Name \qquad
MATH 172 Exam 2
Sections 502
Multiple Choice: (5 points each. No part credit. Circle your answers.)

$1-11$	$/ 55$	13	$/ 16$
12	$/ 16$	14	$/ 18$
		Total	$/ 105$

1. Find the general partial fraction expansion of $f(x)=\frac{(x+2)^{2}}{\left(x^{4}-16\right)(x-2)}$.
a. $\frac{A}{(x-2)^{2}}+\frac{B x+C}{x^{2}+4}$
b. $\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C x+D}{x^{2}+4}$
c. $\frac{A}{x-2}+\frac{B x+C}{x^{2}+4}$
d. $\frac{A}{x-2}+\frac{B x+C}{x^{2}+4}+\frac{D x+E}{x^{2}-4}$
e. $\frac{A}{(x-2)^{2}}+\frac{B x+C}{x^{2}+4}+\frac{D x+E}{\left(x^{2}+4\right)^{2}}$
2. Given the partial fraction expansion:

$$
\frac{x^{2}+32 x-4}{x^{4}-16}=\frac{2}{x-2}+\frac{2}{x+2}+\frac{-4 x+1}{x^{2}+4}
$$

which term in the following integral is INCORRECT?

$$
\int \frac{x^{2}+32 x-4}{x^{4}-16} d x=\underbrace{\ln |x-2|^{2}}_{\mathrm{A}}+\underbrace{\ln |x+2|^{2}}_{\mathrm{B}}-\underbrace{\ln \left|x^{2}+4\right|^{2}}_{\mathrm{C}}+\underbrace{\frac{1}{2} \arctan \left(\frac{x}{2}\right)}_{\mathrm{D}}
$$

a. A
b. B
c. C
d. D
e. They are all correct.
3. $\int \frac{1}{\left(x^{2}-9\right)^{3 / 2}} d x=$
a. $\frac{1}{3} \frac{1}{\sqrt{x^{2}-9}}$
b. $\frac{1}{3} \frac{x}{\sqrt{x^{2}-9}}$
c. $\frac{1}{9} \frac{1}{\sqrt{x^{2}-9}}$
d. $\frac{1}{9} \frac{x}{\sqrt{x^{2}-9}}$
e. $-\frac{1}{9} \frac{x}{\sqrt{x^{2}-9}}$
4. $\int_{0}^{4} \frac{1}{\left(9+x^{2}\right)^{3 / 2}} d x=$
a. $\frac{1}{15}$
b. $\frac{1}{45}$
c. $\frac{4}{45}$
d. $\frac{4}{135}$
e. $\frac{4}{225}$)
5. $\int_{0}^{4} \frac{1}{x^{2}-25} d x=$
a. $-\frac{1}{5} \ln 3$
b. $\frac{1}{5} \ln 3$
c. $\frac{1}{5} \ln 4-\frac{1}{5}$
d. $-\frac{1}{5} \ln 4+\frac{1}{5}$
e. $\frac{1}{5} \ln 4$
6. Consider the integrals:

$$
A=\int_{3}^{4} \frac{1}{(x-3)^{2 / 3}} d x \quad B=\int_{3}^{4} \frac{1}{(x-3)^{4 / 3}} d x \quad C=\int_{4}^{\infty} \frac{1}{(x-3)^{2 / 3}} d x \quad D=\int_{4}^{\infty} \frac{1}{(x-3)^{4 / 3}} d x
$$

Which are finite? Which are infinite?
a. A and B are finite. C and D are infinite.
b. B and C are finite. A and D are infinite.
c. B and D are finite. A and C are infinite.
d. A and D are finite. B and C are infinite.
e. A and C are finite. B and D are infinite.
7. The region between $y=12-x^{2}$ and $y=3$ is rotated about the x-axis.
Which integral gives the volume swept out?
a. $\quad V=\pi \int_{-3}^{3}\left(x^{4}-24 x^{2}+135\right) d x$
b. $\quad V=2 \pi \int_{-3}^{3}\left(x^{4}-24 x^{2}+135\right) d x$
c. $\quad V=\pi \int_{0}^{3}\left(9 x-x^{3}\right) d x$
d. $\quad V=2 \pi \int_{0}^{3}\left(9 x-x^{3}\right) d x$
e. $\quad V=2 \pi \int_{-3}^{3}\left(9 x-x^{3}\right) d x$

8. The region between $y=12-x^{2}$ and $y=3$ is rotated about the y-axis.
Find the volume swept out.
a. $\frac{81 \pi}{4}$
b. $\frac{81 \pi}{2}$
c. 18π
d. 36π
e. 81π

9. The base of a solid is the region between $y=x^{2}$ and the x-axis for $0 \leq x \leq 3$. The cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
a. 9
b. 27
c. 81
d. $\frac{3^{5}}{5}$
e. $\frac{3^{4}}{4}$
10. A spring has a rest length of $x_{0}=5 \mathrm{~m}$. It requires 12 N of force to hold the spring at $x=7 \mathrm{~m}$. Find the work done to stretch the spring from $x=6 \mathrm{~m}$ to $x=8 \mathrm{~m}$.
a. 6
b. 8
c. 12
d. 18
e. 24
11. A 20 ft rope hangs from the top of a building. It's linear weight density is $\rho=3 \mathrm{lb} / \mathrm{ft}$. How much work is done to lift the rope to the top of the building?
a. 600 ft lb
b. $450 \mathrm{ft}-\mathrm{lb}$
c. 300 ft lb
d. $200 \mathrm{ft}-\mathrm{lb}$
e. $150 \mathrm{ft}-\mathrm{lb}$
12. (16 points) Find the coefficients in the partial fraction expansion

$$
\frac{10}{\left(x^{2}+4\right)\left(x^{2}-1\right)}=\frac{A x+B}{x^{2}+4}+\frac{C}{x+1}+\frac{D}{x-1}
$$

$A=$
$B=$
$C=$
$D=$

13. (16 points) The tank shown is 6 m long, 2 m wide at the top and 4 m high. It is filled with water to a depth of 3 m .
How much work is done to pump the water out the top of the tank? Take the density of water to be $\rho \mathrm{kg} / \mathrm{m}^{3}$ and the acceleration of gravity to be $g \mathrm{~m} / \mathrm{sec}^{2}$. (You don't need numbers for ρ and g.)

$$
W=
$$

14. (18 points) Consider the integral $\int_{1}^{9}(x-4)^{2} d x$ The exact value is $\frac{152}{3}$. Use each of the following numerical techniques to approximate the integral.
a. Left Riemann Sum with 4 intervals

$$
L_{4}=
$$

a. Right Riemann Sum with 4 intervals

$$
R_{4}=
$$

a. Midpoint Riemann Sum with 4 intervals
$M_{4}=$
\square
a. Trapezoid Rule with 4 intervals

$$
T_{4}=
$$

a. Simpson's Rule with 4 intervals

