MATH 172	Final Exam	Spring 2023	1-10	/50	13	/18
Sections 502		P. Yasskin	12	/18	14	/20
Multiple Choice: (5 points each. No part credit. Circle your answers.)					Total	/106

Multiple Choice: (5 points ea
1.
$$\int_{0}^{\pi} \sin^{3}x \, dx =$$

a. $\frac{1}{3}$
b. $\frac{2}{3}$
c. $\frac{4}{3}$
d. $\frac{3}{8}\pi$
e. $\frac{3}{4}\pi$

2.
$$\int \frac{1}{x^2 \sqrt{4x^2 - 9}} dx =$$

a.
$$\frac{\sqrt{4x^2 - 9}}{9x} + C$$

b.
$$\frac{9x}{\sqrt{4x^2 - 9}} + C$$

c.
$$\frac{2\sqrt{4x^2 - 9}}{27} + C$$

d.
$$\frac{4}{27} \ln\left(\frac{2x}{3} + \frac{\sqrt{4x^2 - 9}}{3}\right) + C$$

e.
$$\frac{4}{27} \ln\frac{\sqrt{4x^2 - 9}}{2x} - \frac{1}{27} \frac{4x^2 - 9}{2x^2}$$

- **3**. In the partial fraction expansion, $\frac{8}{x^3 + 4x} = \frac{A}{x} + \frac{Bx + C}{x^2 + 4}$, which coefficient is **right**?
 - **a**. *A* = 1
 - **b**. B = -2
 - **c**. B = 2
 - **d**. C = -2
 - **e**. *C* = 2

4. Approximate $\int_{2}^{14} \frac{144}{x^2} dx$ using a midpoint Riemann sum with 3 intervals.

- **a**. $\frac{49}{4}$ **b**. $\frac{74}{3}$ **c**. 62 **d**. 74
- **e**. 49

5. Find the arc length of the curve $(x, y, z) = (t, t^2, \frac{2}{3}t^3)$ between t = 0 and t = 1.

- **a**. $\frac{5}{3}$ **b**. $\frac{8}{3}$
- **c**. $\frac{16}{3}$
- **d**. 2
- **e**. 4

- **6**. The curve $y = x^2$ between x = 0 and $x = \sqrt{2}$ is revolved about the *y*-axis. Find the area of the surface swept out.
 - **a**. 3π
 - **b**. $\frac{7}{4}\pi$

 - **c**. $\frac{9}{2}\pi$
 - **d**. 4π **e**. $\frac{13}{3}\pi$

7. A sequence is defined recursively by $a_1 = 3$ and $a_{n+1} = \frac{a_n^2 + 7}{8}$. Find $\lim_{n \to \infty} a_n$.

- **a**. 0
- **b**. 1
- **c**. 2
- **d**. 3
- **e**. 7

8. The series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1+\sqrt{n}}{n^2+\sqrt{n}}$$
 is:

- a. Absolutely Convergent
- b. Conditionally Convergent
- c. Divergent
- d. Conditionally Divergent

- 9. The series $\sum_{n=1}^{\infty} \frac{1+n}{n+n^4}$ is:
 - **a**. convergent by Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n^3}$
 - **b**. convergent by Limit Comparison but not Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n^3}$
 - **c**. divergent by Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$
 - **d**. divergent by Limit Comparison but not Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$

10. $\lim_{x \to 0} \frac{\sin(x^3) - x^3}{x^9} =$ **a.** ∞ **b.** $\frac{1}{6}$ **c.** 0 **d.** $-\frac{1}{6}$ **e.** $-\infty$

Work Out: (Points indicated. Part credit possible. Show all work.)

11. (18 points) The area below $y = e^{-x}$ between x = 0 and x = 2 is revolved about the *y*-axis. Find the volume of the solid swept out.

12. (18 points) The curve $y = x^2$ for $y \le 9$ is revolved about the *y*-axis to form a bowl. It is filled to a depth of y = 6 with salt water with weight density $g\delta = 64 \frac{lb}{ft^3}$.

How much work is done to pump the water out the top of the bowl.

13. (20 points) Find the interval of convergence of the series

$$\sum_{n=2}^{\infty} \frac{2^n + 4}{6^n + 12} (x - 5)^n \text{ as follows:}$$

a. Find the radius of convergence.

b. Check convergence at the right endpoint.

c. Check convergence at the left endpoint.

d. State the interval of convergrnce.