
Name				
MATH 172	Exam 3	Spring 2021		
Sections 501		P. Yasskin		
Multiple Choice and Short Answer: (Points indicated.)				
1. (5 pts) Compute	$\lim_{n\to\infty} \left(\sqrt{n^2-4n+3}-\sqrt{n^2+5n-2}\right).$			
a . 0				
b . –9				
c . $-\frac{9}{2}$				
d . $\frac{9}{2}$				

1-11	/55	13	/15
12	/20	14	/15
		Total	/105

2. (5 pts) Compute $L = \lim_{n \to \infty} n^{1/n}$ (Type infinity for ∞ , pi for π and e for *e*.) $L = _$

3. (5 pts) The spiral at the right is made from an infinite number of semicircles whose centers are all on the *x*-axis. The first semicircle has radius r₁ = 1. The radius of each subsequent semicircle is half of the radius of the previous semicircle. Find the total length of the spiral. (Type infinity for ∞, pi for π and e for *e*.)

L = _____

e. 9

4. (5 pts) Compute
$$\sum_{n=3}^{\infty} \left(\frac{\sqrt{n}}{\sqrt{n+1}} - \frac{\sqrt{n+1}}{\sqrt{n+2}} \right)$$

a. $\frac{\sqrt{3}}{2}$
b. $\frac{2-\sqrt{3}}{2}$
c. 0
d. $\frac{\sqrt{3}-2}{2}$
e. $\frac{-\sqrt{3}}{2}$

5. (5 pts) Which of the following are correct about the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + \sqrt{n}}$? Answer all that are correct. Scoring: Grade = $\frac{\# \text{ answered correctly}}{2} \cdot 5 - \# \text{ answered incorrectly}$

Scoring: Grade =
$$\frac{\# \text{ anomology contract}}{\# \text{ correct answers}} \cdot 5 - \# \text{ answered incorrect}$$

- **a**. diverges by the n^{th} Term Divergence Test
- **b**. diverges by the Simple Comparison Test comparing to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
- c. diverges by the Limit Comparison Test comparing to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
- d. converges because it is a *p*-series
- **e**. converges by the Simple Comparison Test comparing to $\sum_{n=1}^{\infty} \frac{1}{n^2}$
- f. converges by the Limit Comparison Test comparing to $\sum_{n=1}^{\infty} \frac{1}{n^2}$
- g. converges by the Ratio Test

6. (5 pts) Find a power series about x = 0 for $f(x) = \frac{4x^3}{1-x^2}$.

a.
$$\sum_{n=0}^{\infty} (4x^3)^{2n}$$

b. $\sum_{n=0}^{\infty} 8nx^{2n+3}$
c. $\sum_{n=0}^{\infty} 4x^{2n+3}$
d. $\sum_{n=0}^{\infty} 4x^{2(n+3)}$
e. $\sum_{n=0}^{\infty} 4nx^{2n+3}$
f. $\sum_{n=0}^{\infty} 4nx^{2(n+3)}$

7. (5 pts) Find a power series about x = 0 for $f(x) = \frac{2x}{(1-x^2)^2}$.

a.
$$\sum_{n=0}^{\infty} 2nx^{2n-1}$$

b. $\sum_{n=0}^{\infty} 2x^{2n-1}$
c. $\sum_{n=0}^{\infty} 2nx^{2n+1}$
d. $\sum_{n=0}^{\infty} 2x^{2n+1}$
e. $\sum_{n=0}^{\infty} 4n^3x^{2n-1}$
f. $\sum_{n=0}^{\infty} 4n^3x^{2n+1}$

8. (5 pts) Find the Taylor series for $f(x) = \frac{1}{x}$ about x = 2.

a.
$$\sum_{n=0}^{\infty} \frac{1}{2^{n}} x^{n}$$
g.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} x^{n}$$
b.
$$\sum_{n=0}^{\infty} \frac{1}{2^{n}} (x-2)^{n}$$
h.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} (x-2)^{n}$$
c.
$$\sum_{n=0}^{\infty} \frac{n!}{2^{n}} x^{n}$$
i.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{2^{n}} x^{n}$$
d.
$$\sum_{n=0}^{\infty} \frac{n!}{2^{n}} (x-2)^{n}$$
j.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{2^{n}} (x-2)^{n}$$
e.
$$\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} x^{n}$$
k.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$$
f.
$$\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} (x-2)^{n}$$
l.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} (x-2)^{n}$$

- **9**. (5 pts) Use the 3^{rd} degree Taylor polynomial for sin(x) centered at x = 0 to approximate sin(0.3).
 - **a**. .3
 - **b**. .309
 - **c**. .291
 - **d**. .3045
 - **e**. .2955

10. (5 pts) Compute
$$S = \sum_{n=0}^{\infty} \frac{1}{2^n n!}$$

a. $\sin(2)$
b. $\sin\left(\frac{1}{2}\right)$
c. $\frac{\sin(1)}{2}$
c. $\frac{\sin(1)}{2}$
c. $\frac{\cos(1)}{2}$
c. $\frac{\cos(1)}{2}$
c. $\frac{1}{2}$
c. $\frac{1}{2$

11. (5 pts) Compute $L = \lim_{x \to \infty} \frac{1 - \cos(2x)}{x^2}$

L = _____

12. (20 pts) Work Out Problem

For each power series, find the radius and interval of convergence. Give complete explanations. (Type infinity for ∞ .)

a.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n (n+1)} (x-3)^n$$
$$R = ___ I = ___$$

b.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n(n+1)!} (x-3)^n$$

 $R = ___ I = ____$

13. (15 pts) Work Out Problem

Consider the sequence given by the recursion relation $a_{n+1} = 2\sqrt{a_n}$ starting from $a_1 = 1$. Does the sequence have a limit? If so, find the limit. If not, enter divergent. Be sure to use sentences, name the theorem you use and prove all statements.

 $\lim_{n\to\infty}a_n=_$

14. (15 pts) Work Out Problem

Give a complete explantion as to why the series $\sum_{n=2}^{\infty} \frac{(-1)^n (n+1)}{n^2 + \sqrt{n}}$ is absolutely convergent, conditionally convergent or divergent.

- a. absolutely convergent
- b. conditionally convergent
- c. divergent