Name			1-11	/59	13	/15
MATH 172	Exam 2	Spring 2021	12	/15	14	/15
Sections 501		P. Yasskin			Tatal	1404
Multiple Choice and Short Answer: (Points indicated. No Part Credit)					Iotal	/104

1. (5 pts) How many terms are there in the general partial fraction expansion of

Note:
$$\frac{A}{(x-2)^2}$$
 and $\frac{Bx+C}{x^2+4}$ each count as 1 term.

The number of terms is

Answer: *n* = _____

2. (5 pts) Find the coeficients in the partial fraction decomposition

$$\frac{x-1}{x^2 - 5x + 6} = \frac{A}{x-3} + \frac{B}{x-2}$$

Then compute A - 2B.

Answer: A - 2B = _____

- **3**. (5 pts) Given that $\frac{32}{x^4 16} = \frac{1}{x 2} \frac{1}{x + 2} \frac{4}{x^2 + 4}$ compute $\int_0^1 \frac{32}{x^4 16} dx$.
 - **a**. $-\ln 3 \arctan \frac{1}{2}$ **b**. $-\ln 3 - 2\arctan \frac{1}{2}$ **c**. $\ln 2 - \ln 3 - \arctan \frac{1}{2}$ **d**. $\ln 2 - \ln 3 - \arctan \frac{1}{2}$ **e**. $2\ln 2 - \ln 3 - \arctan \frac{1}{2}$ **f**. $2\ln 2 - \ln 3 - 2\arctan \frac{1}{2}$
- **4**. (5 pts) The region between $x = 25 y^2$ and the *y*-axis is rotated about the *y*-axis. Find the volume.
 - **a.** $\frac{2^4 5^4}{3} \pi$ **b.** $\frac{2^4 5^3}{3} \pi$ **c.** $\frac{2^3 5^4}{3} \pi$ **d.** $2^3 5^5 3 \pi$ **e.** $2^2 5^4 3 \pi$

5. (5 pts) The base of a solid is the region bounded by

 $y = 4x - x^2$ and $y = 8x - x^2$ and x = 3.

The slices perpendicular to the *x*-axis are semicircles with a diameter on the base. Find the volume.

- a. 9π g. 72π
- b. 12π h. 96π
- c. 18π i. 150π
- d. 24π j. 210π
- e. 36π k. 270π
- f. 48π l. 360π

- **6**. (5 pts) The region bounded by $y = 4x x^2$ and $y = 8x x^2$ and x = 3 (See figure above.) is rotated about the *x*-axis. Find the volume.
 - a. 9π g. 72π
 - b. 12π h. 96π
 - c. 18π i. 150π
 - d. 24π j. 210π
 - e. 36π k. 270π
 - f. 48π l. 360π
- 7. (5 pts) The region bounded by $y = 4x x^2$ and $y = 8x x^2$ and x = 3 (See figure above.) is rotated about the *y*-axis. Find the volume.
 - a. 9π g. 72π
 - b. 12π h. 96π
 - c. 18π i. 150π
 - d. 24π j. 210π
 - e. 36π k. 270π
 - f. 48π l. 360π

- 8. (5 pts) Compute the improper integral $\int_{1}^{\infty} xe^{-x} dx$.
 - **a**. 0
 - **b**. $\frac{1}{e}$

 - **c**. $\frac{2}{e}$
 - **d**. $\frac{4}{e}$
 - **e**. ∞

9. (5 pts) Compute the improper integral $\int_{0}^{1} \frac{2}{\sqrt{1-x^2}} dx$.

- **a**. π
- **b**. $\frac{\pi}{2}$
- c. $\frac{\pi}{3}$
- **d**. $\frac{\pi}{4}$
- e. divergent

10. (5 pts) Compute the improper integral $\int_{0}^{16} \frac{1}{(x-8)^{4/3}} dx$.

- **a**. 0
- **b**. $-\frac{3}{4}$
- **c**. $-\frac{3}{2}$
- **d**. −3
- e. divergent
- **11**. (9 pts) The rest position of a certain spring is at x = 0 cm. It takes 72 ergs of work to stretch it from x = 4 cm to x = 8 cm.
 - a. Find the spring constant.

$$k = \underline{\qquad} \frac{\text{dynes}}{\text{cm}}$$

b. How much work does it take to stretch it from x = 2 cm to x = 6 cm?

c. How much forch is needed to hold it at x = 5 cm?

 $F = ____ dynes$

Work Out: (Points indicated. Part credit possible. Show all work.)

12. (15 pts) Find the partial fraction expansion for $\frac{2x+9}{x^3+9x} = \frac{A}{x} + \frac{Bx+C}{x^2+9}$.

 $A = _ \qquad B = _ \qquad C = _$

13. (15 pts) Determine if the improper integral $\int_{2}^{\infty} \frac{2}{e^{x} + x} dx$ converges or diverges. Do the integral exactly or use a Comparison Test.

If you do the integral exactly, be sure to state all substitutions you make and their differentials. If you use a comparison, be sure to state the comparison integral, explain why the comparison integral converges or diverges and check the inequality.

(You will be graded for good sentences!)

____Convergent ____Divergent

14. (15 pts) A cone is 12 cm tall and 6 cm in radius at the top.

It is filled with salt water of density $\delta = 1.02 \frac{\text{gm}}{\text{cm}^3}$ to a depth of 8 cm.

Find the work done to pump all the water over the top of the cone. For numerical computations, use the approximation that

 $\delta g = 9.8 \cdot 1.02 \approx 10 \frac{\mathsf{gm} \cdot \mathsf{cm}}{\mathsf{sec}^2}.$

W = _____

