Name						
MATH 172	Exam 2	Spring 2023	1-11	/55	13	/16
Sections 502	Solutions	P. Yasskin	12	/16	14	/18
Multiple Choice: (5 points each. No part credit. Circle your answers.)					Total	/105

1. Find the general partial fraction expansion of $f(x) = \frac{(x+2)^2}{(x^4-16)(x-2)}$.

a.
$$\frac{A}{(x-2)^2} + \frac{Bx+C}{x^2+4}$$

b. $\frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{Cx+D}{x^2+4}$ Correct
c. $\frac{A}{x-2} + \frac{Bx+C}{x^2+4}$
d. $\frac{A}{x-2} + \frac{Bx+C}{x^2+4} + \frac{Dx+E}{x^2-4}$
e. $\frac{A}{(x-2)^2} + \frac{Bx+C}{x^2+4} + \frac{Dx+E}{(x^2+4)^2}$

Solution: We factor $x^4 - 16 = (x^2 + 4)(x + 2)(x - 2)$ and cancel the (x + 2). Then there are linear denominators for (x - 2) and $(x - 2)^2$ and a quadradic denominator for $(x^2 + 4)$. The linears get a constant on top and the quadradic gets a linear on top:

$$f(x) = \frac{(x+2)^2}{(x^2+4)(x+2)(x-2)^2} = \frac{(x+2)}{(x^2+4)(x-2)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{Cx+D}{x^2+4}$$

2. Given the partial fraction expansion:

$$\frac{x^2 + 32x - 4}{x^4 - 16} = \frac{2}{x - 2} + \frac{2}{x + 2} + \frac{-4x + 1}{x^2 + 4}$$

which term in the following integral is INCORRECT?

$$\int \frac{x^2 + 32x - 4}{x^4 - 16} dx = \underbrace{\ln|x - 2|^2}_{A} + \underbrace{\ln|x + 2|^2}_{B} - \underbrace{\ln|x^2 + 4|^2}_{C} + \underbrace{\frac{1}{2}\arctan\left(\frac{x}{2}\right)}_{D}$$

- **a**. A
- **b**. B
- **c**. C
- d. D
- e. They are all correct. Correct

Solution: Simply using a log identity and then differentiate: $\frac{d}{dx}\ln|x-2|^{2} = \frac{d}{dx}2\ln|x-2| = \frac{2}{x-2} \qquad \frac{d}{dx}\ln|x+2|^{2} = \frac{d}{dx}2\ln|x+2| = \frac{2}{x+2}$ $\frac{d}{dx}-\ln|x^{2}+4|^{2} = \frac{d}{dx}-2\ln|x^{2}+4| = \frac{-2(2x)}{x^{2}+4} = \frac{-4x}{x^{2}+4}$ $\frac{d}{dx}\frac{1}{2}\arctan\left(\frac{x}{2}\right) = \frac{1}{2}\frac{1}{1+\left(\frac{x}{2}\right)^{2}}\frac{1}{2} = \frac{1}{4+x^{2}}$ They are all correct.

3.
$$\int \frac{1}{(x^2 - 9)^{3/2}} dx =$$

a.
$$\frac{1}{3} \frac{1}{\sqrt{x^2 - 9}}$$

b.
$$\frac{1}{3} \frac{x}{\sqrt{x^2 - 9}}$$

c.
$$\frac{1}{9} \frac{1}{\sqrt{x^2 - 9}}$$

d.
$$\frac{1}{9} \frac{x}{\sqrt{x^2 - 9}}$$

e.
$$-\frac{1}{9} \frac{x}{\sqrt{x^2 - 9}}$$
 Correct

Solution: We use a sec substitution, because x > 3. So we substitute $x = 3 \sec \theta$ and $dx = 3 \sec \theta \tan \theta d\theta$:

$$\int \frac{1}{(x^2 - 9)^{3/2}} dx = \int \frac{1}{(9 \sec^2 \theta - 9)^{3/2}} 3 \sec \theta \tan \theta d\theta = \frac{1}{9} \int \frac{1}{(\tan^2 \theta)^{3/2}} \sec \theta \tan \theta d\theta = \frac{1}{9} \int \frac{1}{\tan^2 \theta} \sec \theta d\theta$$

= $\frac{1}{9} \int \frac{\cos \theta}{\sin^2 \theta} d\theta = \frac{1}{9} \int \frac{1}{u^2} du = -\frac{1}{9} \frac{1}{u} = -\frac{1}{9} \frac{1}{\sin \theta} = -\frac{1}{9} \frac{x}{\sqrt{x^2 - 9}}$ (Draw a triangle.)
4. $\int_0^4 \frac{1}{(9 + x^2)^{3/2}} dx =$
a. $\frac{1}{15}$
b. $\frac{1}{45}$
c. $\frac{4}{45}$ Correct
d. $\frac{4}{135}$
e. $\frac{4}{225}$

Solution: We use a tan substitution, because of the plus sign. So we substitute $x = 3 \tan \theta$ and $dx = 3 \sec^2 \theta \, d\theta$:

$$\int_{0}^{4} \frac{1}{(9+x^{2})^{3/2}} dx = \int \frac{1}{(9+9\tan^{2}\theta)^{3/2}} 3\sec^{2}\theta \, d\theta = \frac{1}{9} \int \frac{1}{(\sec^{2}\theta)^{3/2}} \sec^{2}\theta \, d\theta = \frac{1}{9} \int \frac{1}{\sec\theta} \, d\theta$$
$$= \frac{1}{9} \int \cos\theta \, d\theta = \frac{1}{9} \sin\theta = \frac{1}{9} \frac{x}{\sqrt{9+x^{2}}} \Big|_{0}^{4} \qquad \text{(Draw a triangle.)}$$
$$= \frac{1}{9} \frac{4}{\sqrt{9+16}} = \frac{4}{45}$$

5.
$$\int_{0}^{4} \frac{1}{x^{2} - 25} dx =$$

a. $-\frac{1}{5} \ln 3$ Correct
b. $\frac{1}{5} \ln 3$
c. $\frac{1}{5} \ln 4 - \frac{1}{5}$
d. $-\frac{1}{5} \ln 4 + \frac{1}{5}$
e. $\frac{1}{5} \ln 4$

Solution: We use a sin substitution, because the limits say x < 5. So we substitute $x = 5\sin\theta$ and $dx = 5\cos\theta d\theta$:

$$\int_{0}^{4} \frac{1}{x^{2} - 25} dx = \int \frac{1}{25 \sin^{2}\theta - 25} 5 \cos\theta \, d\theta = -\frac{1}{5} \int \frac{1}{\cos\theta} \, d\theta = -\frac{1}{5} \int \sec\theta \, d\theta = -\frac{1}{5} \ln|\sec\theta + \tan\theta|$$
$$= \left[-\frac{1}{5} \ln\left| \frac{5}{\sqrt{25 - x^{2}}} + \frac{x}{\sqrt{25 - x^{2}}} \right| \right]_{0}^{4} \quad \text{(Draw a triangle.)}$$
$$= -\frac{1}{5} \ln\left| \frac{5}{\sqrt{9}} + \frac{4}{\sqrt{9}} \right| + \frac{1}{5} \ln\left| \frac{5}{\sqrt{25}} \right| = -\frac{1}{5} \ln\frac{9}{\sqrt{9}} = -\frac{1}{5} \ln 3$$

Alternatively, we could use the partial fraction expansion $\frac{1}{x^2 - 25} = \frac{1}{10(x-5)} - \frac{1}{10(x+5)}$

$$\frac{1}{0(x-5)} - \frac{1}{10(x+5)}$$

6. Consider the integrals:

$$A = \int_{-3}^{4} \frac{1}{(x-3)^{2/3}} dx \qquad B = \int_{-3}^{4} \frac{1}{(x-3)^{4/3}} dx \qquad C = \int_{-4}^{\infty} \frac{1}{(x-3)^{2/3}} dx \qquad D = \int_{-4}^{\infty} \frac{1}{(x-3)^{4/3}} dx$$

Which are finite? Which are infinite?

- **a**. *A* and *B* are finite. *C* and *D* are infinite.
- **b**. *B* and *C* are finite. *A* and *D* are infinite.
- **c**. *B* and *D* are finite. *A* and *C* are infinite.
- **d**. A and D are finite. B and C are infinite. Correct
- **e**. *A* and *C* are finite. *B* and *D* are infinite.

Solution: For large x, notice $\frac{1}{(x-3)^{4/3}}$ is more damped than $\frac{1}{x-3}$. So D is finite. For large x, notice $\frac{1}{(x-3)^{2/3}}$ is less damped than $\frac{1}{x-3}$. So C is infinite. Near x = 3, the behavior is reversed. So *B* is infinite and *A* is finite.

- 7. The region between $y = 12 x^2$ and y = 3 is rotated about the *x*-axis. Which integral gives the volume swept out?
 - **a.** $V = \pi \int_{-3}^{3} (x^4 24x^2 + 135) dx$ Correct **b.** $V = 2\pi \int_{-3}^{3} (x^4 - 24x^2 + 135) dx$ **c.** $V = \pi \int_{0}^{3} (9x - x^3) dx$ **d.** $V = 2\pi \int_{0}^{3} (9x - x^3) dx$
 - **e**. $V = 2\pi \int_{-3}^{3} (9x x^3) dx$

Solution: Each y is a function of x. So we do an x-integral. They intersect when

 $12 - x^2 = 3 \implies x^2 = 9 \implies x = \pm 3$

The slices are vertical and rotate about the *x*-axis into washers. The inner radius is r = 3 and the outer radius is $R = 12 - x^2$. So the volume is

$$V = \int_{-3}^{3} \pi R^2 - \pi r^2 \, dx = \pi \int_{-3}^{3} (12 - x^2)^2 - (3)^2 \, dx = \pi \int_{-3}^{3} (x^4 - 24x^2 + 135) \, dx$$

8. The region between $y = 12 - x^2$ and y = 3 is rotated about the *y*-axis. Find the volume swept out.

a.
$$\frac{81\pi}{4}$$

- **b**. $\frac{81\pi}{2}$ Correct
- **c**. 18π
- **d**. 36π
- **e**. 81π

Solution: Each *y* is a function of *x*. So we do an *x*-integral. The slices are vertical and rotate about the *y*-axis into cylinders. The radius is r = x and the height is $h = (12 - x^2) - 3 = 9 - x^2$. The functions intersect when

 $12 - x^2 = 3 \implies x^2 = 9 \implies x = \pm 3$

However, if we integrate from x = -3 to x = 3, we are double counting the volume. So we integrate from x = 0 to x = 3. So the volume is

$$V = \int_0^3 2\pi r h \, dx = 2\pi \int_0^3 x(9-x^2) \, dx = 2\pi \int_0^3 (9x-x^3) \, dx = 2\pi \left[9\frac{x^2}{2} - \frac{x^4}{4}\right]_0^3 = \frac{81\pi}{2}$$

- **9**. The base of a solid is the region between $y = x^2$ and the *x*-axis for $0 \le x \le 3$. The cross sections perpendicular to the *x*-axis are squares. Find the volume of the solid.
 - **a**. 9
 - **b**. 27
 - **c**. 81
 - **d.** $\frac{3^5}{5}$ Correct **e.** $\frac{3^4}{4}$

Solution: Here are plots of the base, with a slice perpendicular to the *x*-axis and a cross section. The area of the cross section is $A = y^2 = (x^2)^2 = x^4$. So the volume is $V = \int_0^3 A \, dx = \int_0^3 x^4 \, dx = \left[\frac{x^5}{5}\right]_0^3 = \frac{3^5}{5}$

- **10**. A spring has a rest length of $x_0 = 5$ m. It requires 12 N of force to hold the spring at x = 7 m. Find the work done to stretch the spring from x = 6 m to x = 8 m.
 - **a**. 6
 - **b**. 8
 - **c**. 12
 - **d**. 18
 - e. 24 Correct

Solution: $F = k(x - x_0)$ 12 = k(7 - 5) k = 6 F = 6(x - 5) $W = \int F dx = \int_{6}^{8} 6(x - 5) dx = 3(x - 5)^{2} \Big|_{6}^{8} = 3(3)^{2} - 3(1)^{2} = 24$

- **11**. A 20 ft rope hangs from the top of a building. It's linear weight density is $\rho = 3$ lb/ft. How much work is done to lift the rope to the top of the building?
 - a. 600 ft-lb Correct
 - **b**. 450 ft-lb
 - **c**. 300 ft-lb
 - **d**. 200 ft-lb
 - **e**. 150 ft-lb

Solution: The piece of rope of length dy which is y ft from the top of the building is lifted D = y ft and has weight dF = 3 dy. So the work is

$$W = \int D \, dF = \int_0^{20} y3 \, dy = 3\frac{y^2}{2} \Big|_0^{20} = 3\frac{20^2}{2} = 600 \text{ ft-lb}$$

12. (16 points) Find the coefficients in the partial fraction expansion

$$\frac{10}{(x^2+4)(x^2-1)} = \frac{Ax+B}{x^2+4} + \frac{C}{x+1} + \frac{D}{x-1}$$

Solution: Clear the denominator:

	$10 = (Ax + B)(x^2 - 1) + C(x^2 + 4)(x - 1) + D(x^2 + 4)(x + 1)$
Plug in $x = 1$:	10 = (A + B)(0) + C(1 + 4)(0) + D(1 + 4)(1 + 1) = 10D
	$\Rightarrow D = 1$
Plug in $x = -1$:	10 = (-A + B)(0) + C(1 + 4)(-2) + D(1 + 4)(0) = -10C
	\Rightarrow $C = -1$
Plug in $x = 0$:	10 = B(-1) + C(4)(-1) + D(4)(1) = -B - 4C + 4D = -B + 8
	$\Rightarrow B = -2$
Coeff of x^3 :	0 = A + C + D = A - 1 + 1 = A
	$\Rightarrow A = 0$

A = 0B = -2C = -1D = 1

13. (16 points) The tank shown is 6 m long, 2 m wide at the top and 4 m high. It is filled with water to a depth of 3 m. How much work is done to pump the water out the top of the tank? Take the density of water to be ρ kg/m³ and the acceleration of gravity to be g m/sec². (You don't need numbers for ρ and g.)

Solution: Put the 0 of the *y*-axis at the bottom of the tank and measure *y* upward. The slice at height *y* has to be lifted a distance D = 4 - y. The slice at height *y* is a rectangle of length 6 and width *w*, and so area A = 6w. By similar triangles $\frac{w}{y} = \frac{2}{4} = \frac{1}{2}$. So $w = \frac{y}{2}$ and $A = 6\frac{y}{2} = 3y$. The slice at height *y* with thickness *dy* has volume dV = A dy = 3y dy and weight $dF = \rho g dV = 3\rho gy dy$. There is water for $0 \le y \le 3$. (This is the tricky part.) So the work is:

$$W = \int_0^3 D \, dF = \int_0^3 (4 - y) \, 3\rho g y \, dy = \rho g \left[6y^2 - y^3 \right]_0^3 = \rho g (54 - 27) = 27\rho g$$

- **14**. (18 points) Consider the integral $\int_{1}^{9} (x-4)^2 dx$ The exact value is $\frac{152}{3}$. Use each of the following numerical techniques to approximate the integral.
 - a. Left Riemann Sum with 4 intervals

Solution: $\Delta x = \frac{b-a}{n} = \frac{9-1}{4} = 2$. The evaluation points are $x_i = 1, 3, 5, 7$. The function values are $f(x_i) = 9, 1, 1, 9$. The Left Riemann Sum is $L_4 = (9+1+1+9)2 = 40$

b. Right Riemann Sum with 4 intervals

Solution: $\Delta x = \frac{b-a}{n} = \frac{9-1}{4} = 2$. The evaluation points are $x_i = 3, 5, 7, 9$. The function values are $f(x_i) = 1, 1, 9, 25$. The Right Riemann Sum is $R_4 = (1 + 1 + 9 + 25)2 = 72$

c. Midpoint Riemann Sum with 4 intervals

Solution: $\Delta x = \frac{b-a}{n} = \frac{9-1}{4} = 2$. The evaluation points are $x_i = 2, 4, 6, 8$. The function values are $f(x_i) = 4, 0, 4, 16$. The Right Riemann Sum is $M_4 = (4+0+4+16)2 = 48$

d. Trapezoid Rule with 4 intervals

Solution: $T_4 = \frac{L_4 + R_4}{2} = \frac{40 + 72}{2} = 56$ Alternatively: $T_4 = \left(\frac{1}{2}9 + 1 + 1 + 9 + \frac{1}{2}25\right)2 = 56$

e. Simpson's Rule with 4 intervals

Solution: For quadratic functions, Simpson's Rule is exact. So $S_4 = \frac{152}{3}$. Alternatively:

 $S_4 = \frac{1}{3}(9 + 4 \cdot 1 + 2 \cdot 1 + 4 \cdot 9 + 25)2 = \frac{152}{3}$