Name \qquad

MATH 172

Sections 502

Exam 2

Spring 2023

Multiple Choice: (5 points each. No part credit. Circle your answers.)

$1-11$	$/ 55$	13	$/ 16$
12	$/ 16$	14	$/ 18$
		Total	$/ 105$

1. Find the general partial fraction expansion of $f(x)=\frac{(x+2)^{2}}{\left(x^{4}-16\right)(x-2)}$.
a. $\frac{A}{(x-2)^{2}}+\frac{B x+C}{x^{2}+4}$
b. $\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C x+D}{x^{2}+4} \quad$ Correct
c. $\frac{A}{x-2}+\frac{B x+C}{x^{2}+4}$
d. $\frac{A}{x-2}+\frac{B x+C}{x^{2}+4}+\frac{D x+E}{x^{2}-4}$
e. $\frac{A}{(x-2)^{2}}+\frac{B x+C}{x^{2}+4}+\frac{D x+E}{\left(x^{2}+4\right)^{2}}$

Solution: We factor $x^{4}-16=\left(x^{2}+4\right)(x+2)(x-2)$ and cancel the $(x+2)$. Then there are linear denominators for $(x-2)$ and $(x-2)^{2}$ and a quadradic denominator for $\left(x^{2}+4\right)$. The linears get a constant on top and the quadradic gets a linear on top:
$f(x)=\frac{(x+2)^{2}}{\left(x^{2}+4\right)(x+2)(x-2)^{2}}=\frac{(x+2)}{\left(x^{2}+4\right)(x-2)^{2}}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C x+D}{x^{2}+4}$
2. Given the partial fraction expansion:

$$
\frac{x^{2}+32 x-4}{x^{4}-16}=\frac{2}{x-2}+\frac{2}{x+2}+\frac{-4 x+1}{x^{2}+4}
$$

which term in the following integral is INCORRECT?

$$
\int \frac{x^{2}+32 x-4}{x^{4}-16} d x=\underbrace{\ln |x-2|^{2}}_{\mathrm{A}}+\underbrace{\ln |x+2|^{2}}_{\mathrm{B}}-\underbrace{\ln \left|x^{2}+4\right|^{2}}_{\mathrm{C}}+\underbrace{\frac{1}{2} \arctan \left(\frac{x}{2}\right)}_{\mathrm{D}}
$$

a. A
b. B
c. C
d. D
e. They are all correct. Correct

Solution: Simplfy using a log identity and then differentiate:
$\frac{d}{d x} \ln |x-2|^{2}=\frac{d}{d x} 2 \ln |x-2|=\frac{2}{x-2} \quad \frac{d}{d x} \ln |x+2|^{2}=\frac{d}{d x} 2 \ln |x+2|=\frac{2}{x+2}$
$\frac{d}{d x}-\ln \left|x^{2}+4\right|^{2}=\frac{d}{d x}-2 \ln \left|x^{2}+4\right|=\frac{-2(2 x)}{x^{2}+4}=\frac{-4 x}{x^{2}+4}$
$\frac{d}{d x} \frac{1}{2} \arctan \left(\frac{x}{2}\right)=\frac{1}{2} \frac{1}{1+\left(\frac{x}{2}\right)^{2}} \frac{1}{2}=\frac{1}{4+x^{2}} \quad$ They are all correct.
3. $\int \frac{1}{\left(x^{2}-9\right)^{3 / 2}} d x=$
a. $\frac{1}{3} \frac{1}{\sqrt{x^{2}-9}}$
b. $\frac{1}{3} \frac{x}{\sqrt{x^{2}-9}}$
c. $\frac{1}{9} \frac{1}{\sqrt{x^{2}-9}}$
d. $\frac{1}{9} \frac{x}{\sqrt{x^{2}-9}}$
e. $-\frac{1}{9} \frac{x}{\sqrt{x^{2}-9}} \quad$ Correct

Solution: We use a sec substitution, because $x>3$. So we substitute $x=3 \sec \theta$ and $d x=3 \sec \theta \tan \theta d \theta$:

$$
\begin{aligned}
& \int \frac{1}{\left(x^{2}-9\right)^{3 / 2}} d x=\int \frac{1}{\left(9 \sec ^{2} \theta-9\right)^{3 / 2}} 3 \sec \theta \tan \theta d \theta=\frac{1}{9} \int \frac{1}{\left(\tan ^{2} \theta\right)^{3 / 2}} \sec \theta \tan \theta d \theta=\frac{1}{9} \int \frac{1}{\tan ^{2} \theta} \sec \theta d \theta \\
& \quad=\frac{1}{9} \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=\frac{1}{9} \int \frac{1}{u^{2}} d u=-\frac{1}{9} \frac{1}{u}=-\frac{1}{9} \frac{1}{\sin \theta}=-\frac{1}{9} \frac{x}{\sqrt{x^{2}-9}} \quad \text { (Draw a triangle.) }
\end{aligned}
$$

4. $\int_{0}^{4} \frac{1}{\left(9+x^{2}\right)^{3 / 2}} d x=$
a. $\frac{1}{15}$
b. $\frac{1}{45}$
c. $\frac{4}{45}$ Correct
d. $\frac{4}{135}$
e. $\frac{4}{225}$

Solution: We use a tan substitution, because of the plus sign. So we substitute $x=3 \tan \theta$ and $d x=3 \sec ^{2} \theta d \theta$:

$$
\begin{aligned}
& \int_{0}^{4} \frac{1}{\left(9+x^{2}\right)^{3 / 2}} d x=\int \frac{1}{\left(9+9 \tan ^{2} \theta\right)^{3 / 2}} 3 \sec ^{2} \theta d \theta=\frac{1}{9} \int \frac{1}{\left(\sec ^{2} \theta\right)^{3 / 2}} \sec ^{2} \theta d \theta=\frac{1}{9} \int \frac{1}{\sec \theta} d \theta \\
& \quad=\frac{1}{9} \int \cos \theta d \theta=\frac{1}{9} \sin \theta=\left.\frac{1}{9} \frac{x}{\sqrt{9+x^{2}}}\right|_{0} ^{4} \quad \text { (Draw a triangle.) } \\
& \quad=\frac{1}{9} \frac{4}{\sqrt{9+16}}=\frac{4}{45}
\end{aligned}
$$

5. $\int_{0}^{4} \frac{1}{x^{2}-25} d x=$
a. $-\frac{1}{5} \ln 3 \quad$ Correct
b. $\frac{1}{5} \ln 3$
c. $\frac{1}{5} \ln 4-\frac{1}{5}$
d. $-\frac{1}{5} \ln 4+\frac{1}{5}$
e. $\frac{1}{5} \ln 4$

Solution: We use a \sin substitution, because the limits say $x<5$. So we substitute $x=5 \sin \theta$ and $d x=5 \cos \theta d \theta$:

$$
\begin{aligned}
& \int_{0}^{4} \frac{1}{x^{2}-25} d x=\int \frac{1}{25 \sin ^{2} \theta-25} 5 \cos \theta d \theta=-\frac{1}{5} \int \frac{1}{\cos \theta} d \theta=-\frac{1}{5} \int \sec \theta d \theta=-\frac{1}{5} \ln |\sec \theta+\tan \theta| \\
& \quad=\left[-\frac{1}{5} \ln \left|\frac{5}{\sqrt{25-x^{2}}}+\frac{x}{\sqrt{25-x^{2}}}\right|\right]_{0}^{4} \quad \text { (Draw a triangle.) } \\
& \quad=-\frac{1}{5} \ln \left|\frac{5}{\sqrt{9}}+\frac{4}{\sqrt{9}}\right|+\frac{1}{5} \ln \left|\frac{5}{\sqrt{25}}\right|=-\frac{1}{5} \ln \frac{9}{\sqrt{9}}=-\frac{1}{5} \ln 3
\end{aligned}
$$

Alternatively, we could use the partial fraction expansion $\frac{1}{x^{2}-25}=\frac{1}{10(x-5)}-\frac{1}{10(x+5)}$.
6. Consider the integrals:

$$
A=\int_{3}^{4} \frac{1}{(x-3)^{2 / 3}} d x \quad B=\int_{3}^{4} \frac{1}{(x-3)^{4 / 3}} d x \quad C=\int_{4}^{\infty} \frac{1}{(x-3)^{2 / 3}} d x \quad D=\int_{4}^{\infty} \frac{1}{(x-3)^{4 / 3}} d x
$$

Which are finite? Which are infinite?
a. A and B are finite. C and D are infinite.
b. B and C are finite. A and D are infinite.
c. B and D are finite. A and C are infinite.
d. A and D are finite. B and C are infinite. Correct
e. A and C are finite. B and D are infinite.

Solution: For large x, notice $\frac{1}{(x-3)^{4 / 3}}$ is more damped than $\frac{1}{x-3}$. So D is finite. For large x, notice $\frac{1}{(x-3)^{2 / 3}}$ is less damped than $\frac{1}{x-3}$. So C is infinite.
Near $x=3$, the behavior is reversed. So B is infinite and A is finite.
7. The region between $y=12-x^{2}$ and $y=3$
is rotated about the x-axis.
Which integral gives the volume swept out?
a. $V=\pi \int_{-3}^{3}\left(x^{4}-24 x^{2}+135\right) d x \quad$ Correct
b. $\quad V=2 \pi \int_{-3}^{3}\left(x^{4}-24 x^{2}+135\right) d x$
c. $\quad V=\pi \int_{0}^{3}\left(9 x-x^{3}\right) d x$
d. $\quad V=2 \pi \int_{0}^{3}\left(9 x-x^{3}\right) d x$
e. $\quad V=2 \pi \int_{-3}^{3}\left(9 x-x^{3}\right) d x$

Solution: Each y is a function of x. So we do an x-integral. They intersect when

$$
12-x^{2}=3 \quad \Rightarrow \quad x^{2}=9 \quad \Rightarrow \quad x= \pm 3
$$

The slices are vertical and rotate about the x-axis into washers.
The inner radius is $r=3$ and the outer radius is $R=12-x^{2}$.
So the volume is

$$
V=\int_{-3}^{3} \pi R^{2}-\pi r^{2} d x=\pi \int_{-3}^{3}\left(12-x^{2}\right)^{2}-(3)^{2} d x=\pi \int_{-3}^{3}\left(x^{4}-24 x^{2}+135\right) d x
$$

8. The region between $y=12-x^{2}$ and $y=3$ is rotated about the y-axis.
Find the volume swept out.
a. $\frac{81 \pi}{4}$
b. $\frac{81 \pi}{2}$ Correct
C. 18π
d. 36π
e. 81π

Solution: Each y is a function of x. So we do an x-integral.
The slices are vertical and rotate about the y-axis into cylinders.
The radius is $r=x$ and the height is $h=\left(12-x^{2}\right)-3=9-x^{2}$.
The functions intersect when

$$
12-x^{2}=3 \quad \Rightarrow \quad x^{2}=9 \quad \Rightarrow \quad x= \pm 3
$$

However, if we integrate from $x=-3$ to $x=3$, we are double counting the volume.
So we integrate from $x=0$ to $x=3$. So the volume is

$$
V=\int_{0}^{3} 2 \pi r h d x=2 \pi \int_{0}^{3} x\left(9-x^{2}\right) d x=2 \pi \int_{0}^{3}\left(9 x-x^{3}\right) d x=2 \pi\left[9 \frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{3}=\frac{81 \pi}{2}
$$

9. The base of a solid is the region between $y=x^{2}$ and the x-axis for $0 \leq x \leq 3$. The cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
a. 9
b. 27
c. 81
d. $\frac{3^{5}}{5}$ Correct
e. $\frac{3^{4}}{4}$

Solution: Here are plots of the base, with a slice perpendicular to the x-axis and a cross section. The area of the cross section is $A=y^{2}=\left(x^{2}\right)^{2}=x^{4}$.
So the volume is

$$
V=\int_{0}^{3} A d x=\int_{0}^{3} x^{4} d x=\left[\frac{x^{5}}{5}\right]_{0}^{3}=\frac{3^{5}}{5}
$$

10. A spring has a rest length of $x_{0}=5 \mathrm{~m}$. It requires 12 N of force to hold the spring at $x=7 \mathrm{~m}$. Find the work done to stretch the spring from $x=6 \mathrm{~m}$ to $x=8 \mathrm{~m}$.
a. 6
b. 8
c. 12
d. 18
e. 24 Correct

Solution: $F=k\left(x-x_{0}\right) \quad 12=k(7-5) \quad k=6 \quad F=6(x-5)$
$W=\int F d x=\int_{6}^{8} 6(x-5) d x=\left.3(x-5)^{2}\right|_{6} ^{8}=3(3)^{2}-3(1)^{2}=24$
11. A 20 ft rope hangs from the top of a building. It's linear weight density is $\rho=3 \mathrm{lb} / \mathrm{ft}$. How much work is done to lift the rope to the top of the building?
a. $600 \mathrm{ft}-\mathrm{lb}$ Correct
b. $450 \mathrm{ft}-\mathrm{lb}$
c. 300 ft lb
d. $200 \mathrm{ft}-\mathrm{lb}$
e. 150 ft lb

Solution: The piece of rope of length $d y$ which is $y \mathrm{ft}$ from the top of the building is lifted $D=y$ ft and has weight $d F=3 d y$. So the work is

$$
W=\int D d F=\int_{0}^{20} y 3 d y=\left.3 \frac{y^{2}}{2}\right|_{0} ^{20}=3 \frac{20^{2}}{2}=600 \mathrm{ft}-\mathrm{lb}
$$

12. (16 points) Find the coefficients in the partial fraction expansion

$$
\frac{10}{\left(x^{2}+4\right)\left(x^{2}-1\right)}=\frac{A x+B}{x^{2}+4}+\frac{C}{x+1}+\frac{D}{x-1}
$$

Solution: Clear the denominator:

$$
10=(A x+B)\left(x^{2}-1\right)+C\left(x^{2}+4\right)(x-1)+D\left(x^{2}+4\right)(x+1)
$$

Plug in $\quad x=1: \quad 10=(A+B)(0)+C(1+4)(0)+D(1+4)(1+1)=10 D$

$$
\Rightarrow \quad D=1
$$

Plug in $\quad x=-1: \quad 10=(-A+B)(0)+C(1+4)(-2)+D(1+4)(0)=-10 C$

$$
\Rightarrow \quad C=-1
$$

Plug in $\quad x=0: \quad 10=B(-1)+C(4)(-1)+D(4)(1)=-B-4 C+4 D=-B+8$

$$
B=-2
$$

$$
C=-1
$$

$$
D=1
$$

Coeff of $x^{3}: \quad 0=A+C+D=A-1+1=A$

$$
\Rightarrow \quad A=0
$$

13. (16 points) The tank shown is 6 m long, 2 m wide at the top and 4 m high. It is filled with water to a depth of 3 m .
How much work is done to pump the water out the top of the tank? Take the density of water to be $\rho \mathrm{kg} / \mathrm{m}^{3}$ and the acceleration of gravity to be $g \mathrm{~m} / \mathrm{sec}^{2}$. (You don't need numbers for ρ and g.)

Solution: Put the 0 of the y-axis at the bottom of the tank and measure y upward. The slice at height y has to be lifted a distance $D=4-y$.
The slice at height y is a rectangle of length 6 and width w, and so area $A=6 w$. By similar triangles $\frac{w}{y}=\frac{2}{4}=\frac{1}{2}$. So $w=\frac{y}{2}$ and $A=6 \frac{y}{2}=3 y$.
The slice at height y with thickness $d y$ has volume $d V=A d y=3 y d y$ and weight $d F=\rho g d V=3 \rho g y d y$.
There is water for $0 \leq y \leq 3$. (This is the tricky part.) So the work is:

$$
W=\int_{0}^{3} D d F=\int_{0}^{3}(4-y) 3 \rho g y d y=\rho g\left[6 y^{2}-y^{3}\right]_{0}^{3}=\rho g(54-27)=27 \rho g
$$

14. (18 points) Consider the integral $\int_{1}^{9}(x-4)^{2} d x$ The exact value is $\frac{152}{3}$. Use each of the following numerical techniques to approximate the integral.
a. Left Riemann Sum with 4 intervals

Solution: $\quad \Delta x=\frac{b-a}{n}=\frac{9-1}{4}=2$. The evaluation points are $x_{i}=1,3,5,7$.
The function values are $f\left(x_{i}\right)=9,1,1,9$. The Left Riemann Sum is
$L_{4}=(9+1+1+9) 2=40$
b. Right Riemann Sum with 4 intervals

Solution: $\quad \Delta x=\frac{b-a}{n}=\frac{9-1}{4}=2$. The evaluation points are $\quad x_{i}=3,5,7,9$.
The function values are $f\left(x_{i}\right)=1,1,9,25$. The Right Riemann Sum is $R_{4}=(1+1+9+25) 2=72$
c. Midpoint Riemann Sum with 4 intervals

Solution: $\quad \Delta x=\frac{b-a}{n}=\frac{9-1}{4}=2$. The evaluation points are $x_{i}=2,4,6,8$.
The function values are $f\left(x_{i}\right)=4,0,4,16$. The Right Riemann Sum is
$M_{4}=(4+0+4+16) 2=48$
d. Trapezoid Rule with 4 intervals

Solution: $\quad T_{4}=\frac{L_{4}+R_{4}}{2}=\frac{40+72}{2}=56$
Alternatively:
$T_{4}=\left(\frac{1}{2} 9+1+1+9+\frac{1}{2} 25\right) 2=56$
e. Simpson's Rule with 4 intervals

Solution: For quadratic functions, Simpson's Rule is exact. So $S_{4}=\frac{152}{3}$.
Alternatively:
$S_{4}=\frac{1}{3}(9+4 \cdot 1+2 \cdot 1+4 \cdot 9+25) 2=\frac{152}{3}$

