Name		
MATH 172	Exam 2	Spring 2020
Sections 501		P. Yasskin
Multiple Choice	: (Points indicated. N	lo part credit.)
1. (1 points) An A	aggie does not lie, ch False [neat or steal or tolerate those who do.
a rational nun positive infinit negative infin convergent, v divergent, wh	nber in lowest terms	, e.g. $-\frac{217}{5}$ which is entered as "-217/5" times π , e.g. $\frac{217}{5}\pi$ which is entered as "217/5pi' as "infinity" d as "-infinity" evergent"
a . −∞ b . −1	pute $\int_{0}^{1} \frac{1}{1-x^2} dx$. I	f divergent, enter "infinity" or "-infinity".
c . 0 d . 1		

e. ∞

1-2	/ 2	14	/16
3-12	/50	15	/16
13	/21	Total	/105

- **4**. (5 points) Compute $\int_{1}^{\infty} \frac{1}{1+x^2} dx$. If divergent, enter "infinity" or "-infinity".
 - **a**. 0
 - **b**. $\frac{\pi}{4}$
 - **c**. $\frac{\pi}{2}$
 - **d**. π
 - **e**. ∞
- **5**. (5 points) Compute $\int_{-3}^{3} \frac{1}{x^4} dx$. If divergent, enter "divergent".
 - **a**. $\frac{-2}{81}$
 - **b**. $\frac{2}{81}$ **c**. $\frac{-1}{81}$ **d**. $\frac{1}{81}$

 - e. divergent
- 6. (5 points) What is the total number of coefficients in the general partial fraction expansion of

$$\frac{x^5 + x^4}{(x-2)(x-3)^3(x^2+4)^4}$$

For example $\frac{Bx + C}{(x^2 + 9)^3}$ has 2 coefficients.

- **a**. 4
- **b**. 7
- **c**. 8
- **d**. 12
- **e**. 16

- 7. (5 points) The base of a solid is the region between $y = x^2$ and y = 2x. The crosssectons perpendicular to the x axis are squares. Find its volume.
 - **a**. $\frac{16}{5}\pi$
 - **b**. $\frac{64}{15}\pi$
 - **c**. $\frac{32}{15}$
 - **d**. $\frac{16}{15}$
 - **e**. $\frac{8}{3}\pi$
- **8**. (5 points) The region between $y = x^2$ and y = 2x is rotated about the x axis. Find the volume.
 - **a**. $\frac{16}{5}\pi$
 - **b**. $\frac{64}{15}\pi$
 - **c**. $\frac{32}{15}$
 - **d**. $\frac{16}{15}$
 - **e**. $\frac{8}{3}\pi$
- **9**. (5 points) The region between $y = x^2$ and y = 2x is rotated about the y axis. Find the volume.
 - **a**. $\frac{16}{5}\pi$
 - **b**. $\frac{64}{15}\pi$
 - **c**. $\frac{32}{15}$
 - **d**. $\frac{16}{15}$
 - **e**. $\frac{8}{3}\pi$

- **10**. (5 points) Duke Skywater just arrived on the planet Corona. He measured that it takes 36 J of work to lift a 2 kg weight by 6 m. What is the acceleration of gravity on the surface of Corona? (Do not enter units.)
 - **a**. $2 \frac{\mathsf{m}}{\mathsf{sec}^2}$
 - **b**. $3 \frac{m}{sec^2}$
 - **c**. $12 \frac{\text{m}}{\text{sec}^2}$
 - d. $48 \frac{\text{m}}{\text{sec}^2}$
 - **e**. $72 \frac{m}{\sec^2}$
- 11. (5 points) A 200 foot chain weighs $\delta = 2 \frac{\text{lb}}{\text{foot}}$. It is hanging from the top of a 200 foot tall building. How much work is done to pull it up to the top of the building?
 - **a**. 5000
 - **b**. 10000
 - **c**. 20000
 - **d**. 40000
 - **e**. 80000
- **12**. (5 points) A weight is attached to a spring whose rest position is at $x_o = 3$ m. It takes 24 N of force to hold the weight at x = 7 m. How much work (in Joules) is needed to stretch the weight from x = 6 m to x = 9 m? (The answer is positive. Do not write the units.)
 - **a**. 18 J
 - **b**. 27 J
 - **c**. $\frac{81}{2}$ J
 - **d**. 54 J
 - **e**. 81 J

- **13**. (21 points) An oil tank is a cylinder 3 m in radius and 6 m long. Its axis is horizontal. It is filled to a depth of 4 m above the **bottom** of the tank. How much work is done to pump the oil out a spout which is 2 m above the **top** of the tank. Take the density of oil and to be δ and the acceleration of gravity to be g (no numbers for δ and g).
 - **a**. Where should you put the 0 of the y-axis? Take y to be positive upward.
 - i. at the spout
 - ii. at the top of the tank
 - iii. at the center of the tank
 - iv. at the bottom of the tank

Set up the integral for the work. It will have the form:

$$W = \mathbf{b} \delta g \int_{\mathbf{C}} \mathbf{d} (\mathbf{e} - y) (\mathbf{f} - y^2)^{\mathbf{g}} dy$$

Identify each of the quantities in boxes:

- **b**. coefficient: b =
- **c**. lower limit: c =
- **d**. upper limit: d =
- **e**. coefficient: e =
- **f**. coefficient: f =
- **g**. exponent: g =

14. (16 points) Find the coefficients in the partial fraction expansion:

$$\frac{x^3 + 24x^2 - 4x}{(x-2)(x+2)(x^2+4)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{Cx+D}{x^2+4}$$

15. (16 points) Given the partial fraction expansion

$$\frac{-50x}{(x^2+1)(x+3)^2} = \frac{4}{x+3} + \frac{15}{(x+3)^2} + \frac{-4x-3}{x^2+1}$$

Compute $\int \frac{-50x}{(x^2+1)(x+3)^2} dx.$