Solution: Integration by Parts: $u = \ln x$ $dv = 3x^2 dx$ $du = \frac{1}{x} dx$ $v = x^3$ $\int 3x^2 \ln x \, dx = x^3 \ln x - \int \frac{x^3}{x} \, dx = x^3 \ln x - \frac{x^3}{3} + C$

2. Compute $\int \sec^4\theta \, d\theta$.

a.
$$\frac{(\ln|\sec\theta + \tan\theta|)^5}{5} + C$$

b.
$$\frac{\tan^5\theta}{5} - \frac{2\tan^3\theta}{3} + \tan\theta + C$$

c.
$$\frac{\tan^5\theta}{5} + \frac{2\tan^3\theta}{3} + \tan\theta + C$$

d.
$$\frac{\tan^3\theta}{3} - \tan\theta + C$$

e.
$$\frac{\tan^3\theta}{3} + \tan\theta + C$$
 correct choice

Solution: Substitute
$$u = \tan \theta$$
, $du = \sec^2 \theta \, d\theta$:

$$\int \sec^4 \theta \, d\theta = \int (\tan^2 \theta + 1) \sec^2 \theta \, d\theta = \int (u^2 + 1) \, du = \frac{u^3}{3} + u = \frac{\tan^3 \theta}{3} + \tan \theta + C$$

1-15	/60	17	/15
16	/15	18	/15
		Total	/105

3. Compute $\int \sqrt{4-x^2} \, dx$.

a. $\arcsin \frac{x}{2} + \frac{x}{3}(4 - x^2)^{3/2} + C$ b. $2 \arcsin \frac{x}{2} - x\sqrt{4 - x^2} + C$ c. $2 \arcsin \frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + C$ correct choice d. $\arcsin \frac{x}{2} - x\sqrt{4 - x^2} + C$ e. $\arcsin \frac{x}{2} + x(4 - x^2)^{3/2} + C$

Solution:
$$x = 2\sin\theta$$
 $dx = 2\cos\theta d\theta$

$$\int \sqrt{4 - x^2} dx = \int \sqrt{4 - 4\sin^2\theta} \ 2\cos\theta d\theta = 4 \int \cos^2\theta d\theta = 2 \int (1 + \cos 2\theta) d\theta = 2\theta + \sin 2\theta + C$$

$$= 2\theta + 2\sin\theta\cos\theta + C = 2\arcsin\frac{x}{2} + 2\frac{x}{2}\frac{\sqrt{4 - x^2}}{2} + C = 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4 - x^2} + C$$

- 4. The integral $\int_{1}^{\infty} \frac{1}{x^3 + \sqrt[3]{x}} dx$.
 - a. converges by comparison to $\int_{1}^{\infty} \frac{1}{x^3} dx$. correct choice b. diverges by comparison to $\int_{1}^{\infty} \frac{1}{x^3} dx$. c. converges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} dx$. d. diverges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} dx$.

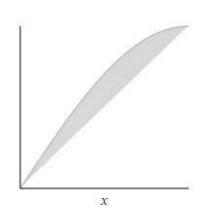
Solution: x is larger than $\sqrt[3]{x}$ for large x. So we compare to $\int_{1}^{\infty} \frac{1}{x^{3}} dx$ which converges because: $\int_{1}^{\infty} \frac{1}{x^{3}} dx = \left[-\frac{1}{2x^{2}}\right]_{1}^{\infty} = 0 - -\frac{1}{2} = \frac{1}{2}$ which is finite. Since $\frac{1}{x^{3} + \sqrt[3]{x}} < \frac{1}{x^{3}}$, (There's more in the bottom.) the integral $\int_{1}^{\infty} \frac{1}{x^{3} + \sqrt[3]{x}} dx$ also converges.

- 5. Find the average value of the function $f(x) = \frac{1}{1+x^2}$ on the interval $[0, \sqrt{3}]$.
 - a. $\frac{\ln 4}{\sqrt{3}}$ b. $\frac{\ln 4}{2\sqrt{3}}$ c. $\frac{\pi}{6\sqrt{3}}$ d. $\frac{\pi}{3\sqrt{3}}$ correct choice e. $\frac{\pi}{2\sqrt{3}}$

Solution:
$$\int_{0}^{\sqrt{3}} \frac{1}{1+x^2} dx = \left[\arctan x \right]_{0}^{\sqrt{3}} = \arctan \sqrt{3} = \frac{\pi}{3}$$
 since $\arctan \sqrt{3} = \frac{\pi}{3}$ and $\arctan 0 = 0$
So $f_{\text{ave}} = \frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3}} \frac{1}{1+x^2} dx = \frac{\pi}{3\sqrt{3}}$

6. The region between $y = \sin x$ and $y = \frac{2x}{\pi}$ for $0 \le x \le \frac{\pi}{2}$ is rotated about the *y*-axis. Which integral gives the volume

swept out? **a.** $V = \int_{0}^{\pi/2} 2\pi x \left(\frac{2x}{\pi} - \sin x\right) dx$ **b.** $V = \int_{0}^{\pi/2} 2\pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$ **c.** $V = \int_{0}^{\pi/2} 2\pi x \left(\sin x - \frac{2x}{\pi}\right) dx$ correct choice **d.** $V = \int_{0}^{\pi/2} \pi \left(\frac{4x^2}{\pi^2} - \sin^2 x\right) dx$ **e.** $V = \int_{0}^{\pi/2} \pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$



Solution: Do an x-integral. Slices are vertical. They rotate about the y-axis into cylinders. $V = \int_{0}^{\pi/2} 2\pi r h \, dx = \int_{0}^{\pi/2} 2\pi x \left(\sin x - \frac{2x}{\pi} \right) dx$

7. The region between $y = \sin x$ and $y = \frac{2x}{\pi}$ for $0 \le x \le \frac{\pi}{2}$ is rotated about the *x*-axis. Which integral gives the volume swept out?

a.
$$V = \int_{0}^{\pi/2} 2\pi x \left(\frac{2x}{\pi} - \sin x\right) dx$$

b. $V = \int_{0}^{\pi/2} 2\pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$
c. $V = \int_{0}^{\pi/2} 2\pi x \left(\sin x - \frac{2x}{\pi}\right) dx$
d. $V = \int_{0}^{\pi/2} \pi \left(\frac{4x^2}{\pi^2} - \sin^2 x\right) dx$
e. $V = \int_{0}^{\pi/2} \pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$ correct choice

x

Solution: Do an *x*-integral. Slices are vertical. They rotate about the *x*-axis into washers. $V = \int_{0}^{\pi/2} \pi (R^2 - r^2) dx = \int_{0}^{\pi/2} \pi \left(\sin^2 x - \frac{4x^2}{\pi^2} \right) dx$

8. Find the area inside the first loop of the spiral $r = \theta$ for $0 \le \theta \le 2\pi$.

a. $2\pi^2$

b.
$$\frac{4\pi^3}{3}$$
 correct choice
c. $\frac{4\pi^2}{3}$
d. $\frac{2\pi^2}{3}$
e. $\frac{8\pi^3}{3}$
Solution: $A = \int_0^{2\pi} \frac{1}{2} r^2 d\theta = \int_0^{2\pi} \frac{1}{2} \theta^2 d\theta = \left[\frac{\theta^3}{6}\right]_0^{2\pi} = \frac{8\pi^3}{6} = \frac{4\pi^3}{3}$

9. Find the center of mass of a bar which is 6 cm long and has density $\delta = x + x^2$ where x is measured from one end.

a.
$$\frac{22}{5}$$
 correct choice
b. $\frac{5}{22}$
c. $\frac{11}{5}$
d. $\frac{5}{11}$
e. $\frac{8}{5}$
Solution: $M = \int_0^6 \delta \, dx = \int_0^6 (x + x^2) \, dx = \left[\frac{x^2}{2} + \frac{x^3}{3}\right]_0^6 = \frac{36}{2} + \frac{216}{3} = 18 + 72 = 90$
 $M_1 = \int_0^6 x \delta \, dx = \int_0^6 (x^2 + x^3) \, dx = \left[\frac{x^3}{3} + \frac{x^4}{4}\right]_0^6 = \frac{216}{3} + \frac{1296}{4} = 72 + 324 = 396$
 $\bar{x} = \frac{M_1}{M} = \frac{396}{90} = \frac{22}{5}$

10. The series $\sum_{n=0}^{\infty} \frac{(x-3)^n}{2^n (n^3 + \sqrt[3]{n})}$ has radius of convergence R = 2. Find its interval of convergence.

- a. (1,5)
- b. [1,5)
- c. (1,5]
- d. [1,5] correct choice

Solution: At x = 1: $\sum_{n=0}^{\infty} \frac{(-2)^n}{2^n (n^3 + \sqrt[3]{n})} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n^3 + \sqrt[3]{n}}$ which converges by the Alternating Series Test. At x = 5: $\sum_{n=0}^{\infty} \frac{(2)^n}{2^n (n^3 + \sqrt[3]{n})} = \sum_{n=0}^{\infty} \frac{1}{n^3 + \sqrt[3]{n}}$ which converges by comparison with $\sum_{n=0}^{\infty} \frac{1}{n^3}$ which is a convergent *p*-series since p = 3 > 1.

11. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n!}{(2n)!} (x-3)^n.$

- a. 0
- b. 1
- c. 2
- d. 4
- e. ∞ correct choice

Solution: Ratio Test:

$$\rho = \lim_{n \to \infty} \frac{(n+1)! |x-3|^{n+1}}{(2n+2)!} \frac{(2n)!}{n! |x-3|^n} = |x-3| \lim_{n \to \infty} \frac{n+1}{(2n+2)(2n+1)} = 0 < 1 \quad \text{forall } x. \text{ So } R = \infty.$$

- 12. Compute $\lim_{n \to \infty} \frac{(-1)^n 4n^3 + n}{(-1)^n 2n^3 + 3n}$.
 - a. $\frac{1}{3}$ b. $\frac{4}{5}$
 - 2 c. correct choice
 - ∞ d.
 - divergent but not to $\pm \infty$ e.

Solution:
$$\lim_{n \to \infty} \frac{(-1)^n 4n^3 + n}{(-1)^n 2n^3 + 3n} \frac{n^{-3}}{n^{-3}} = \lim_{n \to \infty} \frac{(-1)^n 4 + n^{-2}}{(-1)^n 2 + 3n^{-2}} = 2$$

The series
$$\sum_{n=1}^{\infty} \frac{3n^2}{n^3 + 2}$$

13.

- converges by Simple Comparison with $\sum_{n=1}^{\infty} \frac{3}{n}$. a.
- diverges by Simple Comparison with $\sum_{n=1}^{\infty} \frac{3}{n}$. b.
- converges by the Integral Test. c.
- diverges by the Integral Test. correct choice d.
- diverges by the n^{th} Term Divergence Test. e.

Solution: The series $\sum_{n=1}^{\infty} \frac{3}{n}$ diverges because it is harmonic. But $\frac{3n^2}{n^3+2} < \frac{3}{n}$, so Simple Comparison fails.

$$\int_{1}^{\infty} \frac{3n^2}{n^3 + 2} dn = \left[\ln(n^3 + 2) \right]_{1}^{\infty} = \infty \qquad \text{So} \quad \sum_{n=1}^{\infty} \frac{3n^2}{n^3 + 2} \quad \text{diverges by the Integral Test.}$$

14. If the series $S = \sum_{n=1}^{\infty} \frac{2n}{(n^2 + 2)^2}$ is approximated by its 100th partial sum $S_{100} = \sum_{n=1}^{100} \frac{2n}{(n^2 + 2)^2}$ find a bound on the error $E_{100} = \sum_{n=101}^{\infty} \frac{2n}{(n^2 + 2)^2}.$ a. $|E_{100}| < \frac{2 \cdot 100}{(100^2 + 2)^2}$

b.
$$|E_{100}| < \frac{2 \cdot 101}{(101^2 + 2)^2}$$

c. $|E_{100}| < \frac{1}{99^2 + 2}$
d. $|E_{100}| < \frac{1}{100^2 + 2}$ correct choice
e. $|E_{100}| < \frac{1}{101^2 + 2}$
Solution: $|E_{100}| < \int_{100}^{\infty} \frac{2n}{(n^2 + 2)^2} dn = \left|\frac{-1}{n^2 + 2}\right|_{100}^{\infty} = 0 - \frac{-1}{100^2 + 2} = \frac{1}{100^2 + 2}$

Note: The series is not alternating. So we cannot use the next term (b).

15. Compute $\lim_{x\to 0} \frac{\sin(x^3) - x^3}{x^9}$.

a. $-\frac{1}{3}$ b. $-\frac{1}{6}$ correct choice c. 0 d. $\frac{1}{6}$ e. ∞

Solution:
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \qquad \sin x^3 = x^3 - \frac{x^9}{3!} + \frac{x^{15}}{5!} - \dots$$

$$\lim_{x \to 0} \frac{\sin(x^3) - x^3}{x^9} = \lim_{x \to 0} \frac{\left(x^3 - \frac{x^9}{3!} + \frac{x^{15}}{5!} - \dots\right) - x^3}{x^9} = -\frac{1}{3!} = -\frac{1}{6}$$

Work Out: (Points indicated. Part credit possible. Show all work.)

16. (15 points) Compute
$$\int \frac{2}{x^3 - x} dx$$
.

a. Find the general partial fraction expansion. (Do not find the coefficients.)

Solution:
$$\frac{2}{x^3 - x} = \frac{2}{x(x - 1)(x + 1)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}$$

b. Find the coefficients and plug them back into the expansion.

Solution: Clear the denominator: 2 = A(x-1)(x+1) + Bx(x+1) + Cx(x-1)Plug in x = 0: 2 = A(-1) A = -2Plug in x = 1: 2 = B(2) B = 1Plug in x = -1: 2 = C(2) C = 1 $\frac{2}{x^3 - x} = -\frac{2}{x} + \frac{1}{x-1} + \frac{1}{x+1}$

c. Compute the integral.

Solution:
$$\int \frac{2}{x^3 - x} dx = \int -\frac{2}{x} dx + \int \frac{1}{x - 1} dx + \int \frac{1}{x + 1} dx = \frac{-2\ln|x| + \ln|x - 1| + \ln|x + 1| + C}{2}$$

17. (15 points) A water tank has the shape of a cone with the vertex at the top. Its height is H = 20 ft and its radius is R = 10 ft. It is filled with salt water to a depth of 10 ft which weighs $\delta = 64 \frac{1b}{ft^3}$. Find the work done to pump the water out the top of the tank.

Solution: Put the *y*-axis measuring down from the top.

The slice which is a distance y down from the top is a circle of radius r.

By similar triangles, $\frac{r}{y} = \frac{R}{H} = \frac{10}{20} = \frac{1}{2}$. So $r = \frac{1}{2}y$. The area is $A = \pi r^2 = \frac{\pi y^2}{4}$ and the volume of the slice of thickness dy is $dV = A dy = \frac{\pi y^2}{4} dy$. It weighs $dF = \delta dV = 64 \frac{\pi y^2}{4} dy = 16\pi y^2 dy$. It is lifted a distance D = y. There is water between y = 10 and y = 20. So the work done is

$$W = \int_{10}^{20} D \, dF = \int_{10}^{20} y \, 16\pi y^2 \, dy = \left[16\pi \frac{y^4}{4} \right]_{10}^{20} = 4\pi (20^4 - 10^4) = 600\,000\pi \text{ ft-lb}$$

18. (15 points) Consider the function $f(x) = \frac{1}{x^2}$.

a. Find the 3^{rd} degree Taylor polynomial for f(x) centered at x = 2 by taking derivatives.

Solution:
$$f(x) = \frac{1}{x^2}$$
 $f'(x) = \frac{-2}{x^3}$ $f''(x) = \frac{3!}{x^4}$ $f'''(x) = \frac{-4!}{x^5}$
 $f(2) = \frac{1}{2^2}$ $f'(2) = \frac{-2}{2^3}$ $f''(2) = \frac{3!}{2^4}$ $f'''(2) = \frac{-4!}{2^5}$
 $T_3f = f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \frac{f'''(2)}{3!}(x-2)^3$
 $= \frac{1}{2^2} - \frac{2}{2^3}(x-2) + \frac{3!}{2!2^4}(x-2)^2 - \frac{4!}{3!2^5}(x-2)^3$
 $= \frac{1}{2^2} - \frac{2}{2^3}(x-2) + \frac{3}{2^4}(x-2)^2 - \frac{4}{2^5}(x-2)^3$

b. Find the general term of its Taylor series and write the series in summation notation.

Solution:
$$f^{(n)}(x) = \frac{(-1)^n (n+1)!}{x^{n+2}}$$
 $f^{(n)}(2) = \frac{(-1)^n (n+1)!}{2^{n+2}}$
 $Tf = \sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!} (x-2)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{(n+1)!}{2^{n+2}} (x-2)^n = \sum_{n=0}^{\infty} (-1)^n \frac{(n+1)}{2^{n+2}} (x-2)^n$

c. Find the radius of convergence.

Solution:
$$\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(n+2)|x-2|^{n+1}}{2^{n+3}} \frac{2^{n+2}}{(n+1)|x-2|^n} = \frac{|x-2|}{2} \lim_{n \to \infty} \frac{n+2}{n+1} = \frac{|x-2|}{2} < 1$$

 $|x-2| < 2 \qquad R = 2$