Name \qquad
MATH 172H
Sections 200
Exam 2
Spring 2019
Solutions
P. Yasskin

11 Multiple Choice: (5 points each. No part credit.)

1. Consider the integrals:

$$
A=\int_{3}^{4} \frac{1}{(x-3)^{2 / 3}} d x \quad B=\int_{3}^{4} \frac{1}{(x-3)^{4 / 3}} d x \quad C=\int_{4}^{\infty} \frac{1}{(x-3)^{2 / 3}} d x \quad D=\int_{4}^{\infty} \frac{1}{(x-3)^{4 / 3}} d x
$$

Which are finite? Which are infinite?
a. A and B are finite. C and D are infinite.
b. B and C are finite. A and D are infinite.
c. B and D are finite. A and C are infinite.
d. A and D are finite. B and C are infinite. correct choice
e. A and C are finite. B and D are infinite.

Solution: For large x, notice $\frac{1}{(x-3)^{4 / 3}}$ is more damped than $\frac{1}{x-3}$. So D is finite.
For large x, notice $\frac{1}{(x-3)^{2 / 3}}$ is less damped than $\frac{1}{x-3}$. So C is infinite.
Near $x=3$, the behavior is reversed. So B is infinite and A is finite.
2. Compute $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$.
a. π
b. $\frac{\pi}{2}$ correct choice
c. $\frac{\pi}{4}$
d. 0
e. divergent

Solution: $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=[\arcsin x]_{0}^{1}=\arcsin 1-\arcsin 0=\frac{\pi}{2}$

$1-11$	$/ 55$	13	$/ 22$
12	$/ 15$	14	$/ 12$
		Total	$/ 104$

3. Which of the following terms does NOT belong in the general partial fraction expansion of

$$
\frac{x^{3}-6 x^{2}+7}{(x-4)(x-3)^{2}\left(x^{2}+4\right)\left(x^{2}+9\right)^{3}}
$$

a. $\frac{A}{(x-4)}$
b. $\frac{B}{(x-3)^{2}}$
c. $\frac{C x+D}{\left(x^{2}+9\right)}$
d. $\frac{E x+F}{\left(x^{2}+9\right)^{3}}$
e. They all belong. correct choice

Solution: The general partial fraction expansion is

$$
\begin{aligned}
\frac{x^{3}-6 x^{2}+7}{(x-4)(x-3)^{3}\left(x^{2}+4\right)\left(x^{2}+9\right)^{4}}= & \frac{A}{(x-4)}+\frac{B}{(x-3)}+\frac{C}{(x-3)^{2}}+\frac{D x+E}{\left(x^{2}+4\right)} \\
& +\frac{F x+G}{\left(x^{2}+9\right)}+\frac{H x+I}{\left(x^{2}+9\right)^{2}}++\frac{J x+K}{\left(x^{2}+9\right)^{3}}
\end{aligned}
$$

So they all belong.
4. In the partial fraction expansion

$$
\frac{x}{(x-2)(x-3)^{3}}=\frac{A}{x-2}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}+\frac{D}{(x-3)^{3}}
$$ which coefficient is INCORRECT?

a. $A=-2$
b. $B=2$
c. $C=-3 \quad$ correct choice
d. $D=3$
e. They are all correct.

Solution: Clear the denominator. Plug in $x=2$ and $x=3$.

$$
\quad A=-2 子 10 \quad D=3
$$

Plug in $x=0$ and $x=1$ and use A and D.

$$
\begin{array}{cc}
x=0: & 0=A(-3)^{3}+B(-2)(-3)^{2}+C(-2)(-3)+D(-2)=54-18 B+6 C-6 \\
& \Rightarrow \quad 3 B-C=8 \\
x=1: & 1=A(-2)^{3}+B(-1)(-2)^{2}+C(-1)(-2)+D(-1)=16-4 B+2 C-3 \\
& \Rightarrow \quad 2 B-C=6
\end{array}
$$

Subtract the two equations to get $B=2$. Substitute back to get $C=-2 \neq-3$
5. Find the location of the vertical tangents to the parametric curve:

$$
x=t^{3}-3 t \quad y=t^{2}-4 t
$$

a. $(-2,-3)$ and $(2,5)$ only correct choice
b. $(-2,-3),(2,-4)$ and $(2,5)$ only
c. $(-2,-3)$ and $(2,-4)$ only
d. $(2,-4)$ only
e. $(2,-4)$ and $(2,5)$ only

Solution: The vertical tangents occur when $\frac{d x}{d t}=0$. Or $\frac{d x}{d t}=3 t^{2}-3=0$, or $t= \pm 1$.
At $t=1: \quad(x, y)=\left(t^{3}-3 t, t^{2}-4 t\right)=(1-3,1-4)=(-2,-3)$
At $t=-1: \quad(x, y)=\left(t^{3}-3 t, t^{2}-4 t\right)=(-1+3,1+4)=(2,5)$
Note: $(2,-4)$ is a horizontal tangent.
6. The base of a solid is the region between $y=x^{2}$ and the x-axis for $0 \leq x \leq 3$. The cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
a. $\frac{3^{4}}{4}$
b. $\frac{3^{5}}{5}$ correct choice
c. 9
d. 27
e. 81

Solution: Here are plots of the base, a slice perpendicular to the x-axis and a cross section.
The area of the slice is $A=y^{2}=\left(x^{2}\right)^{2}=x^{4}$. So the volume is
$V=\int_{0}^{3} A d x=\int_{0}^{3} x^{4} d x=\left[\frac{x^{5}}{5}\right]_{0}^{3}=\frac{3^{5}}{5}$

7. The region between $y=x^{2}$ and the x-axis for $0 \leq x \leq 4$ is rotated about the y-axis. Find the volume swept out.
a. 8π
b. 16π
c. 32π
d. 64π
e. 128π correct choice

Solution: We do an x-integral. Here are plots of the region, a slice perpendicular to the x-axis and the shape rotated about the y-axis. The slice rotates into a cylinder.
So the volume is

$$
\begin{aligned}
V & =\int_{0}^{4} 2 \pi r h d x=\int_{0}^{4} 2 \pi(x)\left(x^{2}\right) d x \\
& =2 \pi\left[\frac{x^{4}}{4}\right]_{0}^{4}=2 \cdot 4^{3} \pi=128 \pi
\end{aligned}
$$

8. The region between $y=x^{2}$ and the x-axis for $0 \leq x \leq 4$ is rotated about the x-axis.

Find the volume swept out.
a. $\frac{1024 \pi}{5}$ correct choice
b. 64π
c. $\frac{64 \pi}{3}$
d. 32π
e. $\frac{32 \pi}{3}$

Solution: We do an x-integral. Here are plots of the region, a slice perpendicular to the x-axis and the shape rotated about the x-axis. The slice rotates into a disk.
So the volume is

$$
V=\int_{0}^{4} \pi r^{2} d x=\int_{0}^{4} \pi\left(x^{2}\right)^{2} d x=\pi\left[\frac{x^{5}}{5}\right]_{0}^{4}=\frac{1024 \pi}{5}
$$

9. It takes a 40 N force to stretch a certain spring to 8 m from its rest position. How much work does it take to stretch this spring from 1 m from rest to 9 m from rest.
a. 25 J
b. 50 J
c. 100 J
d. 200 J correct choice
e. 400 J

Solution: $F=k x \quad 40=k 8 \quad \Rightarrow \quad k=5 \quad \Rightarrow \quad F=5 x$
$W=\int_{1}^{9} F d x=\int_{1}^{9} 5 x d x=\left[5 \frac{x^{2}}{2}\right]_{1}^{9}=\frac{5}{2}(81-1)=200 \mathrm{~J}$
10. A 100 foot rope weighs $\delta=2 \frac{\mathrm{lb}}{\text { foot }}$. It is hanging from the top of a 100 foot tall building. How much work is done to pull it up to the top of the building.
a. 5000
b. 10000 correct choice
c. 20000
d. $\frac{100^{3}}{3}$
e. $2 \frac{100^{3}}{3}$

Solution: Put the 0 of the y-axis at the top of the building and measure y downward. The piece of rope of length $d y$ feet at a distance of y feet from the top is lifted a distance $D=y$ feet. Its weight is $d F=\delta d y=2 d y$. So the work done to lift the rope is

$$
W=\int_{0}^{100} D d F=\int_{0}^{100} y 2 d y=\left[y^{2}\right]_{0}^{100}=10000
$$

11. Find the solution of the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$ satisfying $y(1)=4$. Then $y(0)=$
a. $\sqrt[3]{7}$
b. $\sqrt[3]{21}$
c. $\sqrt[3]{63}$ correct choice
d. $\sqrt[3]{65}$
e. $\sqrt[3]{195}$

Solution: We separate: $y^{2} d y=x^{2} d x \quad \int y^{2} d y=\int x^{2} d x \quad \frac{y^{3}}{3}=\frac{x^{3}}{3}+C$
We use the initial condition: $\quad \frac{64}{3}=\frac{1}{3}+C \quad C=21 \quad \frac{y^{3}}{3}=\frac{x^{3}}{3}+21 \quad y=\sqrt[3]{x^{3}+63}$
Then $\quad y(0)=\sqrt[3]{63}$.

Work Out: (Points indicated. Part credit possible. Show all work.)
12. (15 points) A water trough is 18 meters long. Its end is an isoceles triangle with vertex down whose width is 8 meters and height is 12 meters. The trough is filled with water to a depth of 6 meters. How much work is done to pump the water out the top of the tank?
Answers can be given as a multiple of δg where δ is the densty of water g is the acceleration of gravity is g.

Solution: We put the 0 of the y-axis at the vertex of the triangle and measure y upward. The slice at height y is a rectangle with width w and length $l=18$. Similar triangles say $\frac{w}{y}=\frac{8}{12}=\frac{2}{3}$ or $w=\frac{2}{3} y$. So the area of the slice is $A=l w=18 \frac{2}{3} y=12 y$. Its volume is $d V=A d y=12 y d y$. Its weight is $d F=\delta g d V=\delta g 12 y d y$. This slab of water is lifted a distance $D=12-y$. So the work is

$$
\begin{aligned}
W & =\int D d F=\int_{0}^{6}(12-y) \delta g 12 y d y=12 \delta g \int_{0}^{6}\left(12 y-y^{2}\right) d y=12 \delta g\left[6 y^{2}-\frac{y^{3}}{3}\right]_{0}^{6} \\
& =12 \delta g\left(6^{3}-\frac{6^{3}}{3}\right)=12 \delta g 6^{3} \frac{2}{3}=1728 \delta g
\end{aligned}
$$

13. (22 points) A pot of syrup on a stove initially contains 4 cups of sugar in 16 gallons of water. Sugar water containing 2 cups of sugar per gallon is added at 3 gallons per hour. Pure water boils off at 1 gallon per hour. The syrup is kept well mixed and is drained at 2 gallons per hour. Let $S(t)$ be the cups of sugar in the pot after t hours.
a. Find the differential equation and initial condition satisfied by $S(t)$.

Solution: $\quad S(0)=4$

$$
\frac{d S}{d t}=\underbrace{\frac{2 \text { cups }}{\mathrm{gal}} \cdot \frac{3 \mathrm{gal}}{\mathrm{hr}}}_{\text {in }}-\underbrace{\frac{S(t) \text { cups }}{16 \mathrm{gal}} \cdot \frac{2 \mathrm{gal}}{\mathrm{hr}}}_{\text {out }} \quad \frac{d S}{d t}=6-\frac{1}{8} S
$$

b. Solve for $S(t)$.

Solution: Method 1 Linear: Put the equation in standard form: $\frac{d S}{d t}+\frac{1}{8} S=6$
Identify $\quad P=\frac{1}{8} \quad$ Find the integrating factor: $\quad e^{\int P d t}=e^{t / 8}$
Multiply thru by the integrating factor: $\quad e^{t / 8} \frac{d S}{d t}+\frac{1}{8} e^{t / 8} S=6 e^{t / 8} \quad \frac{d}{d t}\left(e^{t / 8} S\right)=6 e^{t / 8}$
Integrate and solve: $\quad e^{t / 8} S=48 e^{t / 8}+C \quad S=48+C e^{-t / 8}$
Find the constant of integration: $\quad 4=48+C \quad C=-44$
Substitute back: $\quad S=48-44 e^{-t / 8}$
Solution: Method 2 Separable: Separate: $\int \frac{d S}{6-\frac{1}{8} S}=\int d t$
Integrate and solve: $\quad-8 \ln \left|6-\frac{1}{8} S\right|=t+C \quad \ln \left|6-\frac{1}{8} S\right|=-\frac{t}{8}-\frac{C}{8}$
$\left|6-\frac{1}{8} S\right|=e^{-C / 8} e^{-t / 8} \quad 6-\frac{1}{8} S= \pm e^{-C / 8} e^{-t / 8}=A e^{-t / 8} \quad S=48-8 A e^{-t / 8}$
Find the constant of integration: $\quad 4=48-8 A \quad A=\frac{44}{8}$
Substitute back: $\quad S=48-44 e^{-t / 8}$
c. After a very large time, how many cups of sugar will be in the pot?

Solution: After a very large time, $e^{-t / 8} \rightarrow 0$. So $S=48$.
14. (12 points) Given the partial fraction expansion $\frac{10 x^{2}-60}{(x-4)^{2}\left(x^{2}+4\right)}=\frac{2}{x-4}+\frac{5}{(x-4)^{2}}+\frac{-2 x-3}{x^{2}+4}$ Compute $\int \frac{10 x^{2}-60}{(x-4)^{2}\left(x^{2}+4\right)} d x$.

Solution:

$$
\begin{aligned}
& \int \frac{2}{x-4} d x=2 \ln |x-4|+C_{1} \\
& \int \frac{5}{(x-4)^{2}} d x=\frac{-5}{x-4}+C_{2} \\
& \int \frac{-2 x}{x^{2}+4} d x=-\ln \left|x^{2}+4\right|+C_{3}
\end{aligned}
$$

In the last integral, let $x=2 \tan \theta \quad d x=2 \sec ^{2} \theta d \theta$.

$$
\begin{aligned}
\int \frac{-3}{x^{2}+4} d x & =\int \frac{-3}{4 \tan ^{2} \theta+4} 2 \sec ^{2} \theta d \theta=\frac{-3}{2} \int \frac{\sec ^{2} \theta}{\tan ^{2} \theta+1} d \theta \\
& =\frac{-3}{2} \int 1 d \theta=\frac{-3}{2} \theta=\frac{-3}{2} \arctan \frac{x}{2}+C_{4}
\end{aligned}
$$

So

$$
\int \frac{10 x^{2}-60}{(x-4)^{2}\left(x^{2}+4\right)} d x=2 \ln |x-4|-\frac{5}{x-4}-\ln \left|x^{2}+4\right|-\frac{3}{2} \arctan \frac{x}{2}+C
$$

