Name\_

**MATH 172** 

Exam 2

Spring 2021

Sections 501

Solutions

P. Yasskin

Multiple Choice and Short Answer: (Points indicated.)

| 1-11 | /59 | 13    | /15  |
|------|-----|-------|------|
| 12   | /15 | 14    | /15  |
|      |     | Total | /104 |

1. (5 pts) How many terms are there in the general partial fraction expansion of

$$\frac{6+7x}{(x-2)^2(x^2-4)(x^2+4)}?$$

Note:  $\frac{A}{(x-2)^2}$  and  $\frac{Bx+C}{x^2+4}$  each count as 1 term.

The number of terms is

**Answer**:  $n = ___5$ 

**Solution**: We factor the denominator:

$$\frac{6+7x}{(x-2)^2(x^4-16)} = \frac{6+7x}{(x-2)^2(x-2)(x+2)(x^2+4)} = \frac{6+7x}{(x-2)^3(x+2)(x^2+4)}$$

There is 1 term for (x + 2), and 3 terms for  $(x - 2)^3$ , and 1 term for  $(x^2 + 4)$ . Or 5 terms:

$$\frac{6+7x}{(x-2)^3(x+2)(x^2+4)} = \frac{A}{x+2} + \frac{B}{x-2} + \frac{C}{4(x-2)^2} + \frac{D}{(x-2)^3} + \frac{Ex+F}{x^2+4}$$

2. (5 pts) Find the coeficients in the partial fraction decomposition

$$\frac{x-1}{x^2-5x+6} = \frac{A}{x-3} + \frac{B}{x-2}$$

Then compute A - 2B.

**Answer**: A - 2B = 4

**Solution**: Clear the denominator and plug in 3 and 2:

$$x - 1 = A(x - 2) + B(x - 3)$$

$$x = 3: \quad 2 = A(1) \quad A = 2 \quad x = 2: \quad 1 = B(-1) \quad B = -1$$

$$\frac{x - 1}{x^2 - 5x + 6} = \frac{2}{x - 3} + \frac{-1}{x - 2} \quad A - 2B = (2) - 2(-1) = 4$$

3. (5 pts) Given that 
$$\frac{32}{x^4 - 16} = \frac{1}{x - 2} - \frac{1}{x + 2} - \frac{4}{x^2 + 4}$$
 compute  $\int_0^1 \frac{32}{x^4 - 16} dx$ .

**a**. 
$$-\ln 3 - \arctan \frac{1}{2}$$

**b**. 
$$-\ln 3 - 2 \arctan \frac{1}{2}$$
 correct choice

**c**. 
$$\ln 2 - \ln 3 - \arctan \frac{1}{2}$$

**d**. 
$$\ln 2 - \ln 3 - 2 \arctan \frac{1}{2}$$

**e**. 
$$2 \ln 2 - \ln 3 - \arctan \frac{1}{2}$$

**f.** 
$$2 \ln 2 - \ln 3 - 2 \arctan \frac{1}{2}$$

**Solution**: 
$$\int \frac{32}{x^4 - 16} dx = \int \frac{1}{x - 2} - \frac{1}{x + 2} - \frac{4}{x^2 + 4} dx$$

On the last term we make the substitution  $x = 2 \tan \theta$   $dx = 2 \sec^2 \theta d\theta$ .

$$\int \frac{4}{x^2 + 4} dx = \int \frac{4}{4 \tan^2 \theta + 4} 2 \sec^2 \theta d\theta = 2 \int 1 d\theta = 2\theta + C = 2 \arctan \frac{x}{2} + C$$
So 
$$\int_0^1 \frac{32}{x^4 - 16} dx = \left[ \ln|x - 2| - \ln|x + 2| - 2 \arctan \frac{x}{2} \right]_0^1 = -\ln 3 - 2 \arctan \frac{1}{2}$$

**4**. (5 pts) The region between  $x = 25 - y^2$  and the *y*-axis is rotated about the *y*-axis. Find the volume.

**a**. 
$$\frac{2^45^4}{3}\pi$$
 correct choice

**b**. 
$$\frac{2^45^3}{3}\pi$$

**c**. 
$$\frac{2^35^4}{3}\pi$$

**d**. 
$$2^35^53\pi$$

**e**. 
$$2^25^43\pi$$

**Solution**: This is a *y*-integral, the slices are horizontal and rotate into disks. The radius is  $r = x = 25 - y^2$ . So the volume is:

$$V = \int_{-5}^{5} \pi r^2 dy = \int_{-5}^{5} \pi (25 - y^2)^2 dy = \int_{-5}^{5} \pi (25^2 - 50y^2 + y^4) dy = \pi \left[ 25^2 y - \frac{50}{3} y^3 + \frac{y^5}{5} \right]_{-5}^{5}$$
$$= 2\pi \left( 5^5 - \frac{2}{3} 5^5 + \frac{5^5}{5} \right) = 2\pi 5^5 \left( 1 - \frac{2}{3} + \frac{1}{5} \right) = 2\pi 5^5 \frac{15 - 10 + 3}{15} = \frac{10^4}{3} \pi$$

(5 pts) The base of a solid is the region bounded by

$$y = 4x - x^2$$
 and  $y = 8x - x^2$  and  $x = 3$ .

The slices perpendicular to the *x*-axis are semicircles with a diameter on the base. Find the volume.



g. 
$$72\pi$$

b. 
$$12\pi$$

h. 
$$96\pi$$

c. 
$$18\pi$$

i. 
$$150\pi$$

d. 
$$24\pi$$

j. 
$$210\pi$$

e. 
$$36\pi$$

k. 
$$270\pi$$

f. 
$$48\pi$$

I. 
$$360\pi$$

**Solution**: The diameter of each semicircle is  $d = (8x - x^2) - (4x - x^2) = 4x$ . Then the radius is r = 2x. So the area of each semicircle is  $A(x) = \frac{1}{2}\pi r^2 = \frac{1}{2}\pi 4x^2 = 2\pi x^2$ . And the volume is

y

$$V = \int_0^3 A(x) \, dx = \int_0^3 2\pi x^2 \, dx = 2\pi \left[ \frac{x^3}{3} \right]_0^3 = 18\pi$$

correct choice

(5 pts) The region bounded by  $y = 4x - x^2$  and  $y = 8x - x^2$  and x = 3 (See figure above.) is rotated about the *x*-axis. Find the volume.

a. 
$$9\pi$$

a. 
$$72\pi$$

b. 
$$12\pi$$

c. 
$$18\pi$$

i. 
$$150\pi$$

d. 
$$24\pi$$

i. 
$$210\pi$$

e. 
$$36\pi$$

k. 
$$270\pi$$
 correct choice

f. 
$$48\pi$$

**Solution**: The slices are vertical and rotate into washers. The outer radius is  $R = 8x - x^2$ . The inner radius is  $r = 4x - x^2$ . So the volume is

$$V = \int_0^3 \pi (R^2 - r^2) dx = \int_0^3 \pi \left( (8x - x^2)^2 - (4x - x^2)^2 \right) dx = \int_0^3 \pi ((64x^2 - 16x^3 + x^4) - (16x^2 - 8x^3 + x^4)) dx$$
$$= \int_0^3 \pi (48x^2 - 8x^3) dx = \pi \left[ 16x^3 - 2x^4 \right]_0^3 = \pi (16 \cdot 3^3 - 2 \cdot 3^4) = 27\pi (16 - 6) = 270\pi$$

 $y = 4x - x^2$  and  $y = 8x - x^2$  and x = 3 (See figure above.) 7. (5 pts) The region bounded by is rotated about the y-axis. Find the volume.

a. 
$$9\pi$$

g. 
$$72\pi$$
 correct choice

b. 
$$12\pi$$

h. 
$$96\pi$$

c. 
$$18\pi$$

i. 
$$150\pi$$

d. 
$$24\pi$$

i. 
$$210\pi$$

e. 
$$36\pi$$

k. 
$$270\pi$$

f. 
$$48\pi$$

1. 
$$360\pi$$

**Solution**: The slices are vertical and rotate into cylinders. The radius is r = x and the height is  $h = (8x - x^2) - (4x - x^2) = 4x$ . So the volume is

$$V = \int_0^3 2\pi r h \, dx = 2\pi \int_0^3 (x)(4x) dx = 8\pi \left[ \frac{x^3}{3} \right]_0^3 = 72\pi$$

- **8**. (5 pts) Compute the improper integral  $\int_{1}^{\infty} xe^{-x} dx$ .
  - $\mathbf{a}. 0$
  - **b**.  $\frac{1}{e}$
  - c.  $\frac{2}{e}$  correct choice
  - d.  $\frac{4}{e}$
  - **e**. ∞

**Solution**: We use integration by parts with  $\begin{array}{ccc} u = x & dv = e^{-x} dx \\ du = dx & v = -e^{-x} \end{array}$ :

$$\int_{1}^{\infty} x e^{-x} dx = \left[ -x e^{-x} + \int e^{-x} dx \right]_{1}^{\infty} = \left[ -x e^{-x} - e^{-x} \right]_{1}^{\infty} = 0 - (-e^{-1} - e^{-1}) = \frac{2}{e}$$

- **9**. (5 pts) Compute the improper integral  $\int_0^1 \frac{2}{\sqrt{1-x^2}} dx$ .
  - **a**.  $\pi$  correct choice
  - **b**.  $\frac{\pi}{2}$
  - c.  $\frac{\pi}{3}$
  - d.  $\frac{\pi}{4}$
  - e. divergent

**Solution**: You can use the trig substitution  $x = \sin \theta$ , or simply remember the antiderivative:

$$\int_0^1 \frac{2}{\sqrt{1 - x^2}} dx = \left[ 2 \arcsin x \right]_0^1 = 2 \arcsin 1 - 2 \arcsin 0 = 2 \left( \frac{\pi}{2} \right) = \pi$$

- **10**. (5 pts) Compute the improper integral  $\int_0^{16} \frac{1}{(x-8)^{4/3}} dx.$ 
  - **a**. 0
  - **b**.  $-\frac{3}{4}$
  - **c**.  $-\frac{3}{2}$
  - **d**. -3
  - e. divergent correct choice

**Solution**:  $\int_0^{16} \frac{1}{(x-8)^{4/3}} dx = \int_0^8 \frac{1}{(x-8)^{4/3}} dx + \int_8^{16} \frac{1}{(x-8)^{4/3}} dx$ 

$$\int_0^8 \frac{1}{(x-8)^{4/3}} dx = \lim_{b \to 8^-} \left[ \frac{-3}{(x-8)^{1/3}} \right]_0^b = \frac{-3}{0^-} - \frac{-3}{(-8)^{1/3}} = \infty - \frac{3}{2} = \infty$$

Since this half is divergent, the whole integral is divergent.

- **11**. (9 pts) The rest position of a certain spring is at x = 0 cm. It takes 72 ergs of work to stretch it from x = 4 cm to x = 8 cm.
  - a. Find the spring constant.

$$k = \underline{\hspace{1cm}} \frac{\text{dynes}}{\text{cm}}$$

**Solution**: 
$$W = \int_4^8 kx \, dx = \left[k \frac{x^2}{2}\right]_4^8 = k(32 - 8) = 24k = 72$$
  $k = 3$  dynes cm

**b**. How much work does it take to stretch it from x = 2 cm to x = 6 cm?

$$W = \underline{\hspace{1cm}}$$
 ergs

**Solution**: 
$$F = kx = 3x$$
  $W = \int_{2}^{6} 3x \, dx = \left[3\frac{x^{2}}{2}\right]_{2}^{6} = 3(18 - 2) = 32 \text{ ergs}$ 

**c**. How much forch is needed to hold it at x = 5 cm?

$$F =$$
 dynes

**Solution**: 
$$F = 3x = 3 \cdot 5 = 15$$
 dynes

Work Out: (Points indicated. Part credit possible. Show all work.)

**12**. (15 pts) Find the partial fraction expansion for  $\frac{2x+9}{x^3+9x} = \frac{1}{x} + \frac{-x+2}{x^2+9}$ .

$$A ==$$
  $C =$   $C =$ 

**Solution**: We factor the denominator, write the general partial fraction expansion and clear the denominator:

$$\frac{2x+9}{x^3+9x} = \frac{2x+9}{x(x^2+9)} = \frac{A}{x} + \frac{Bx+C}{x^2+9}$$

$$2x + 9 = A(x^2 + 9) + (Bx + C)(x)$$

We plug in x = 0, 3, -3:

$$x = 0$$
:  $9 = A(9)$   $\Rightarrow$   $A = 1$ 

$$x = 3$$
:  $6 + 9 = A(9 + 9) + (B3 + C)(3)$   $\Rightarrow$   $15 = 18 + 3(3B + C)$   $\Rightarrow$   $3B + C = -1$   
 $x = -3$ :  $-6 + 9 = A(9 + 9) + (-B3 + C)(-3)$   $\Rightarrow$   $3 = 18 - 3(-3B + C)$   $\Rightarrow$   $-3B + C = 5$ 

$$x = 3. \quad 0+3 \quad H(3+3) + (B3+C)(3) \quad \Rightarrow \quad 3 = 10$$

Adding: 
$$2C = 4 \implies C = 2$$

Subtracting: 
$$6B = -6 \implies B = -1$$

So: 
$$\frac{2x+9}{x^3+9x} = \frac{1}{x} + \frac{-x+2}{x^2+9}$$

**Complex Solution**: Instead of plugging in x = 3, -3, we plug in x = 3i:

$$6i + 9 = A(-9 + 9) + (3iB + C)(3i) = -9B + 3iC$$
  $9 = -9B$   $6i = 3iC$   $B = -1$   $C = 2$ 

13. (15 pts) Determine if the improper integral  $\int_{2}^{\infty} \frac{2}{e^{x}+x} dx$  converges or diverges. Do the integral exactly or use a Comparison Test. If you do the integral exactly, be sure to state all substitutions you make and their differentials. If you use a comparison, be sure to state the comparison integral, explain why the comparison integral converges or diverges and check the inequality. (You will be graded for good sentences!)

\_\_\_X\_Convergent \_\_\_\_Divergent

**Solution**: For large x,  $e^x$  is much larger then x. So to construct a comparison integral, we keep the  $e^x$  and throw away the x. So our comparison inegral and its value is

$$\int_{2}^{\infty} \frac{2}{e^{x}} dx = \int_{2}^{\infty} 2e^{-x} dx = \left[ -2e^{-x} \right]_{2}^{\infty} = 0 - -2e^{-2} = \frac{2}{e^{2}}$$

which is finite (convergent). Now  $e^x + x > e^x$ . So  $\frac{2}{e^x + x} < \frac{2}{e^x}$ . Therefore

$$\int_{2}^{\infty} \frac{2}{e^x + x} \, dx < \int_{2}^{\infty} \frac{2}{e^x} \, dx$$

Since the larger integral is finite (convergent), so is the smaller integral.

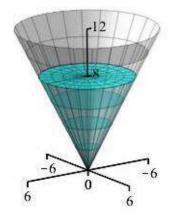
**14**. (15 pts) A cone is 12 cm tall and 6 cm in radius at the top.

It is filled with salt water of density  $\delta = 1.02 \frac{\text{gm}}{\text{cm}^3}$  to a depth of 8 cm.

Find the work done to pump all the water over the top of the cone.

For numerical computations, use the approximation that

$$\delta g = 9.8 \cdot 1.02 \approx 10 \frac{\text{gm} \cdot \text{cm}}{\text{sec}^2}.$$



**Solution**: The slice at height y is a disk of radius r. By similar triangles,  $\frac{r}{y} = \frac{6}{12}$  or  $r = \frac{1}{2}y$ . So the volume of a slice is  $dV = \pi r^2 dy = \frac{\pi}{4} y^2 dy$  and its weight is  $dF = \delta g dV = 10 \frac{\pi}{4} y^2 dy$ . This slice is lifted a distance D = 12 - y. There is water between y = 0 and y = 8, which are the limits of integration. So the work done is:

$$W = \int_0^8 D \, dF = \int_0^8 (12 - y) \, 10 \, \frac{\pi}{4} y^2 \, dy = 5\pi \int_0^8 \left( 6y^2 - \frac{1}{2} y^3 \right) \, dy$$
$$= 5\pi \left[ 2y^3 - \frac{y^4}{8} \right]_0^8 = 5\pi \left[ 2 \cdot 8^3 - 8^3 \right] = 5 \cdot 8^3 \pi = 2560\pi$$