MATH 172 Final Exam Spring 2023 Sections 502 Solutions P. Yasskin Multiple Choice: (5 points each. No part credit. Circle your answers.) $\frac{1.10}{2} \frac{1/16}{14} \frac{14}{20}$ Multiple Choice: (5 points each. No part credit. Circle your answers.) $\frac{1}{2} \frac{1}{18} \frac{14}{4} \frac{120}{16}$ Multiple Choice: (5 points each. No part credit. Circle your answers.) $\frac{1}{2} \frac{1}{18} \frac{14}{4} \frac{120}{16}$ Multiple Choice: (5 points each. No part credit. Circle your answers.) $\frac{1}{2} \frac{1}{18} \frac{14}{4} \frac{120}{16}$ Multiple Choice: (5 points each. No part credit. Circle your answers.) $\frac{1}{2} \frac{1}{18} \frac{14}{4} \frac{12}{106}$ $\frac{1}{3} \frac{1}{3} \frac{1}{6} \frac{1}{3} \frac{1}{6} \frac$	Name		-				
Sections 502 Solutions P. Yasskin $12 \frac{1/18}{14} \frac{14}{120}$ Multiple Choice: (5 points each. No part credit. Circle your answers.) $1 \int_{0}^{\pi} \sin^{3}x dx = \frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{$	MATH 172	Final Exam	Spring 2023	1-10	/50	13	/18
Multiple Choice: (5 points each. No part credit. Circle your answers.) Total /106 1. $\int_{0}^{\pi} \sin^{3}x dx =$ a. $\frac{1}{3}$ b. $\frac{2}{3}$ c. $\frac{4}{3}$ Correct d. $\frac{3}{8}\pi$ e. $\frac{3}{4}\pi$ Solution: Let $u = \cos x$. Then $du = -\sin x dx$ and $\sin^{2}x = 1 - \cos^{2}x = 1 - u^{2}$. So $\int_{0}^{\pi} \sin^{3}x dx = \int_{0}^{\pi} (1 - \cos^{2}x) \sin x dx = -\int_{1}^{-1} (1 - u^{2}) du = \left[-u + \frac{u^{3}}{3}\right]_{1}^{-1} = \left(1 - \frac{1}{3}\right) - \left(-1 + \frac{1}{3}\right) = \frac{4}{3}$ 2. $\int \frac{1}{x^{2}\sqrt{4x^{2} - 9}} dx =$ a. $\frac{\sqrt{4x^{2} - 9}}{9x} + C$ Correct b. $-\frac{9x}{27} + C$ c. $\frac{2\sqrt{4x^{2} - 9}}{27} + C$ d. $\frac{4}{27} \ln \frac{\sqrt{4x^{2} - 9}}{2x} - \frac{1}{27} \frac{4x^{2} - 9}{2x^{2}}$ Solution: Let $2x = 3\sec \theta$. Then $x = \frac{3}{2} \sec \theta$ and $dx = \frac{3}{2} \sec \theta \tan \theta d\theta$. $\int \frac{4}{x^{2}\sqrt{4x^{2} - 9}} dx = \int \frac{1}{9\sec^{2}\sqrt{9}\sqrt{9\sec^{2}\theta - 9}} \frac{3}{2} \sec \theta \tan \theta d\theta = \int \frac{4}{9\sec^{2}d3\tan\theta} \frac{3}{2} \sec \theta \tan\theta d\theta}{32 \sec^{2}d3\tan\theta} \frac{3}{2} \sec \theta \tan\theta d\theta}{32 \sec^{2}d3\tan\theta} \frac{3}{2} \sec^{2}d\tan\theta d\theta}{32 \sec^{2}d3\tan\theta} d\theta = \frac{2}{9} \int \frac{1}{\sec^{2}\theta} d\theta = \frac{2}{9} \int \cos\theta d\theta = \frac{2}{9} \sin\theta + C$ Since $\sec \theta = \frac{2x}{3}$, we draw artiangle with hypotenuse $2x$ and adjacent side 3. Then the opposite side is $\sqrt{4x^{2} - 9} + C$	Sections 502	Solutions	P. Yasskin	12	/18	14	/20
1. $\int_{0}^{\pi} \sin^{3}x dx =$ a $\frac{1}{3}$ b $\frac{2}{3}$ c $\frac{4}{3}$ Correct d $\frac{3}{8}\pi$ e $\frac{3}{4}\pi$ Solution: Let $u = \cos x$. Then $du = -\sin x dx$ and $\sin^{2}x = 1 - \cos^{2}x = 1 - u^{2}$. So $\int_{0}^{\pi} \sin^{3}x dx = \int_{0}^{\pi} (1 - \cos^{2}x) \sin x dx = -\int_{1}^{-1} (1 - u^{2}) du = \left[-u + \frac{u^{2}}{3} \right]_{1}^{-1} = \left(1 - \frac{1}{3} \right) - \left(-1 + \frac{1}{3} \right) = \frac{4}{3}$ 2 $\int \frac{1}{x^{2}\sqrt{4x^{2} - 9}} dx =$ a $\frac{\sqrt{4x^{2} - 9}}{9x} + C$ Correct b $\frac{9x}{\sqrt{4x^{2} - 9}} + C$ c $2\sqrt{4x^{2} - 9} + C$ d $\frac{4}{27} \ln \left(\frac{2x}{3} + \frac{\sqrt{4x^{2} - 9}}{3} \right) + C$ e $\frac{4}{27} \ln \frac{\sqrt{4x^{2} - 9}}{2x} - \frac{1}{27} \frac{4x^{2} - 9}{2x^{2}}$ Solution: Let $2x = 3 \sec \theta$. Then $x = \frac{3}{2} \sec \theta$ and $dx = \frac{3}{2} \sec \theta \tan \theta d\theta$. $\int \frac{1}{x^{2}\sqrt{4x^{2} - 9}} dx = \int \frac{9 \sec^{2} d \sqrt{9 \sec^{2} \theta - 9}}{9 \sec^{2} d \sqrt{9 \sec^{2} \theta - 9}} \frac{3}{2} \sec \theta \tan \theta d\theta = \int \frac{4}{9 \sec^{2} d 3 \tan \theta} \frac{3}{2} \sec \theta \tan \theta d\theta$ $= \frac{2}{9} \int \frac{1}{\sec \theta} d\theta = \frac{2}{9} \int \cos \theta d\theta = \frac{2}{9} \sin \theta + C$ Since $\sec \theta = \frac{2x}{3}$, we draw a triangle with hypotenuse $2x$ and adjacent side 3. Then the opposite side is $\sqrt{4x^{2} - 9}$ and $\sin \theta = \frac{\sqrt{4x^{2} - 9}}{2x}$. So	Multiple Choice: (5 p	oints each. No part credit. C	Circle your answers.)			Total	/106
1	1. $\int_{0}^{\pi} \sin^{3}x dx =$ a. $\frac{1}{3}$ b. $\frac{2}{3}$ c. $\frac{4}{3}$ Correctedding and a constraints of the constraints of t	t $u = \cos x. \text{ Then } du = -\sin x$ $-\cos^2 x)\sin x dx = -\int_{1}^{-1} (1-u)$ $=$ C Correct C $\frac{\sqrt{4x^2 - 9}}{3} + C$ $\frac{9}{3} - \frac{1}{27} \frac{4x^2 - 9}{2x^2}$ $2x = 3 \sec \theta. \text{ Then } x = \frac{3}{2} \sec \theta$ $= \int \frac{4}{9 \sec^2 \theta \sqrt{9 \sec^2 \theta - 9}} \frac{3}{2} \sec \theta$ $= \int \frac{2}{9} \int \cos \theta d\theta = \frac{2}{9} \sin \theta + C$ $= \int \frac{\sqrt{4x^2 - 9}}{9x} + C$	$ec\theta \text{ and } \sin^{2}x = 1 - \frac{1}{2} du = \left[-u + \frac{u^{3}}{3}\right]_{1}^{-1}$ $ec\theta \text{ and } dx = \frac{3}{2} \sec(2\theta \tan\theta) d\theta = \int \frac{3}{9 \sec^{2}\theta} \int \frac{1}{9 \sec^{2}\theta} d\theta$ $ec\theta \tan\theta d\theta = \int \frac{\sqrt{4x^{2} - 9}}{2x} d\theta$	$\cos^{2}x =$ $= (1 - \frac{\theta}{\theta} \tan \theta d d d d d d d d d d d d d d d d d d$	$= 1 - u^{2}.$ $\frac{1}{3}) - (1)$ $\frac{3}{2} \sec \theta \tan \theta$ In the side	So $-1 + \frac{1}{3}$ $\sin \theta d\theta$ 3.	$)=\frac{4}{3}$

3. In the partial fraction expansion, $\frac{8}{x^3+4x} = \frac{A}{x} + \frac{Bx+C}{x^2+4}$, which coefficient is **right**? **a**. A = 1**b**. B = -2Correct **c**. B = 2**d**. C = -2**e**. *C* = 2 **Solution**: Clear denominator: $8 = A(x^2 + 4) + (Bx + C)x$ x = 0: 8 = A(4) $\Rightarrow \qquad A = 2$ $8 = A(5) + B + C = 10 + B + C \implies B + C = -2$ x = 1: x = -1: $8 = A(5) + B - C = 10 + B - C \implies B - C = -2$ $2B = -4 \implies B = -2$ Add: Subtract: $2C = 0 \implies C = 0$ **4**. Approximate $\int_{2}^{14} \frac{144}{x^2} dx$ using a midpoint Riemann sum with 3 intervals. **a**. $\frac{49}{4}$ **b**. $\frac{74}{3}$ **c**. 62 **d**. 74 **e**. 49 Correct **Solution**: The width of each interval is $\Delta x = \frac{14-2}{3} = 4$. The partition points are 2,6,10,14. The midpoints are 4,8,12. With $f(x) = \frac{144}{x^2}$, the function values are $f(4) = \frac{144}{16} = 9$, $f(8) = \frac{144}{64} = \frac{9}{4}$, $f(12) = \frac{144}{144} = 1$. So the Riemann sum is $R_3 = (f(2) + f(8) + f(12))\Delta x = (9 + \frac{9}{4} + 1)4 = 49$ 5. Find the arc length of the curve $(x,y,z) = (t,t^2,\frac{2}{3}t^3)$ between t = 0 and t = 1. **a**. $\frac{5}{3}$ Correct **b**. $\frac{8}{3}$ **c**. $\frac{16}{3}$ **d**. 2 **e**. 4 **Solution**: The differential of arclength is $ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt = \sqrt{1^2 + (2t)^2 + (2t^2)^2} dt = \sqrt{1 + 4t^2 + 4t^4} dt$ $= \sqrt{\left(1 + 2t^2\right)^2} \, dt = \left(1 + 2t^2\right) dt$ So the arclength is $L = \int_{0}^{1} ds = \int_{0}^{1} (1+2t^2) dt = \left[t + \frac{2t^3}{3}\right]_{0}^{1} = 1 + \frac{2}{3} = \frac{5}{3}$

2

- **6**. The curve $y = x^2$ between x = 0 and $x = \sqrt{2}$ is revolved about the *y*-axis. Find the area of the surface swept out.
 - **a.** 3π **b.** $\frac{7}{4}\pi$ **c.** $\frac{9}{2}\pi$ **d.** 4π
 - e. $\frac{13}{3}\pi$ Correct

Solution: The surface area is $A = \int_{0}^{\sqrt{2}} 2\pi r \, ds$ where the radius is r = x and the differential of arclength is $ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \sqrt{1 + (2x)^2} \, dx = \sqrt{1 + 4x^2} \, dx$. So $A = \int_{0}^{\sqrt{2}} 2\pi x \sqrt{1 + 4x^2} \, dx$. Let $u = 1 + 4x^2$. Then $du = 8x \, dx$ and $\frac{1}{8} \, du = x \, dx$. So $A = \frac{2\pi}{8} \int_{1}^{9} \sqrt{u} \, du = \frac{\pi}{4} \left[\frac{2u^{3/2}}{3}\right]_{1}^{9} = \frac{\pi}{6} (9^{3/2} - 1^{3/2}) = \frac{\pi}{6} (26) = \frac{13}{3} \pi$

- 7. A sequence is defined recursively by $a_1 = 3$ and $a_{n+1} = \frac{a_n^2 + 7}{8}$. Find $\lim_{n \to \infty} a_n$.
 - **a**. 0
 - **b**. 1 Correct
 - **c**. 2
 - **d**. 3
 - **e**. 7

Solution: Assuming the limit exists, let $L = \lim_{n \to \infty} a_n$. Then $\lim_{n \to \infty} a_{n+1} = L$ also. We solve $L = \frac{L^2 + 7}{8} \implies 8L = L^2 + 7 \implies 0 = L^2 - 8L + 7 = (L-1)(L-7) \implies L = 1, 7$ The first few terms are $a_1 = 3$, $a_2 = \frac{9+7}{8} = 2$, $a_3 = \frac{4+7}{8} = \frac{11}{8}$. So the sequence seems to be decreasing from 3. We could use induction to prove it is decreasing

So the sequence seems to be decreasing from 3. We could use induction to prove it is decreasing and bounded below by 0. So the limit must be $\lim_{n\to\infty} a_n = 1$.

- 8. The series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1+\sqrt{n}}{n^2+\sqrt{n}}$ is:
 - a. Absolutely Convergent Correct
 - b. Conditionally Convergent
 - c. Divergent
 - d. Conditionally Divergent

Solution: The related absolute series is $\sum_{n=1}^{\infty} \frac{1+\sqrt{n}}{n^2+\sqrt{n}}$ which is convergent by comparison with $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ which is a *p*-series with $p = \frac{3}{2} > 1$. So the original series is absolutely convergent by the Absolute Convergence Test.

9. The series $\sum_{n=1}^{\infty} \frac{1+n}{n+n^4}$ is:

a. convergent by Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n^3}$

b. convergent by Limit Comparison but not Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n^3}$ Correct

- **c**. divergent by Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$
- **d**. divergent by Limit Comparison but not Simple Comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$

Solution: For large *n*, we have n > 1 and $n^4 > n$. So we compare to $\sum_{n=1}^{\infty} \frac{n}{n^4} = \sum_{n=1}^{\infty} \frac{1}{n^3}$ which is a *p*-series with p = 3 > 1, and so is convergent.

The Simple Comparison Test will not work because 1 + n > n.

So we apply the Limit Comparison Test:

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1+n}{n+n^4} \frac{n^3}{1} = \lim_{n \to \infty} \frac{n^3+n^4}{n+n^4} = \lim_{n \to \infty} \frac{\frac{1}{n}+1}{\frac{1}{n^3}+1} = 1 \text{ and } 0 < L < \infty$$

10.
$$\lim_{x \to 0} \frac{\sin(x^3) - x^3}{x^9} =$$

a. ∞
b. $\frac{1}{6}$
c. 0
d. $-\frac{1}{6}$ Correct
e. $-\infty$

Solution: We start with the Maclaurin series $\sin u = u - \frac{u^3}{3!} + \frac{u^5}{5!} - \cdots$. We substitute $u = x^3$: $\sin(x^3) = x^3 - \frac{x^9}{3!} + \frac{x^{15}}{5!} - \cdots$ and insert into the limit: $\lim_{x \to 0} \frac{\sin(x^3) - x^3}{x^9} = \lim_{x \to 0} \frac{\left(x^3 - \frac{x^9}{3!} + \frac{x^{15}}{5!} - \cdots\right) - x^3}{x^9} = \lim_{x \to 0} \frac{-\frac{x^9}{3!} + \frac{x^{15}}{5!} - \cdots}{x^9}$ $= \lim_{x \to 0} \left(-\frac{1}{3!} + \frac{x^6}{5!} - \cdots\right) = -\frac{1}{6}$ **11**. (18 points) The area below $y = e^{-x}$ between x = 0 and x = 2 is revolved about the *y*-axis. Find the volume of the solid swept out.

Solution: We do an *x*-integral. The slices are vertical and revolve into cylinders. The radius is r = x and the height is $h = e^{-x}$. So the volume is $V = \int 2\pi r h dx = 2\pi \int_0^2 x e^{-x} dx$.

We integrate by parts with $u = x \quad dv = e^{-x} dx$ $du = dx \quad v = -e^{-x}$ $V = 2\pi \int_{0}^{2} xe^{-x} dx = 2\pi \Big[-xe^{-x} + \int e^{-x} dx \Big]_{0}^{2} = 2\pi \Big[-xe^{-x} - e^{-x} \Big]_{0}^{2}$ $= 2\pi (-2e^{-2} - e^{-2}) - 2\pi (-1) = 2\pi (1 - 3e^{-2})$

12. (18 points) The curve $y = x^2$ for $y \le 9$ is revolved about the *y*-axis to form a bowl. It is filled to a depth of y = 6 with salt water with weight density $g\delta = 64 \frac{\text{lb}}{\text{ft}^3}$.

How much work is done to pump the water out the top of the bowl.

Solution: The slice at height y is lifted a distance D = 9 - y. This slice is a disk of thickness dy and radius $r = x = \sqrt{y}$. So its volume is $dV = \pi r^2 dy = \pi y dy$. And its weight is $dF = g\delta dV = 64\pi y dy$. So the work is $W = \int_0^6 D dF = \int_0^6 (9 - y) 64\pi y dy = 64\pi \left[9\frac{y^2}{2} - \frac{y^3}{3}\right]_0^6 = 64\pi \left(9\frac{6^2}{2} - \frac{6^3}{3}\right) = 5760\pi$

- **13**. (20 points) Find the interval of convergence of the series $\sum_{n=2}^{\infty} \frac{2^n + 4}{6^n + 12} (x 5)^n$ as follows:

a. Find the radius of convergence.

Solution: We use the ratio test:
$$|a_n| = \frac{(2^n + 4)|x - 5|^n}{(6^n + 12)}$$
 $|a_{n+1}| = \frac{(2^{n+1} + 4)|x - 5|^{n+1}}{(6^{n+1} + 12)}$

$$\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{|x - 5|^{n+1}}{|x - 5|^n} \frac{(2^{n+1} + 4)}{(2^n + 4)} \frac{(6^n + 12)}{(6^{n+1} + 12)} = |x - 5| \lim_{n \to \infty} \frac{\left(2 + \frac{4}{2^n}\right)}{\left(1 + \frac{4}{2^n}\right)} \lim_{n \to \infty} \frac{\left(1 + \frac{12}{6^n}\right)}{\left(6 + \frac{12}{6^n}\right)}$$

$$= \frac{2}{6}|x - 5| < 1 \implies |x - 5| < 3 \implies R = 3 \implies \text{Open interval of convergence is:} (2,8)$$

b. Check convergence at the right endpoint.

Solution: x = 8: $\sum_{n=2}^{\infty} \frac{2^n + 4}{6^n + 12} (3)^n$ Diverges by the *n*thTerm Divergence Test because $\lim_{n \to \infty} \frac{2^n + 4}{6^n + 12} (3)^n = \lim_{n \to \infty} \frac{6^n + 4 \cdot 3^n}{6^n + 12} = \lim_{n \to \infty} \frac{1 + \frac{4}{2^n}}{1 + \frac{12}{6^n}} = 1 \neq 0$

c. Check convergence at the left endpoint.

Solution: x = 2: $\sum_{n=2}^{\infty} \frac{2^n + 4}{6^n + 12} (-3)^n$ Diverges by the *n*th Term Divergence Test because $\lim_{n \to \infty} \frac{2^n + 4}{6^n + 12} (-3)^n = \lim_{n \to \infty} (-1)^n \frac{6^n + 4 \cdot 3^n}{6^n + 12} = \lim_{n \to \infty} (-1)^n \frac{1 + \frac{4}{2^n}}{1 + \frac{12}{6^n}} \neq 0 \quad \text{because}$ the terms alternate between close to 1 and close to -1.

d. State the interval of convergence.

Solution: The interval of convergence is: (2,8)