Name

\qquad
MATH 172
Sections 502
Final Exam
Spring 2023
Solutions
P. Yasskin

Multiple Choice: (5 points each. No part credit. Circle your answers.)

$1-10$	$/ 50$	13	$/ 18$
12	$/ 18$	14	$/ 20$
		Total	$/ 106$

1. $\int_{0}^{\pi} \sin ^{3} x d x=$
a. $\frac{1}{3}$
b. $\frac{2}{3}$
c. $\frac{4}{3}$ Correct
d. $\frac{3}{8} \pi$
e. $\frac{3}{4} \pi$

Solution: Let $u=\cos x$. Then $d u=-\sin x d x$ and $\sin ^{2} x=1-\cos ^{2} x=1-u^{2}$. So $\int_{0}^{\pi} \sin ^{3} x d x=\int_{0}^{\pi}\left(1-\cos ^{2} x\right) \sin x d x=-\int_{1}^{-1}\left(1-u^{2}\right) d u=\left[-u+\frac{u^{3}}{3}\right]_{1}^{-1}=\left(1-\frac{1}{3}\right)-\left(-1+\frac{1}{3}\right)=\frac{4}{3}$
2. $\int \frac{1}{x^{2} \sqrt{4 x^{2}-9}} d x=$
a. $\frac{\sqrt{4 x^{2}-9}}{9 x}+C \quad$ Correct
b. $\frac{9 x}{\sqrt{4 x^{2}-9}}+C$
c. $\frac{2 \sqrt{4 x^{2}-9}}{27}+C$
d. $\frac{4}{27} \ln \left(\frac{2 x}{3}+\frac{\sqrt{4 x^{2}-9}}{3}\right)+C$
e. $\frac{4}{27} \ln \frac{\sqrt{4 x^{2}-9}}{2 x}-\frac{1}{27} \frac{4 x^{2}-9}{2 x^{2}}$

Solution: Let $2 x=3 \sec \theta$. Then $x=\frac{3}{2} \sec \theta$ and $d x=\frac{3}{2} \sec \theta \tan \theta d \theta$.
$\int \frac{1}{x^{2} \sqrt{4 x^{2}-9}} d x=\int \frac{4}{9 \sec ^{2} \theta \sqrt{9 \sec ^{2} \theta-9}} \frac{3}{2} \sec \theta \tan \theta d \theta=\int \frac{4}{9 \sec ^{2} \theta 3 \tan \theta} \frac{3}{2} \sec \theta \tan \theta d \theta$
$=\frac{2}{9} \int \frac{1}{\sec \theta} d \theta=\frac{2}{9} \int \cos \theta d \theta=\frac{2}{9} \sin \theta+C$
Since $\sec \theta=\frac{2 x}{3}$, we draw a triangle with hypotenuse $2 x$ and adjacent side 3 .
Then the opposite side is $\sqrt{4 x^{2}-9}$ and $\sin \theta=\frac{\sqrt{4 x^{2}-9}}{2 x}$. So
$\int \frac{1}{x^{2} \sqrt{4 x^{2}-9}} d x=\frac{\sqrt{4 x^{2}-9}}{9 x}+C$
3. In the partial fraction expansion, $\frac{8}{x^{3}+4 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}$, which coefficient is right?
a. $A=1$
b. $B=-2 \quad$ Correct
c. $B=2$
d. $C=-2$
e. $C=2$

Solution: Clear denominator: $\quad 8=A\left(x^{2}+4\right)+(B x+C) x$
$x=0$:
$8=A(4) \quad \Rightarrow \quad A=2$
$x=1: \quad 8=A(5)+B+C=10+B+C \quad \Rightarrow \quad B+C=-2$
$x=-1: \quad 8=A(5)+B-C=10+B-C \quad \Rightarrow \quad B-C=-2$
Add: $\quad 2 B=-4 \quad \Rightarrow \quad B=-2$
Subtract: $2 C=0 \quad \Rightarrow \quad C=0$
4. Approximate $\int_{2}^{14} \frac{144}{x^{2}} d x$ using a midpoint Riemann sum with 3 intervals.
a. $\frac{49}{4}$
b. $\frac{74}{3}$
c. 62
d. 74
e. 49 Correct

Solution: The width of each interval is $\Delta x=\frac{14-2}{3}=4$. The partition points are $2,6,10,14$. The midpoints are $4,8,12$. With $f(x)=\frac{144}{x^{2}}$, the function values are $f(4)=\frac{144}{16}=9, f(8)=\frac{144}{64}=\frac{9}{4}, f(12)=\frac{144}{144}=1$. So the Riemann sum is $R_{3}=(f(2)+f(8)+f(12)) \Delta x=\left(9+\frac{9}{4}+1\right) 4=49$
5. Find the arc length of the curve $(x, y, z)=\left(t, t^{2}, \frac{2}{3} t^{3}\right)$ between $t=0$ and $t=1$.
a. $\frac{5}{3}$ Correct
b. $\frac{8}{3}$
c. $\frac{16}{3}$
d. 2
e. 4

Solution: The differential of arclength is

$$
\begin{aligned}
d s= & \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t=\sqrt{1^{2}+(2 t)^{2}+\left(2 t^{2}\right)^{2}} d t=\sqrt{1+4 t^{2}+4 t^{4}} d t \\
& =\sqrt{\left(1+2 t^{2}\right)^{2}} d t=\left(1+2 t^{2}\right) d t
\end{aligned}
$$

So the arclength is $L=\int_{0}^{1} d s=\int_{0}^{1}\left(1+2 t^{2}\right) d t=\left[t+\frac{2 t^{3}}{3}\right]_{0}^{1}=1+\frac{2}{3}=\frac{5}{3}$
6. The curve $y=x^{2}$ between $x=0$ and $x=\sqrt{2}$ is revolved about the y-axis.

Find the area of the surface swept out.
a. 3π
b. $\frac{7}{4} \pi$
c. $\frac{9}{2} \pi$
d. 4π
e. $\frac{13}{3} \pi$ Correct

Solution: The surface area is $A=\int_{0}^{\sqrt{2}} 2 \pi r d s$ where the radius is $r=x$ and the differential of arclength is $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\sqrt{1+(2 x)^{2}} d x=\sqrt{1+4 x^{2}} d x$. So $A=\int_{0}^{\sqrt{2}} 2 \pi x \sqrt{1+4 x^{2}} d x$. Let $u=1+4 x^{2}$. Then $d u=8 x d x$ and $\frac{1}{8} d u=x d x$. So $A=\frac{2 \pi}{8} \int_{1}^{9} \sqrt{u} d u=\frac{\pi}{4}\left[\frac{2 u^{3 / 2}}{3}\right]_{1}^{9}=\frac{\pi}{6}\left(9^{3 / 2}-1^{3 / 2}\right)=\frac{\pi}{6}(26)=\frac{13}{3} \pi$
7. A sequence is defined recursively by $a_{1}=3$ and $a_{n+1}=\frac{a_{n}^{2}+7}{8}$. Find $\lim _{n \rightarrow \infty} a_{n}$.
a. 0
b. 1 Correct
c. 2
d. 3
e. 7

Solution: Assuming the limit exists, let $L=\lim _{n \rightarrow \infty} a_{n}$. Then $\lim _{n \rightarrow \infty} a_{n+1}=L \quad$ also. We solve
$L=\frac{L^{2}+7}{8} \Rightarrow 8 L=L^{2}+7 \quad \Rightarrow \quad 0=L^{2}-8 L+7=(L-1)(L-7) \quad \Rightarrow \quad L=1,7$
The first few terms are $a_{1}=3, a_{2}=\frac{9+7}{8}=2, \quad a_{3}=\frac{4+7}{8}=\frac{11}{8}$.
So the sequence seems to be decreasing from 3. We could use induction to prove it is decreasing and bounded below by 0 . So the limit must be $\lim _{n \rightarrow \infty} a_{n}=1$.
8. The series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1+\sqrt{n}}{n^{2}+\sqrt{n}}$ is:
a. Absolutely Convergent Correct
b. Conditionally Convergent
c. Divergent
d. Conditionally Divergent

Solution: The related absolute series is $\sum_{n=1}^{\infty} \frac{1+\sqrt{n}}{n^{2}+\sqrt{n}}$ which is convergent by comparison with $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}} \quad$ which is a p-series with $p=\frac{3}{2}>1$. So the original series is absolutely convergent by the Absolute Convergence Test.
9. The series $\sum_{n=1}^{\infty} \frac{1+n}{n+n^{4}}$
is:
a. convergent by Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
b. convergent by Limit Comparison but not Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ Correct
c. divergent by Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$
d. divergent by Limit Comparison but not Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$

Solution: For large n, we have $n>1$ and $n^{4}>n$. So we compare to $\sum_{n=1}^{\infty} \frac{n}{n^{4}}=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ which is a p-series with $p=3>1$, and so is convergent.
The Simple Comparison Test will not work because $1+n>n$.
So we apply the Limit Comparison Test:
$L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1+n}{n+n^{4}} \frac{n^{3}}{1}=\lim _{n \rightarrow \infty} \frac{n^{3}+n^{4}}{n+n^{4}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}+1}{\frac{1}{n^{3}}+1}=1$ and $0<L<\infty$
10. $\lim _{x \rightarrow 0} \frac{\sin \left(x^{3}\right)-x^{3}}{x^{9}}=$
a. ∞
b. $\frac{1}{6}$
c. 0
d. $-\frac{1}{6}$ Correct
e. $-\infty$

Solution: We start with the Maclaurin series $\sin u=u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\cdots$. We substitute $u=x^{3}$:
$\sin \left(x^{3}\right)=x^{3}-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\cdots \quad$ and insert into the limit:
$\lim _{x \rightarrow 0} \frac{\sin \left(x^{3}\right)-x^{3}}{x^{9}}=\lim _{x \rightarrow 0} \frac{\left(x^{3}-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\cdots\right)-x^{3}}{x^{9}}=\lim _{x \rightarrow 0} \frac{-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\cdots}{x^{9}}$

$$
=\lim _{x \rightarrow 0}\left(-\frac{1}{3!}+\frac{x^{6}}{5!}-\cdots\right)=-\frac{1}{6}
$$

11. (18 points) The area below $y=e^{-x}$ between $x=0$ and $x=2$ is revolved about the y-axis. Find the volume of the solid swept out.

Solution: We do an x-integral. The slices are vertical and revolve into cylinders.
The radius is $r=x$ and the height is $h=e^{-x}$. So the volume is $V=\int 2 \pi r h d x=2 \pi \int_{0}^{2} x e^{-x} d x$.
We integrate by parts with

$$
\begin{array}{ll}
u=x & d v=e^{-x} d x \\
d u=d x & v=-e^{-x}
\end{array}
$$

$$
\begin{aligned}
V= & 2 \pi \int_{0}^{2} x e^{-x} d x=2 \pi\left[-x e^{-x}+\int e^{-x} d x\right]_{0}^{2}=2 \pi\left[-x e^{-x}-e^{-x}\right]_{0}^{2} \\
& =2 \pi\left(-2 e^{-2}-e^{-2}\right)-2 \pi(-1)=2 \pi\left(1-3 e^{-2}\right)
\end{aligned}
$$

12. (18 points) The curve $y=x^{2}$ for $y \leq 9$ is revolved about the y-axis to form a bowl. It is filled to a depth of $y=6$ with salt water with weight density $g \delta=64 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$.
How much work is done to pump the water out the top of the bowl.

Solution: The slice at height y is lifted a distance $D=9-y$.
This slice is a disk of thickness $d y$ and radius $r=x=\sqrt{y}$.
So its volume is $d V=\pi r^{2} d y=\pi y d y$. And its weight is $d F=g \delta d V=64 \pi y d y$.
So the work is $W=\int_{0}^{6} D d F=\int_{0}^{6}(9-y) 64 \pi y d y=64 \pi\left[9 \frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{6}=64 \pi\left(9 \frac{6^{2}}{2}-\frac{6^{3}}{3}\right)=5760 \pi$
13. (20 points) Find the interval of convergence of the series $\sum_{n=2}^{\infty} \frac{2^{n}+4}{6^{n}+12}(x-5)^{n}$ as follows:
a. Find the radius of convergence.

Solution: We use the ratio test: $\quad\left|a_{n}\right|=\frac{\left(2^{n}+4\right)|x-5|^{n}}{\left(6^{n}+12\right)} \quad\left|a_{n+1}\right|=\frac{\left(2^{n+1}+4\right)|x-5|^{n+1}}{\left(6^{n+1}+12\right)}$
$\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{|x-5|^{n+1}}{|x-5|^{n}} \frac{\left(2^{n+1}+4\right)}{\left(2^{n}+4\right)} \frac{\left(6^{n}+12\right)}{\left(6^{n+1}+12\right)}=|x-5| \lim _{n \rightarrow \infty} \frac{\left(2+\frac{4}{2^{n}}\right)}{\left(1+\frac{4}{2^{n}}\right)} \lim _{n \rightarrow \infty} \frac{\left(1+\frac{12}{6^{n}}\right)}{\left(6+\frac{12}{6^{n}}\right)}$
$=\frac{2}{6}|x-5|<1 \Rightarrow|x-5|<3 \Rightarrow R=3 \Rightarrow$ Open interval of convergence is:
b. Check convergence at the right endpoint.

Solution: $x=8$: $\quad \sum_{n=2}^{\infty} \frac{2^{n}+4}{6^{n}+12}(3)^{n} \quad$ Diverges by the $n^{\text {th }}$ Term Divergence Test because
$\lim _{n \rightarrow \infty} \frac{2^{n}+4}{6^{n}+12}(3)^{n}=\lim _{n \rightarrow \infty} \frac{6^{n}+4 \cdot 3^{n}}{6^{n}+12}=\lim _{n \rightarrow \infty} \frac{1+\frac{4}{2^{n}}}{1+\frac{12}{6^{n}}}=1 \neq 0$
c. Check convergence at the left endpoint.

Solution: $x=2$: $\quad \sum_{n=2}^{\infty} \frac{2^{n}+4}{6^{n}+12}(-3)^{n} \quad$ Diverges by the $n^{\text {th }}$ Term Divergence Test because
$\lim _{n \rightarrow \infty} \frac{2^{n}+4}{6^{n}+12}(-3)^{n}=\lim _{n \rightarrow \infty}(-1)^{n} \frac{6^{n}+4 \cdot 3^{n}}{6^{n}+12}=\lim _{n \rightarrow \infty}(-1)^{n} \frac{1+\frac{4}{2^{n}}}{1+\frac{12}{6^{n}}} \neq 0 \quad$ because
the terms alternate between close to 1 and close to -1 .
d. State the interval of convergrnce.

Solution: The interval of convergence is: $(2,8)$

