\qquad
MATH 172
Exam 3
Spring 2020
Sections 501
Solutions
P. Yasskin

Multiple Choice: (Points indicated. No part credit.)

1. (1 points) An Aggie does not lie, cheat or steal or tolerate those who do.

True $\quad X \quad$ False \square
2. (1 points) Each answer is one of the following or a sum of these:
a rational number in lowest terms, e.g. $-\frac{217}{5}$ which is entered as " $-217 / 5$ "
a rational number in lowest terms times π, e.g. $\frac{217}{5} \pi$ which is entered as "217/5pi"
exponentials such as e^{4} or $3^{12 / 5}$ which are entered as " $e^{\wedge} 4$ " or " $3^{\wedge}(12 / 5)$ "
positive infinity, ∞, which is entered as "infinity"
negative infinity, $-\infty$, which is entered as "-infinity"
convergent, which is entered as "convergent"
divergent, which is entered as "divergent"
Do not leave any spaces. Do not use decimals.
I read this.
True $\quad \mathrm{X}$
False $\quad \square$
3. (4 points) Compute $\sum_{n=1}^{\infty} \frac{4}{2^{n}}$.
a. 0
b. 1
c. 2
d. 4 correct choice
e. ∞

Solution: Geometric $a=\frac{4}{2}=2 \quad r=\frac{1}{2} \quad S=\frac{a}{1-r}=\frac{2}{1-\frac{1}{2}}=4$

$1-9$	$/ 30$	13	$/ 18$
$10-11$	$/ 28$	14	$/ 8$
12	$/ 18$	Total	$/ 102$

4. (4 points) Compute $\sum_{n=1}^{\infty}\left(\frac{n}{2 n-1}-\frac{n+1}{2 n+1}\right)$.
a. 0
b. $\frac{1}{2}$ correct choice
c. 1
d. $\frac{3}{2}$
e. ∞

Solution: Telescoping

$$
\begin{aligned}
& S_{k}=\sum_{n=1}^{\infty}\left(\frac{n}{2 n-1}-\frac{n+1}{2 n+1}\right)=\left(1-\frac{2}{3}\right)+\left(\frac{2}{3}-\frac{3}{5}\right)+\cdots+\left(\frac{k}{2 k-1}-\frac{k+1}{2 k+1}\right)=1-\frac{k+1}{2 k+1} \\
& S=\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(1-\frac{k+1}{2 k+1}\right)=1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

5. (4 points) Compute $\lim _{n \rightarrow \infty}\left(\sqrt{n^{6}+5 n^{3}}-\sqrt{n^{6}-4 n^{3}}\right)$.
a. $-\infty$
b. -4
c. 9
d. $\frac{9}{2}$ correct choice
e. ∞

Solution: $\lim _{n \rightarrow \infty}\left(\sqrt{n^{6}+5 n^{3}}-\sqrt{n^{6}-4 n^{3}}\right) \frac{\sqrt{n^{6}+5 n^{3}}+\sqrt{n^{6}-4 n^{3}}}{\sqrt{n^{6}+5 n^{3}}+\sqrt{n^{6}-4 n^{3}}}=\lim _{n \rightarrow \infty} \frac{\left(n^{6}+5 n^{3}\right)-\left(n^{6}-4 n^{3}\right)}{\sqrt{n^{6}+5 n^{3}}+\sqrt{n^{6}-4 n^{3}}}$ $=\lim _{n \rightarrow \infty} \frac{9 n^{3}}{\sqrt{n^{6}+5 n^{3}}+\sqrt{n^{6}-4 n^{3}}} \cdot \frac{\frac{1}{n^{3}}}{\frac{1}{n 3}}=\lim _{n \rightarrow \infty} \frac{9}{\sqrt{1+5 n^{-3}}+\sqrt{1-2 n^{-3}}}=\frac{9}{2}$
6. (4 points) Compute $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{4 n}$. If divergent, enter "infinity" or "-infinity".
a. e
b. e^{2} correct choice
c. e^{4}
d. e^{8}
e. ∞

Solution: $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{4 n}=e^{\ln _{n} \lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{4 n}}=\exp \lim _{n \rightarrow \infty} 4 n \ln \left(1+\frac{1}{2 n}\right)$

$$
=\exp \lim _{n \rightarrow \infty} \frac{4 \ln \left(1+\frac{1}{2 n}\right)}{\frac{1}{n}} \stackrel{l^{\prime} H}{=} \exp \lim _{n \rightarrow \infty} \frac{\frac{4}{1+\frac{1}{2 n}}\left(\frac{-1}{2 n^{2}}\right)}{\frac{-1}{n^{2}}}=\exp \lim _{n \rightarrow \infty} \frac{2}{1+\frac{1}{2 n}}=e^{2}
$$

7. (4 points) Compute $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n!}$. If divergent, enter "infinity" or "-infinity".
a. e^{3}
b. e^{-3}
c. $-e^{3}-1$
d. $e^{-3}-1$ correct choice
e. ∞

Solution: A standard Maclaurin series is $e^{x}=\sum_{n=0}^{\infty} \frac{(x)^{n}}{n!}$.
At $x=-3$ this says $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}=e^{-3}$. Our series starts at $n=1$. So
$\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}-1=e^{-3}-1$
8. (4 points) If $S=\sum_{n=1}^{\infty} a_{n}$ and $S_{k}=\frac{k}{2 k+1}$, then
a. $S=0$
b. $S=1$
c. $S=\frac{1}{2} \quad$ correct choice
d. $S=\frac{1}{3}$
e. $S=\infty$

Solution: $\quad S=\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty} \frac{k}{2 k+1}=\frac{1}{2}$
9. (4 points) If the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}$ is approximated by the $99^{\text {th }}$ partial sum $S_{99}=\sum_{n=1}^{99} \frac{(-1)^{n+1}}{n^{3}} \approx 0.90154318486844623867$, how many digits of accuracy are guaranteed in this approximation? For example, if the error is $\left|E_{99}\right|<10^{-5}$, then only the digits 0.9015 are accurate, and you would answer 4.
a. 4
b. 5 correct choice
c. 10
d. 100
e. 1000000

Solution: Since this is an alternating, decreasing series, the error is less than the absolute value of the next term which is $\left|E_{99}\right|<\frac{1}{100^{3}}=10^{-6}$. So the approximation is good to 5 terms.
10. (14 points) The series $\sum_{n=2}^{\infty} \frac{1}{n-1}$ can be shown to diverge by which of the following Convergence Tests? Check Yes for all that work; check No for all that don't work.
a. $n^{\text {th }}$-Term test for Divergence:

$$
\square \text { Yes } \quad \mathrm{X} \text { No } \lim _{n \rightarrow \infty} \frac{1}{n-1}=0 \quad \text { Test Fails }
$$

b. Integral Test:

$$
\pm \text { X_Yes } \quad \text { No } \int_{2}^{\infty} \frac{1}{n-1} d n=[\ln (n-1)]_{2}^{\infty}=\infty
$$

c. p-Series Test:
$\square \mathrm{X} \quad$ Yes \quad No $\sum_{n=2}^{\infty} \frac{1}{n-1}=1+\frac{1}{2}+\frac{1}{3}+\cdots \quad p$-series with $p=1 \quad$ harmonic
d. Simple Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$:

e. Limit Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$:

f. Ratio Test:

g. Alternating Series Test:
\square Yes $\quad \mathrm{X}$ _ No This series is not alternating.
11. (14 points) The series $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ can be shown to converge by which of the following Convergence Tests? Check Yes for all that work; check No for all that don't work.
a. $n^{\text {th }}$-Term test for Divergence:

$$
\square \text { Yes } \quad \mathrm{X} \text { No } \lim _{n \rightarrow \infty} \frac{1}{n^{2}-1}=0 \quad \text { Test Fails }
$$

b. Integral Test:

$$
\text { X_Yes } \square \text { No } \int_{2}^{\infty} \frac{1}{n^{2}-1} d n=\left[\frac{1}{2} \ln \left(\frac{n-1}{n+1}\right)\right]_{2}^{\infty}=\frac{1}{2} \ln 3<\infty
$$

c. p-Series Test:

$$
\text { X_No This is not a } p \text {-series. }
$$

d. Simple Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$:

$$
\square \text { Yes } \quad \mathrm{X}=\text { No } \quad \frac{1}{n^{2}-1}>\frac{1}{n^{2}} \quad \text { Wrong inequality. }
$$

e. Limit Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$:

$$
\square \text { Yes } \square \text { No } \lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-1}=1 \text { and } 0<1<\infty
$$

f. Ratio Test:

g. Alternating Series Test:

Work Out: (Points indicated. Part credit possible. Show all work.)
12. (18 points) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}}{1+\sqrt{n}}(x-3)^{n}$.
a. Find the radius of convergence and state the open interval of absolute convergence.
$R=$ \qquad . Absolutely convergent on \qquad , \qquad).

Solution: To find the radius, we use the Ratio Test. $\quad\left|a_{n}\right|=\frac{2^{n}|x-3|^{n}}{1+\sqrt{n}} \quad\left|a_{n+1}\right|=\frac{2^{n+1}|x-3|^{n+1}}{1+\sqrt{n+1}}$
$\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{2^{n+1}|x-3|^{n+1}}{1+\sqrt{n+1}} \frac{1+\sqrt{n}}{2^{n}|x-3|^{n}}=2|x-3| \lim _{n \rightarrow \infty} \frac{1+\sqrt{n}}{1+\sqrt{n+1}}=2|x-3|<1$
$|x-3|<\frac{1}{2}$ So $R=\frac{1}{2}$. Absolutely convergent on $\left(\frac{5}{2}, \frac{7}{2}\right)$
b. Check the Left Endpoint:
$x=$ \qquad The series becomes \qquad Circle one:
Reasons:
Solution: $x=\frac{5}{2}: \quad \sum_{n=1}^{\infty} \frac{2^{n}}{1+\sqrt{n}}\left(-\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\sqrt{n}}$
Divergent
This converges by the Alternating Series Test because $\frac{1}{1+\sqrt{n}}$ is positive, decreasing and $\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}}=0$.
c. Check the Right Endpoint:
$x=$ \qquad The series becomes \qquad Circle one:
Reasons:
Convergent
Solution: $x=\frac{7}{2}: \quad \sum_{n=1}^{\infty} \frac{2^{n}}{1+\sqrt{n}}\left(\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$
Compare this to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is a p-series with $p=\frac{1}{2}<1$ and so diverges.
We can't use the Simple Comparison Test because $\frac{1}{1+\sqrt{n}}<\frac{1}{\sqrt{n}}$. So we compute:

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}} \cdot \frac{\sqrt{n}}{1}=\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{\sqrt{n}}+1}=1 .
$$

Since $0<L=1<\infty$, the series $\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$ diverges by the Limit Comparison Test.
d. State the Interval of Convergence.

Interval= \qquad
Solution: The Interval of Convergence.is: $\quad\left[\frac{5}{2}, \frac{7}{2}\right)$
13. (18 points) Determine whether the recursively defined sequence $a_{1}=2 \sqrt{6}$ and $a_{n+1}=\frac{\left(a_{n}\right)^{2}+16}{10}$ is convergent or divergent. If convergent, find the limit. If divergent, say infinity or -infinity.
a. Find the first 3 terms: $a_{1}=$ \qquad $a_{2}=\quad a_{3}=$ \qquad
Solution: $a_{1}=_2 \sqrt{6} \quad a_{2}=_4 _\quad a_{3}=_3.2$
b. Assuming the limit $\lim _{n \rightarrow \infty} a_{n}$ exists, find the possible limits.

Solution: Assume $\lim _{n \rightarrow \infty} a_{n}=L$. Then $\lim _{n \rightarrow \infty} a_{n+1}=L$ also. From the recursion relation:

$$
L=\frac{L^{2}+16}{10} \quad L^{2}-10 L+16=0 \quad(L-2)(L-8)=0 \quad L=2,8
$$

c. Prove the sequence is bounded or unbounded above or below (as appropriate).

Solution: It looks like the terms are always >0 or from the possible limits, always >2. We will show it's bounded below by 0 . So we want to prove $a_{n}>0$.
Initialization Step: $\quad a_{1}=2 \sqrt{6}>0$
Induction Step: Assume $a_{k}>0$. We need to prove $a_{k+1}>0$.
Proof:

$$
a_{k}>0 \quad \Rightarrow \quad\left(a_{k}\right)^{2}>0 \quad \Rightarrow \quad \frac{\left(a_{k}\right)^{2}+16}{10}>\frac{16}{10}>0 \quad \Rightarrow \quad a_{k+1}>0
$$

d. Prove the sequence is increasing or decreasing (as appropriate).

Solution: From the first 3 terms, we expect the sequence is decreasing. So we want to prove $a_{n+1}<a_{n}$.
Initialization Step: $a_{1}=2 \sqrt{6}>2 \sqrt{4}=4=a_{2}$
Induction Step: Assume $a_{k+1}<a_{k}$. We need to prove $a_{k+2}<a_{k+1}$.
Proof: We know $a_{n}>0$. So:

$$
a_{k+1}<a_{k} \Rightarrow\left(a_{k+1}\right)^{2}<\left(a_{k}\right)^{2} \Rightarrow \frac{\left(a_{k+1}\right)^{2}+16}{10}<\frac{\left(a_{k}\right)^{2}+16}{10} \Rightarrow a_{k+2}<a_{k+1}
$$

e. State whether the sequence is convergent or divergent and name the theorem. If convergent, determine the limit. If divergent, determine if it is infinity or -infinity.

Solution: The sequence is convergent by the Bounded Monotonic Sequence Theorem. Since it has a limit and the limit must be 2 or 8 and it decreases from 4 the limit must be $\lim _{n \rightarrow \infty} a_{n}=2$.
14. (8 points) A ball is dropped from a height of 72 feet. Each time it bounces it reaches a height which is $\frac{1}{2}$ of the height on the previous bounce. What is the total distance travelled by the ball (with an infinite number of bounces)?

Solution: The ball drops 72 ft , rises and falls 36 ft , rises and falls 18 ft , etc. The total distance is:

$$
D=72+2(36+18+9+\cdots)=72+2 \sum_{n=0}^{\infty} 36\left(\frac{1}{2}\right)^{n}=72+2\left(\frac{36}{1-\frac{1}{2}}\right)=72+2(72)=216
$$

