Name_

MATH 172H

Exam 2

Spring 2019

Sections 200

Solutions

P. Yasskin

11 Multiple Choice: (5 points each. No part credit.)

1. Consider the integrals:

$$A = \int_{3}^{4} \frac{1}{(x-3)^{2/3}} dx \qquad B = \int_{3}^{4} \frac{1}{(x-3)^{4/3}} dx \qquad C = \int_{4}^{\infty} \frac{1}{(x-3)^{2/3}} dx \qquad D = \int_{4}^{\infty} \frac{1}{(x-3)^{4/3}} dx$$

Which are finite? Which are infinite?

- **a**. A and B are finite. C and D are infinite.
- **b**. B and C are finite. A and D are infinite.
- **c**. *B* and *D* are finite. *A* and *C* are infinite.
- **d**. A and D are finite. B and C are infinite. correct choice
- **e**. *A* and *C* are finite. *B* and *D* are infinite.

Solution: For large x, notice $\frac{1}{(x-3)^{4/3}}$ is more damped than $\frac{1}{x-3}$. So D is finite. For large x, notice $\frac{1}{(x-3)^{2/3}}$ is less damped than $\frac{1}{x-3}$. So C is infinite.

Near x = 3, the behavior is reversed. So B is infinite and A is finite.

2. Compute $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$.

- **b**. $\frac{\pi}{2}$ correct choice
- **d**. 0
- e. divergent

Solution:
$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx = \left[\arcsin x\right]_0^1 = \arcsin 1 - \arcsin 0 = \frac{\pi}{2}$$

1-11	/55	13	/22
12	/15	14	/12
		Total	/104

3. Which of the following terms does NOT belong in the general partial fraction expansion of

$$\frac{x^3 - 6x^2 + 7}{(x-4)(x-3)^2(x^2+4)(x^2+9)^3}$$

- $\mathbf{a.} \quad \frac{A}{(x-4)}$
- **b**. $\frac{B}{(x-3)^2}$
- **c**. $\frac{Cx + D}{(x^2 + 9)}$
- $d. \quad \frac{Ex+F}{\left(x^2+9\right)^3}$
- e. They all belong. correct choice

Solution: The general partial fraction expansion is

$$\frac{x^3 - 6x^2 + 7}{(x - 4)(x - 3)^3 (x^2 + 4)(x^2 + 9)^4} = \frac{A}{(x - 4)} + \frac{B}{(x - 3)} + \frac{C}{(x - 3)^2} + \frac{Dx + E}{(x^2 + 4)} + \frac{Fx + G}{(x^2 + 9)} + \frac{Hx + I}{(x^2 + 9)^2} + \frac{Jx + K}{(x^2 + 9)^3}$$

So they all belong.

- 4. In the partial fraction expansion $\frac{x}{(x-2)(x-3)^3} = \frac{A}{x-2} + \frac{B}{x-3} + \frac{C}{(x-3)^2} + \frac{D}{(x-3)^3}$ which coefficient is INCORRECT?
 - **a**. A = -2
 - **b**. B = 2
 - **c**. C = -3 correct choice
 - **d**. D = 3
 - e. They are all correct.

Solution: Clear the denominator. Plug in x = 2 and x = 3.

$$x = A(x-3)^3 + B(x-2)(x-3)^2 + C(x-2)(x-3) + D(x-2)$$

$$x = 2: 2 = A(-1)^3 \Rightarrow A = -2$$

$$x = 3$$
: $3 = D(1)$ \Rightarrow $D = 3$

Plug in x = 0 and x = 1 and use A and D.

$$x = 0$$
: $0 = A(-3)^3 + B(-2)(-3)^2 + C(-2)(-3) + D(-2) = 54 - 18B + 6C - 6$
 $\Rightarrow 3B - C = 8$

$$x = 1$$
: $1 = A(-2)^3 + B(-1)(-2)^2 + C(-1)(-2) + D(-1) = 16 - 4B + 2C - 3$
 $\Rightarrow 2B - C = 6$

Subtract the two equations to get B=2. Substitute back to get $C=-2\neq -3$

5. Find the location of the vertical tangents to the parametric curve:

$$x = t^3 - 3t \qquad \qquad y = t^2 - 4t$$

- **a**. (-2,-3) and (2,5) only correct choice
- **b**. (-2,-3), (2,-4) and (2,5) only
- **c**. (-2,-3) and (2,-4) only
- **d**. (2,-4) only
- **e**. (2,-4) and (2,5) only

Solution: The vertical tangents occur when $\frac{dx}{dt} = 0$. Or $\frac{dx}{dt} = 3t^2 - 3 = 0$, or $t = \pm 1$.

At
$$t = 1$$
: $(x,y) = (t^3 - 3t, t^2 - 4t) = (1 - 3, 1 - 4) = (-2, -3)$

At
$$t = -1$$
: $(x,y) = (t^3 - 3t, t^2 - 4t) = (-1 + 3, 1 + 4) = (2,5)$

Note: (2,-4) is a horizontal tangent.

- **6**. The base of a solid is the region between $y = x^2$ and the x-axis for $0 \le x \le 3$. The cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
 - **a**. $\frac{3^4}{4}$
 - **b.** $\frac{3^5}{5}$ correct choice
 - **c**. 9
 - **d**. 27
 - **e**. 81

Solution: Here are plots of the base, a slice perpendicular to the *x*-axis and a cross section.

The area of the slice is $A = y^2 = (x^2)^2 = x^4$.

So the volume is

$$V = \int_0^3 A \, dx = \int_0^3 x^4 \, dx = \left[\frac{x^5}{5} \right]_0^3 = \frac{3^5}{5}$$

- **7**. The region between $y = x^2$ and the *x*-axis for $0 \le x \le 4$ is rotated about the *y*-axis. Find the volume swept out.
 - **a**. 8π
 - **b**. 16π
 - **c**. 32π
 - **d**. 64π
 - **e**. 128π correct choice

Solution: We do an x-integral. Here are plots of the region, a slice perpendicular to the x-axis and the shape rotated about the y-axis. The slice rotates into a cylinder.

So the volume is

$$V = \int_0^4 2\pi r h \, dx = \int_0^4 2\pi (x)(x^2) \, dx$$
$$= 2\pi \left[\frac{x^4}{4} \right]_0^4 = 2 \cdot 4^3 \pi = 128\pi$$

- **8**. The region between $y = x^2$ and the *x*-axis for $0 \le x \le 4$ is rotated about the *x*-axis. Find the volume swept out.
 - **a**. $\frac{1024\pi}{5}$ correct choice
 - **b**. 64π
 - **c**. $\frac{64\pi}{3}$
 - **d**. 32π
 - **e**. $\frac{32\pi}{3}$

Solution: We do an x-integral. Here are plots of the region, a slice perpendicular to the x-axis and the shape rotated about the x-axis. The slice rotates into a disk. So the volume is

$$V = \int_0^4 \pi r^2 dx = \int_0^4 \pi (x^2)^2 dx = \pi \left[\frac{x^5}{5} \right]_0^4 = \frac{1024\pi}{5}$$

- **9**. It takes a 40 N force to stretch a certain spring to 8 m from its rest position. How much work does it take to stretch this spring from 1 m from rest to 9 m from rest.
 - **a**. 25 J
 - **b**. 50 J
 - **c**. 100 J
 - d. 200 J correct choice
 - **e**. 400 J

Solution:
$$F = kx$$
 $40 = k8$ $\Rightarrow k = 5$ $\Rightarrow F = 5x$ $W = \int_{1}^{9} F dx = \int_{1}^{9} 5x dx = \left[5\frac{x^{2}}{2}\right]_{1}^{9} = \frac{5}{2}(81 - 1) = 200 \text{ J}$

10. A 100 foot rope weighs $\delta = 2 \frac{\text{lb}}{\text{foot}}$. It is hanging from the top of a 100 foot tall building.

How much work is done to pull it up to the top of the building.

- **a**. 5000
- **b**. 10000 correct choice
- **c**. 20000
- **d**. $\frac{100^3}{3}$
- **e**. $2\frac{100^3}{3}$

Solution: Put the 0 of the y-axis at the top of the building and measure y downward. The piece of rope of length dy feet at a distance of y feet from the top is lifted a distance D = y feet. Its weight is $dF = \delta dy = 2 dy$. So the work done to lift the rope is

$$W = \int_0^{100} D \, dF = \int_0^{100} y \, 2 \, dy = \left[y^2 \right]_0^{100} = 10000$$

- **11**. Find the solution of the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2}$ satisfying y(1) = 4. Then y(0) = 4
 - **a**. ³√7
 - **b**. $\sqrt[3]{21}$
 - **c**. $\sqrt[3]{63}$ correct choice
 - **d**. $\sqrt[3]{65}$
 - **e**. ³√195

Solution: We separate: $y^2 dy = x^2 dx$ $\int y^2 dy = \int x^2 dx$ $\frac{y^3}{3} = \frac{x^3}{3} + C$ We use the initial condition: $\frac{64}{3} = \frac{1}{3} + C$ C = 21 $\frac{y^3}{3} = \frac{x^3}{3} + 21$ $y = \sqrt[3]{x^3 + 63}$ Then $y(0) = \sqrt[3]{63}$.

Work Out: (Points indicated. Part credit possible. Show all work.)

12. (15 points) A water trough is 18 meters long. Its end is an isoceles triangle with vertex down whose width is 8 meters and height is 12 meters. The trough is filled with water to a depth of 6 meters. How much work is done to pump the water out the top of the tank? Answers can be given as a multiple of δg where δ is the densty of water g is the acceleration of gravity is g.

Solution: We put the 0 of the y-axis at the vertex of the triangle and measure y upward. The slice at height y is a rectangle with width w and length l=18. Similar triangles say $\frac{w}{y} = \frac{8}{12} = \frac{2}{3}$ or $w = \frac{2}{3}y$. So the area of the slice is $A = lw = 18\frac{2}{3}y = 12y$. Its volume is dV = Ady = 12ydy. Its weight is $dF = \delta g dV = \delta g 12y dy$. This slab of water is lifted a distance D = 12 - y. So the work is

$$W = \int D dF = \int_0^6 (12 - y) \delta g 12y \, dy = 12 \delta g \int_0^6 (12y - y^2) \, dy = 12 \delta g \left[6y^2 - \frac{y^3}{3} \right]_0^6$$
$$= 12 \delta g \left(6^3 - \frac{6^3}{3} \right) = 12 \delta g 6^3 \frac{2}{3} = 1728 \delta g$$

- **13**. (22 points) A pot of syrup on a stove initially contains 4 cups of sugar in 16 gallons of water. Sugar water containing 2 cups of sugar per gallon is added at 3 gallons per hour. Pure water boils off at 1 gallon per hour. The syrup is kept well mixed and is drained at 2 gallons per hour. Let S(t) be the cups of sugar in the pot after t hours.
 - **a**. Find the differential equation and initial condition satisfied by S(t).

Solution: S(0) = 4

$$\frac{dS}{dt} = \underbrace{\frac{2 \text{ cups}}{\text{gal}} \cdot \frac{3 \text{ gal}}{\text{hr}}}_{\text{in}} - \underbrace{\frac{S(t) \text{ cups}}{16 \text{gal}} \cdot \frac{2 \text{ gal}}{\text{hr}}}_{\text{out}} \qquad \frac{dS}{dt} = 6 - \frac{1}{8}S$$

b. Solve for S(t).

Solution: Method 1 Linear: Put the equation in standard form: $\frac{dS}{dt} + \frac{1}{8}S = 6$

Identify $P = \frac{1}{8}$ Find the integrating factor: $e^{\int P dt} = e^{t/8}$

Multiply thru by the integrating factor: $e^{t/8} \frac{dS}{dt} + \frac{1}{8} e^{t/8} S = 6 e^{t/8}$ $\frac{d}{dt} \left(e^{t/8} S \right) = 6 e^{t/8}$

Integrate and solve: $e^{t/8}S = 48e^{t/8} + C$ $S = 48 + Ce^{-t/8}$

Find the constant of integration: 4 = 48 + C C = -44

Substitute back: $S = 48 - 44e^{-t/8}$

Solution: Method 2 Separable: Separate: $\int \frac{dS}{6 - \frac{1}{8}S} = \int dt$

Integrate and solve: $-8 \ln \left| 6 - \frac{1}{8} S \right| = t + C$ $\ln \left| 6 - \frac{1}{8} S \right| = -\frac{t}{8} - \frac{C}{8}$

 $\left| 6 - \frac{1}{8}S \right| = e^{-C/8}e^{-t/8}$ $6 - \frac{1}{8}S = \pm e^{-C/8}e^{-t/8} = Ae^{-t/8}$ $S = 48 - 8Ae^{-t/8}$

Find the constant of integration: 4 = 48 - 8A $A = \frac{44}{8}$

Substitute back: $S = 48 - 44e^{-t/8}$

c. After a very large time, how many cups of sugar will be in the pot?

Solution: After a very large time, $e^{-t/8} \rightarrow 0$. So S = 48.

14. (12 points) Given the partial fraction expansion $\frac{10x^2 - 60}{(x-4)^2(x^2+4)} = \frac{2}{x-4} + \frac{5}{(x-4)^2} + \frac{-2x-3}{x^2+4}$ Compute $\int \frac{10x^2 - 60}{(x-4)^2(x^2+4)} dx.$

Solution:

$$\int \frac{2}{x-4} \, dx = 2 \ln|x-4| + C_1$$

$$\int \frac{5}{(x-4)^2} dx = \frac{-5}{x-4} + C_2$$

$$\int \frac{-2x}{x^2 + 4} \, dx = -\ln|x^2 + 4| + C_3$$

In the last integral, let $x = 2 \tan \theta$ $dx = 2 \sec^2 \theta d\theta$.

$$\int \frac{-3}{x^2 + 4} dx = \int \frac{-3}{4 \tan^2 \theta + 4} 2 \sec^2 \theta d\theta = \frac{-3}{2} \int \frac{\sec^2 \theta}{\tan^2 \theta + 1} d\theta$$
$$= \frac{-3}{2} \int 1 d\theta = \frac{-3}{2} \theta = \frac{-3}{2} \arctan \frac{x}{2} + C_4$$

So

$$\int \frac{10x^2 - 60}{(x - 4)^2(x^2 + 4)} dx = 2\ln|x - 4| - \frac{5}{x - 4} - \ln|x^2 + 4| - \frac{3}{2}\arctan\frac{x}{2} + C$$