Name. **MATH 172** Exam 3 Spring 2020 Sections 501 Solutions P. Yasskin Multiple Choice: (Points indicated. No part credit.) **1**. (1 points) An Aggie does not lie, cheat or steal or tolerate those who do. True Х False 2. (1 points) Each answer is one of the following or a sum of these: a rational number in lowest terms, e.g. $-\frac{217}{5}$ which is entered as "-217/5" a rational number in lowest terms times π , e.g. $\frac{217}{5}\pi$ which is entered as "217/5pi" exponentials such as e^4 or $3^{12/5}$ which are entered as "e⁴" or "3^(12/5)" positive infinity, ∞ , which is entered as "infinity" negative infinity, $-\infty$, which is entered as "-infinity" convergent, which is entered as "convergent" divergent, which is entered as "divergent" Do not leave any spaces. Do not use decimals. I read this. True Х False **3**. (4 points) Compute $\sum_{n=1}^{\infty} \frac{4}{2^n}$. **a**. 0 **b**. 1 **c**. 2 **d**. 4 correct choice **e**. ∞ **Solution**: Geometric $a = \frac{4}{2} = 2$ $r = \frac{1}{2}$ $S = \frac{a}{1-r} = \frac{2}{1-\frac{1}{2}} = 4$ 1-9 /30 13 10-11 /28 14 12 /18 Total

/18

/8

/102

4. (4 points) Compute
$$\sum_{n=1}^{\infty} \left(\frac{n}{2n-1} - \frac{n+1}{2n+1} \right)$$
.

a. 0 **b**. $\frac{1}{2}$ correct choice **c**. 1 **d**. $\frac{3}{2}$

Solution: Telescoping

$$S_{k} = \sum_{n=1}^{\infty} \left(\frac{n}{2n-1} - \frac{n+1}{2n+1} \right) = \left(1 - \frac{2}{3} \right) + \left(\frac{2}{3} - \frac{3}{5} \right) + \dots + \left(\frac{k}{2k-1} - \frac{k+1}{2k+1} \right) = 1 - \frac{k+1}{2k+1}$$
$$S = \lim_{k \to \infty} S_{k} = \lim_{k \to \infty} \left(1 - \frac{k+1}{2k+1} \right) = 1 - \frac{1}{2} = \frac{1}{2}$$

5. (4 points) Compute $\lim_{n\to\infty} \left(\sqrt{n^6 + 5n^3} - \sqrt{n^6 - 4n^3}\right).$

- **a**. –∞
- **b**. -4
- **c**. 9
- **d**. $\frac{9}{2}$ correct choice
- **e**. ∞

Solution:
$$\lim_{n \to \infty} \left(\sqrt{n^6 + 5n^3} - \sqrt{n^6 - 4n^3} \right) \frac{\sqrt{n^6 + 5n^3} + \sqrt{n^6 - 4n^3}}{\sqrt{n^6 + 5n^3} + \sqrt{n^6 - 4n^3}} = \lim_{n \to \infty} \frac{(n^6 + 5n^3) - (n^6 - 4n^3)}{\sqrt{n^6 + 5n^3} + \sqrt{n^6 - 4n^3}}$$
$$= \lim_{n \to \infty} \frac{9n^3}{\sqrt{n^6 + 5n^3} + \sqrt{n^6 - 4n^3}} \cdot \frac{\frac{1}{n^3}}{\frac{1}{n^3}} = \lim_{n \to \infty} \frac{9}{\sqrt{1 + 5n^{-3}} + \sqrt{1 - 2n^{-3}}} = \frac{9}{2}$$

6. (4 points) Compute $\lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^{4n}$. If divergent, enter "infinity" or "-infinity".

- **a**. e**b**. e^2 correct choice
- **c**. *e*⁴
- **d**. *e*⁸
- **e**. ∞

Solution:
$$\lim_{n \to \infty} \left(1 + \frac{1}{2n} \right)^{4n} = e^{\ln \lim_{n \to \infty} \left(1 + \frac{1}{2n} \right)^{4n}} = \exp \lim_{n \to \infty} 4n \ln \left(1 + \frac{1}{2n} \right)$$
$$= \exp \lim_{n \to \infty} \frac{4 \ln \left(1 + \frac{1}{2n} \right)}{\frac{1}{n}} \stackrel{l'H}{=} \exp \lim_{n \to \infty} \frac{\frac{4}{1 + \frac{1}{2n}} \left(\frac{-1}{2n^2} \right)}{\frac{-1}{n^2}} = \exp \lim_{n \to \infty} \frac{2}{1 + \frac{1}{2n}} = e^2$$

7. (4 points) Compute $\sum_{n=1}^{\infty} \frac{(-3)^n}{n!}$. If divergent, enter "infinity" or "-infinity". **a.** e^3 **b.** e^{-3} **c.** $-e^3 - 1$ **d.** $e^{-3} - 1$ correct choice **e.** ∞ **Solution:** A standard Maclaurin series is $e^x = \sum_{n=0}^{\infty} \frac{(x)^n}{n!}$. At x = -3 this says $\sum_{n=0}^{\infty} \frac{(-3)^n}{n!} = e^{-3}$. Our series starts at n = 1. So $\sum_{n=1}^{\infty} \frac{(-3)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-3)^n}{n!} - 1 = e^{-3} - 1$ 8. (4 points) If $S = \sum_{n=1}^{\infty} a_n$ and $S_k = \frac{k}{2k+1}$, then **a.** S = 0 **b.** S = 1 **c.** $S = \frac{1}{2}$ correct choice **d.** $S = \frac{1}{3}$

e. $S = \infty$

Solution: $S = \lim_{k \to \infty} S_k = \lim_{k \to \infty} \frac{k}{2k+1} = \frac{1}{2}$

9. (4 points) If the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}$ is approximated by the 99th partial sum

 $S_{99} = \sum_{n=1}^{2^{2}} \frac{(-1)^{n+1}}{n^{3}} \approx 0.90154318486844623867, \text{ how many digits of accuracy are guaranteed in this approximation? For example, if the error is <math>|E_{99}| < 10^{-5}$, then only the digits 0.9015 are accurate,

approximation? For example, if the error is $|E_{99}| < 10^{-9}$, then only the digits 0.9015 are accurate, and you would answer 4.

a. 4

- **b**. 5 correct choice
- **c**. 10

d. 100

e. 1000000

Solution: Since this is an alternating, decreasing series, the error is less than the absolute value of the next term which is $|E_{99}| < \frac{1}{100^3} = 10^{-6}$. So the approximation is good to 5 terms.

- **10**. (14 points) The series $\sum_{n=2}^{\infty} \frac{1}{n-1}$ can be shown to diverge by which of the following Convergence Tests? Check Yes for all that work; check No for all that don't work.
 - **a**. *n*th-Term test for Divergence:

Yes X No
$$\lim_{n \to \infty} \frac{1}{n-1} = 0$$
 Test Fails

b. Integral Test:

XYes **No**
$$\int_{2}^{\infty} \frac{1}{n-1} dn = \left[\ln(n-1) \right]_{2}^{\infty} = \infty$$

c. p-Series Test:

X_Yes No
$$\sum_{n=2}^{\infty} \frac{1}{n-1} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$
 p-series with $p = 1$ harmonic

d. Simple Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$:

X_Yes No
$$\frac{1}{n-1} > \frac{1}{n}$$
 and $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges

e. Limit Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$:

Yes
$$\lim_{n \to \infty} \frac{n}{n-1} = 1 \text{ and } 0 < 1 < \infty$$

f. Ratio Test:

Yes X No
$$\lim_{n \to \infty} \frac{n-1}{(n+1)-1} = 1$$
 Test Fails

g. Alternating Series Test:

_X__No This series is not alternating.

- **11**. (14 points) The series $\sum_{n=2}^{\infty} \frac{1}{n^2 1}$ can be shown to converge by which of the following Convergence Tests? Check Yes for all that work; check No for all that don't work.
 - **a**. *n*th-Term test for Divergence:

Yes X No
$$\lim_{n \to \infty} \frac{1}{n^2 - 1} = 0$$
 Test Fails

b. Integral Test:

X_Yes
$$\int_2^\infty \frac{1}{n^2 - 1} dn = \left[\frac{1}{2}\ln\left(\frac{n-1}{n+1}\right)\right]_2^\infty = \frac{1}{2}\ln 3 < \infty$$

c. p-Series Test:

d. Simple Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^2}$:

e. Limit Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^2}$:

X Yes No
$$\lim_{n \to \infty} \frac{n^2}{n^2 - 1} = 1$$
 and $0 < 1 < \infty$

f. Ratio Test:

Yes X No
$$\lim_{n \to \infty} \frac{n^2 - 1}{(n+1)^2 - 1} = 1$$
 Test Fails

No

g. Alternating Series Test:

This series is not alternating.

- **12**. (18 points) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^n}{1+\sqrt{n}} (x-3)^n.$
 - **a**. Find the radius of convergence and state the open interval of absolute convergence.

Solution: To find the radius, we use the Ratio Test.
$$|a_n| = \frac{2^n |x-3|^n}{1+\sqrt{n}}$$
 $|a_{n+1}| = \frac{2^{n+1} |x-3|^{n+1}}{1+\sqrt{n+1}}$
 $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{2^{n+1} |x-3|^{n+1}}{1+\sqrt{n+1}} \frac{1+\sqrt{n}}{2^n |x-3|^n} = 2|x-3| \lim_{n \to \infty} \frac{1+\sqrt{n}}{1+\sqrt{n+1}} = 2|x-3| < 1$
 $|x-3| < \frac{1}{2}$ So $R = \frac{1}{2}$. Absolutely convergent on $\left(\frac{5}{2}, \frac{7}{2}\right)$

R =____. Absolutely convergent on (_____, ____).

b. Check the Left Endpoint:

$$x =$$
 _____ The series becomes _____ Circle one:Reasons:ConvergentSolution: $x = \frac{5}{2}$: $\sum_{n=1}^{\infty} \frac{2^n}{1 + \sqrt{n}} \left(-\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{1 + \sqrt{n}}$ DivergentThis converges by the Alternating Series Test because $\frac{1}{1 + \sqrt{n}}$ is positive, decreasing and $\lim_{n \to \infty} \frac{1}{1 + \sqrt{n}} = 0.$

c. Check the Right Endpoint:

x = _____The series becomes _____Circle one:Reasons:ConvergentSolution: $x = \frac{7}{2}$: $\sum_{n=1}^{\infty} \frac{2^n}{1 + \sqrt{n}} \left(\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{1}{1 + \sqrt{n}}$ DivergentCompare this to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is a *p*-series with $p = \frac{1}{2} < 1$ and so diverges.DivergentWe can't use the Simple Comparison Test because $\frac{1}{1 + \sqrt{n}} < \frac{1}{\sqrt{n}}$. So we compute:

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{1 + \sqrt{n}} \cdot \frac{\sqrt{n}}{1} = \lim_{n \to \infty} \frac{1}{\frac{1}{\sqrt{n}} + 1} = 1.$$

Since $0 < L = 1 < \infty$, the series $\sum_{n=1}^{\infty} \frac{1}{1 + \sqrt{n}}$ diverges by the Limit Comparison Test.

d. State the Interval of Convergence.

Solution: The Interval of Convergence.is: $\left\lceil \frac{5}{2}, \frac{7}{2} \right\rceil$

Interval= _____

13. (18 points) Determine whether the recursively defined sequence $a_1 = 2\sqrt{6}$ and $a_{n+1} = \frac{(a_n)^2 + 16}{10}$ is convergent or divergent. If convergent, find the limit. If divergent, say infinity or -infinity.

a. Find the first 3 terms: $a_1 = _ a_2 = _ a_3 = _$

Solution: $a_1 = \underline{2\sqrt{6}}$ $a_2 = \underline{4}$ $a_3 = \underline{3.2}$

b. Assuming the limit $\lim_{n \to \infty} a_n$ exists, find the possible limits.

Solution: Assume $\lim_{n \to \infty} a_n = L$. Then $\lim_{n \to \infty} a_{n+1} = L$ also. From the recursion relation: $L = \frac{L^2 + 16}{10}$ $L^2 - 10L + 16 = 0$ (L - 2)(L - 8) = 0 L = 2, 8

c. Prove the sequence is bounded or unbounded above or below (as appropriate).

Solution: It looks like the terms are always > 0 or from the possible limits, always > 2. We will show it's bounded below by 0. So we want to prove $a_n > 0$. Initialization Step: $a_1 = 2\sqrt{6} > 0$ Induction Step: Assume $a_k > 0$. We need to prove $a_{k+1} > 0$. Proof:

$$a_k > 0 \implies (a_k)^2 > 0 \implies \frac{(a_k)^2 + 16}{10} > \frac{16}{10} > 0 \implies a_{k+1} > 0$$

d. Prove the sequence is increasing or decreasing (as appropriate).

Solution: From the first 3 terms, we expect the sequence is decreasing. So we want to prove $a_{n+1} < a_n$. Initialization Step: $a_1 = 2\sqrt{6} > 2\sqrt{4} = 4 = a_2$ Induction Step: Assume $a_{k+1} < a_k$. We need to prove $a_{k+2} < a_{k+1}$. Proof: We know $a_n > 0$. So:

$$a_{k+1} < a_k \implies (a_{k+1})^2 < (a_k)^2 \implies \frac{(a_{k+1})^2 + 16}{10} < \frac{(a_k)^2 + 16}{10} \implies a_{k+2} < a_{k+1}$$

e. State whether the sequence is convergent or divergent and name the theorem. If convergent, determine the limit. If divergent, determine if it is infinity or -infinity.

Solution: The sequence is convergent by the Bounded Monotonic Sequence Theorem. Since it has a limit and the limit must be 2 or 8 and it decreases from 4 the limit must be $\lim_{n \to \infty} a_n = 2$.

14. (8 points) A ball is dropped from a height of 72 feet. Each time it bounces it reaches a height which is $\frac{1}{2}$ of the height on the previous bounce. What is the total distance travelled by the ball (with an infinite number of bounces)?

Solution: The ball drops 72 ft, rises and falls 36 ft, rises and falls 18 ft, etc. The total distance is:

$$D = 72 + 2(36 + 18 + 9 + \dots) = 72 + 2\sum_{n=0}^{\infty} 36\left(\frac{1}{2}\right)^n = 72 + 2\left(\frac{36}{1 - \frac{1}{2}}\right) = 72 + 2(72) = 216$$