Name	9		<u> </u>
MATH 172		Exam 3	Spring 2020
Sections 501			P. Yasskin
N	Multiple Choice: (Poir	nts indicated. No pa	rt credit.)
1 . (1		does not lie, cheat c	or steal or tolerate those who do.
Do	a rational number in a rational number in exponentials such a positive infinity, ∞ , negative infinity, $-\infty$ convergent, which is divergent, which is not leave any space and this.	In lowest terms, e.g. In lowest terms times as e^4 or $3^{12/5}$ which a which is entered as e^4 , which is entered as is entered as "converge entered as "diverge"	ns "-infinity" ergent" nt"
3 . (4	points) Compute	$\sum_{n=1}^{\infty} \frac{4}{2^n}.$	
а	. 0		

b. 1c. 2d. 4e. ∞

1-9	/30	13	/18
10-11	/28	14	/8
12	/18	Total	/102

- **4**. (4 points) Compute $\sum_{n=1}^{\infty} \left(\frac{n}{2n-1} \frac{n+1}{2n+1} \right).$
 - **a**. 0
 - **b**. $\frac{1}{2}$
 - **c**. 1
 - **d**. $\frac{3}{2}$
 - **e**. ∞
- **5**. (4 points) Compute $\lim_{n\to\infty} \left(\sqrt{n^6+5n^3}-\sqrt{n^6-4n^3}\right)$.
 - **a**. −∞
 - **b**. -4
 - **c**. 9
 - **d**. $\frac{9}{2}$
 - **e**. ∞
- **6**. (4 points) Compute $\lim_{n\to\infty} \left(1+\frac{1}{2n}\right)^{4n}$. If divergent, enter "infinity" or "-infinity".
 - **a**. *e*
 - **b**. e^2
 - **c**. e^4
 - **d**. e^{8}
 - **e**. ∞

- 7. (4 points) Compute $\sum_{n=1}^{\infty} \frac{(-3)^n}{n!}$. If divergent, enter "infinity" or "-infinity".
 - **a**. e^3
 - **b**. e^{-3}
 - **c**. $-e^3 1$
 - **d**. $e^{-3} 1$
 - **e**. ∞
- **8**. (4 points) If $S = \sum_{n=1}^{\infty} a_n$ and $S_k = \frac{k}{2k+1}$, then
 - **a**. S = 0
 - **b**. S = 1
 - **c**. $S = \frac{1}{2}$
 - **d**. $S = \frac{1}{3}$
 - e. $S = \infty$
- **9**. (4 points) If the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}$ is approximated by the 99th partial sum $S_{99} = \sum_{n=1}^{99} \frac{(-1)^{n+1}}{n^3} \approx 0.90154318486844623867$, how many digits of accuracy are guaranteed in this approximation? For example, if the error is $|E_{99}| < 10^{-5}$, then only the digits 0.9015 are accurate, and you would answer 4.
 - **a**. 4
 - **b**. 5
 - **c**. 10
 - **d**. 100
 - **e**. 1000000

(14	4 points) T	he series	$\sum_{n=1}^{\infty} \frac{1}{n-1}$	can be show	vn to diverge b	y which of the f	ollowing Conve	rgence
			n=2		ll that don't wo			
a.	n th -Term te	st for Div	ergence:					
		Yes	No					
b.	Integral Tes	st:						
		res	No					
C.	p-Series Te	est:						
		res	No					
d.	Simple Cor	mparison	Test comparir	ng to $\sum_{n=2}^{\infty} \frac{1}{n}$	-:			
		res	No					
е.	Limit Comp	arison Te	est comparing	to $\sum_{n=2}^{\infty} \frac{1}{n}$:				
		res	No					
f.	Ratio Test:							
		res	No					
g.	Alternating	Series Te	est:					

No

11 . (14 points) The series $\sum_{n=2}^{\infty} \frac{1}{n^2-1}$ can be shown to converge by which of the following
Convergence Tests? Check Yes for all that work; check No for all that don't work.
a . n^{th} -Term test for Divergence:
Yes No
b . Integral Test:
Yes No
c . <i>p</i> -Series Test:
Yes No
d . Simple Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^2}$:
Yes No
e . Limit Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^2}$:
Yes No
f. Ratio Test:
Yes No
a Alternating Series Test:

- **12**. (18 points) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^n}{1+\sqrt{n}} (x-3)^n.$
 - a. Find the radius of convergence and state the open interval of absolute convergence.

R =____. Absolutely convergent on (_____, $_$ __).

b. Check the Left Endpoint:

x =____ The series becomes_____

Circle one:

Convergent

Divergent

c. Check the Right Endpoint:

x =_____Reasons:

Reasons:

The series becomes_____

Circle one:

Convergent

Divergent

d. State the Interval of Convergence.

Interval=

- **13**. (18 points) Determine whether the recursively defined sequence $a_1 = 2\sqrt{6}$ and $a_{n+1} = \frac{(a_n)^2 + 16}{10}$ is convergent or divergent. If convergent, find the limit. If divergent, say infinity or -infinity.
 - **a**. Find the first 3 terms: $a_1 =$ _____ $a_2 =$ ____ $a_3 =$ _____
 - **b**. Assuming the limit $\lim_{n \to \infty} a_n$ exists, find the possible limits.

c. Prove the sequence is bounded or unbounded above or below (as appropriate).

d. Prove the sequence is increasing or decreasing (as appropriate).

e. State whether the sequence is convergent or divergent and name the theorem. If convergent, determine the limit. If divergent, determine if it is infinity or -infinity.

14. (8 points) A ball is dropped from a height of 72 feet. Each time it bounces it reaches a height which is $\frac{1}{2}$ of the height on the previous bounce. What is the total distance travelled by the ball (with an infinite number of bounces)?