Name_

MATH 172H	Final Exam	Spring 2019
Sections 200		P. Yasskin

15 Multiple Choice: (4 points each. No part credit.)

- 1. Compute $\int_{1}^{e} \frac{\ln x}{x^{2}} dx.$ a. 1 b. $1 - \frac{2}{e}$ c. $-1 - \frac{2}{e}$
 - d. $\frac{2}{e} 1$ e. $1 + \frac{2}{e}$

2. Compute $\int \frac{\sqrt{x^2 - 4}}{x} dx$. a. $\sqrt{x^2 - 4} - 2 \operatorname{arcsec} \frac{x}{2} + C$ b. $2 \operatorname{arcsec} \frac{x}{2} - \sqrt{x^2 - 4} + C$ c. $\frac{\sqrt{x^2 - 4}}{2} - \ln\left(\frac{x}{2} + \frac{\sqrt{x^2 - 4}}{2}\right) + C$ d. $\ln\left(\frac{x}{2} + \frac{\sqrt{x^2 - 4}}{2}\right) - \frac{\sqrt{x^2 - 4}}{2} + C$ e. $\ln\left(x + \sqrt{x^2 - 4}\right) - \sqrt{x^2 - 4} + C$

1-15	/60	18	/15
16	/10	19	/10
17	/10	Total	/105

- 3. The integral $\int_{1}^{\infty} \frac{1}{x^3 + \sqrt[3]{x}} dx$
 - converges by comparison to $\int_{1}^{\infty} \frac{1}{x^3} dx$. a.
 - diverges by comparison to $\int_{1}^{\infty} \frac{1}{x^3} dx$. b.
 - converges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} dx$. c.

d. diverges by comparison to
$$\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} dx$$

- 4. Find the average value of the function $f(x) = \frac{1}{4 + x^2}$ on the interval [0,2].
- 2π a. b. $\frac{\pi}{2}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{8}$ e. $\frac{\pi}{16}$

- 5. Find the center of mass of a bar which is 4 cm long and has density $\delta = 3x + 2x^2$ where x is measured from one end.
 - a. $\frac{17}{24}$ b. $\frac{24}{17}$ c. $\frac{25}{72}$ d. $\frac{72}{25}$ e. $\frac{200}{3}$

6. The region between $y = \sin x$ and $y = \frac{2x}{\pi}$ for $0 \le x \le \frac{\pi}{2}$ is rotated about the *y*-axis. Which integral gives the volume swept out?

a.
$$V = \int_{0}^{\pi/2} 2\pi x \left(\frac{2x}{\pi} - \sin x\right) dx$$

b. $V = \int_{0}^{\pi/2} 2\pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$
c. $V = \int_{0}^{\pi/2} 2\pi x \left(\sin x - \frac{2x}{\pi}\right) dx$
d. $V = \int_{0}^{\pi/2} \pi \left(\frac{4x^2}{\pi^2} - \sin^2 x\right) dx$
e. $V = \int_{0}^{\pi/2} \pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$

- 7. The region between $y = \sin x$ and $y = \frac{2x}{\pi}$ for $0 \le x \le \frac{\pi}{2}$ is rotated about the *x*-axis. Which integral gives the volume swept out?
 - **a.** $V = \int_{0}^{\pi/2} 2\pi x \left(\frac{2x}{\pi} \sin x\right) dx$ **b.** $V = \int_{0}^{\pi/2} 2\pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$ **c.** $V = \int_{0}^{\pi/2} 2\pi x \left(\sin x - \frac{2x}{\pi}\right) dx$ **d.** $V = \int_{0}^{\pi/2} \pi \left(\frac{4x^2}{\pi^2} - \sin^2 x\right) dx$ **e.** $V = \int_{0}^{\pi/2} \pi \left(\sin^2 x - \frac{4x^2}{\pi^2}\right) dx$

- 8. Solve the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2}$ with the initial condition y(1) = 2. Then y(3) =
 - a. -6
 - b. 4
 - c. $\sqrt[3]{7}$
 - d. ∛20
 - e. <u>∛</u>34

- 9. For the differential equation, $\frac{1}{y}\frac{dy}{dx} = \frac{5}{xy} + \frac{3}{x}$, the integrating factor is
 - a. $-3 \ln x$
 - b. $\frac{1}{x^3}$ c. $-\frac{3}{x}$ d. x^3

 - e. There is no integrating factor since the equation is not linear.

- 10. Compute $L = \lim_{n \to \infty} \left(\frac{n-3}{n-1} \right)^n$.
 - a. -2 b. *e*⁻² c. 1 d. e^2
 - ∞ e.

11. A sequence a_n is defined recursively by $a_{n+1} = \frac{(a_n)^2 + 2}{3}$ and $a_1 = 4$. Find $\lim_{n \to \infty} a_n$.

- a. 1
- b. 2
- c. 4
- 16 d.
- ∞ e.

- 12. The series $\sum_{n=2}^{\infty} \frac{3n}{n^3 2}$
 - a. converges by Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^2}$.
 - b. diverges by Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^2}$.
 - c. converges by Limit but not Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^2}$.
 - d. diverges by Limit but not Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^2}$.
 - e. converges by the Ratio Test.

13. Find the radius of convergence of \sum

$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} (x-3)^n.$$

- a. 0
- b. 1
- c. 2
- d. 4
- e. ∞

15. For the function $f(x) = \cos(x^3)$ which of the following is FALSE?.

- a. $f^{(27)}(0) = 0$
- b. $f^{(28)}(0) = 0$
- c. $f^{(29)}(0) = 0$
- d. $f^{(30)}(0) = 0$
- e. $f^{(31)}(0) = 0$

Work Out: (Points indicated. Part credit possible. Show all work.)

- 16.
- (10 points) Compute $\int \frac{2}{x^3 x} dx$. Find the general partial fraction expansion. (Do not find the coefficients.) a.

$$\frac{2}{x^3 - x} =$$

b. Find the coefficients and plug them back into the expansion.

$$\frac{2}{x^3 - x} =$$

Compute the integral. c.

$$\int \frac{2}{x^3 - x} \, dx =$$

17. (10 points) The curve $(x,y) = \left(\frac{1}{2}t^2, \frac{1}{3}t^3\right)$ for $0 \le t \le \sqrt{3}$ is rotated about the *y*-axis. Find the area of the surface swept out.

18. (15 points) A water tank has the shape of a cone with the vertex at the top. Its height is H = 30 ft and its radius is R = 10 ft. It is filled with salt water to a depth of 20 ft which weighs $\delta = 63 \frac{\text{lb}}{\text{ft}^3}$. Find the work done to pump the water out the top of the tank.

19. (10 points) The Maclaurin series for $f(x) = \frac{1}{1-x}$ is the geometric series $\sum_{n=0}^{\infty} x^n$ which converges for |x| < 1. For x < 0, the series is alternating; for x > 0 it is positive. We will approximate the series on the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ by the 9th degree Maclaurin polynomial which is the 9th partial sum $S_9(x) = \sum_{n=0}^{9} x^n$. The error in this approximation is the remainder $R_9(x) = f(x) - S_9(x)$, which of course depends on the value of x.

a. Find the Alternating Series bound on the remainder for $x \in \left(-\frac{1}{2}, 0\right)$. NOTE: This should be a single number which works for all values of x in the interval.

b. The Taylor Remainder Inequality says

$$|R_n(x)| < \frac{M}{(n+1)!} |x|^{n+1} \quad \text{where} \quad \dot{M} \ge f^{(n+1)}(c) \quad \text{for all} \quad c \quad \text{between} \quad 0 \quad \text{and} \quad x$$

Find the Taylor Remainder bound on the remainder for $x \in (0, \frac{1}{2})$. NOTE: This should be a single number which works for all values of x in the interval.