Name.

MATH 172	Exam 2	Spring 2023	1-11	/55	13	/16
Sections 502		P. Yasskin	12	/16	14	/18
Multiple Choice: (5 points each. No part credit. Circle your answers.)					Total	/105

- **1**. Find the general partial fraction expansion of $f(x) = \frac{(x+2)^2}{(x^4-16)(x-2)}$.
 - **a.** $\frac{A}{(x-2)^2} + \frac{Bx+C}{x^2+4}$ **b.** $\frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{Cx+D}{x^2+4}$ **c.** $\frac{A}{x-2} + \frac{Bx+C}{x^2+4}$ **d.** $\frac{A}{x-2} + \frac{Bx+C}{x^2+4} + \frac{Dx+E}{x^2-4}$ **e.** $\frac{A}{(x-2)^2} + \frac{Bx+C}{x^2+4} + \frac{Dx+E}{(x^2+4)^2}$
- 2. Given the partial fraction expansion:

$$\frac{x^2 + 32x - 4}{x^4 - 16} = \frac{2}{x - 2} + \frac{2}{x + 2} + \frac{-4x + 1}{x^2 + 4}$$

which term in the following integral is INCORRECT?

$$\int \frac{x^2 + 32x - 4}{x^4 - 16} dx = \underbrace{\ln|x - 2|^2}_{A} + \underbrace{\ln|x + 2|^2}_{B} - \underbrace{\ln|x^2 + 4|^2}_{C} + \underbrace{\frac{1}{2}\arctan\left(\frac{x}{2}\right)}_{D}$$

- **a**. A
- **b**. B
- **c**. C
- **d**. D
- e. They are all correct.

3.
$$\int \frac{1}{(x^2 - 9)^{3/2}} dx =$$

a.
$$\frac{1}{3} \frac{1}{\sqrt{x^2 - 9}}$$

b.
$$\frac{1}{3} \frac{x}{\sqrt{x^2 - 9}}$$

c.
$$\frac{1}{9} \frac{1}{\sqrt{x^2 - 9}}$$

d.
$$\frac{1}{9} \frac{x}{\sqrt{x^2 - 9}}$$

e.
$$-\frac{1}{9} \frac{x}{\sqrt{x^2 - 9}}$$

4.
$$\int_{0}^{4} \frac{1}{(9+x^{2})^{3/2}} dx =$$

a. $\frac{1}{15}$
b. $\frac{1}{45}$
c. $\frac{4}{45}$
d. $\frac{4}{135}$
e. $\frac{4}{225}$)

5.
$$\int_{0}^{4} \frac{1}{x^{2} - 25} dx =$$

a.
$$-\frac{1}{5} \ln 3$$

b.
$$\frac{1}{5} \ln 3$$

c.
$$\frac{1}{5} \ln 4 - \frac{1}{5}$$

d.
$$-\frac{1}{5} \ln 4 + \frac{1}{5}$$

e.
$$\frac{1}{5} \ln 4$$

6. Consider the integrals:

$$A = \int_{-3}^{4} \frac{1}{(x-3)^{2/3}} dx \qquad B = \int_{-3}^{4} \frac{1}{(x-3)^{4/3}} dx \qquad C = \int_{-4}^{\infty} \frac{1}{(x-3)^{2/3}} dx \qquad D = \int_{-4}^{\infty} \frac{1}{(x-3)^{4/3}} dx$$

Which are finite? Which are infinite?

- **a**. *A* and *B* are finite. *C* and *D* are infinite.
- **b**. B and C are finite. A and D are infinite.
- **c**. *B* and *D* are finite. *A* and *C* are infinite.
- **d**. *A* and *D* are finite. *B* and *C* are infinite.
- **e**. *A* and *C* are finite. *B* and *D* are infinite.

- 7. The region between $y = 12 x^2$ and y = 3 is rotated about the *x*-axis. Which integral gives the volume swept out?
 - **a**. $V = \pi \int_{-3}^{3} (x^4 24x^2 + 135) dx$ **b**. $V = 2\pi \int_{-3}^{3} (x^4 - 24x^2 + 135) dx$ **c**. $V = \pi \int_{0}^{3} (9x - x^3) dx$ **d**. $V = 2\pi \int_{0}^{3} (9x - x^3) dx$
 - **e**. $V = 2\pi \int_{-3}^{3} (9x x^3) dx$

- 8. The region between $y = 12 x^2$ and y = 3 is rotated about the *y*-axis. Find the volume swept out.
 - **a**. $\frac{81\pi}{4}$
 - **b**. $\frac{81\pi}{2}$
 - **c**. 18π
 - **d**. 36π
 - **e**. 81π

- **9**. The base of a solid is the region between $y = x^2$ and the *x*-axis for $0 \le x \le 3$. The cross sections perpendicular to the *x*-axis are squares. Find the volume of the solid.
 - **a**. 9
 - **b**. 27
 - **c**. 81
 - **d**. $\frac{3^5}{5}$

 - **e**. $\frac{3^4}{4}$

- **10**. A spring has a rest length of $x_0 = 5$ m. It requires 12 N of force to hold the spring at x = 7 m. Find the work done to stretch the spring from x = 6 m to x = 8 m.
 - **a**. 6
 - **b**. 8
 - **c**. 12
 - **d**. 18
 - **e**. 24

- **11**. A 20 ft rope hangs from the top of a building. It's linear weight density is $\rho = 3$ lb/ft. How much work is done to lift the rope to the top of the building?
 - **a**. 600 ft-lb
 - **b**. 450 ft-lb
 - **c**. 300 ft-lb
 - **d**. 200 ft-lb
 - **e**. 150 ft-lb

Work Out: (Points indicated. Part credit possible. Show all work.)

12. (16 points) Find the coefficients in the partial fraction expansion

10	_	Ax + B	_	C		D
$(x^2+4)(x^2-1)$	_	$x^2 + 4$	т	$\overline{x+1}$	т	$\overline{x-1}$

13. (16 points) The tank shown is 6 m long, 2 m wide at the top and 4 m high. It is filled with water to a depth of 3 m. How much work is done to pump the water out the top of the tank? Take the density of water to be ρ kg/m³ and the acceleration of gravity to be g m/sec². (You don't need numbers for ρ and g.)

W =

- **14**. (18 points) Consider the integral $\int_{1}^{9} (x-4)^2 dx$ The exact value is $\frac{152}{3}$. Use each of the following numerical techniques to approximate the integral.
 - a. Left Riemann Sum with 4 intervals

a. Right Riemann Sum with 4 intervals

a. Midpoint Riemann Sum with 4 intervals

a. Trapezoid Rule with 4 intervals

a. Simpson's Rule with 4 intervals

 $L_4 =$

 $R_4 =$

 $M_4 =$

 $T_4 =$

 $S_4 =$