Name \qquad

MATH 172H
Sections 200

Final Exam
Spring 2019
P. Yasskin

15 Multiple Choice: (4 points each. No part credit.)

1. Compute $\int_{1}^{e} \frac{\ln x}{x^{2}} d x$.
a. 1
b. $1-\frac{2}{e}$
c. $-1-\frac{2}{e}$
d. $\frac{2}{e}-1$
e. $1+\frac{2}{e}$
2. Compute $\int \frac{\sqrt{x^{2}-4}}{x} d x$.
a. $\sqrt{x^{2}-4}-2 \operatorname{arcsec} \frac{x}{2}+C$
b. $2 \operatorname{arcsec} \frac{x}{2}-\sqrt{x^{2}-4}+C$
c. $\frac{\sqrt{x^{2}-4}}{2}-\ln \left(\frac{x}{2}+\frac{\sqrt{x^{2}-4}}{2}\right)+C$
d. $\ln \left(\frac{x}{2}+\frac{\sqrt{x^{2}-4}}{2}\right)-\frac{\sqrt{x^{2}-4}}{2}+C$
e. $\ln \left(x+\sqrt{x^{2}-4}\right)-\sqrt{x^{2}-4}+C$

$1-15$	$/ 60$	18	$/ 15$
16	$/ 10$	19	$/ 10$
17	$/ 10$	Total	$/ 105$

3. The integral $\int_{1}^{\infty} \frac{1}{x^{3}+\sqrt[3]{x}} d x$
a. converges by comparison to $\int_{1}^{\infty} \frac{1}{x^{3}} d x$.
b. diverges by comparison to $\int_{1}^{\infty} \frac{1}{x^{3}} d x$.
c. converges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} d x$.
d. diverges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} d x$.
4. Find the average value of the function $f(x)=\frac{1}{4+x^{2}}$ on the interval $[0,2]$.
a. 2π
b. $\frac{\pi}{2}$
c. $\frac{\pi}{4}$
d. $\frac{\pi}{8}$
e. $\frac{\pi}{16}$
5. Find the center of mass of a bar which is 4 cm long and has density $\delta=3 x+2 x^{2}$ where x is measured from one end.
a. $\frac{17}{24}$
b. $\frac{24}{17}$
c. $\frac{25}{72}$
d. $\frac{72}{25}$
e. $\frac{200}{3}$
6. The region between $y=\sin x$ and $y=\frac{2 x}{\pi}$ for $0 \leq x \leq \frac{\pi}{2}$ is rotated about the y-axis. Which integral gives the volume swept out?
a. $\quad V=\int_{0}^{\pi / 2} 2 \pi x\left(\frac{2 x}{\pi}-\sin x\right) d x$
b. $\quad V=\int_{0}^{\pi / 2} 2 \pi\left(\sin ^{2} x-\frac{4 x^{2}}{\pi^{2}}\right) d x$
c. $\quad V=\int_{0}^{\pi / 2} 2 \pi x\left(\sin x-\frac{2 x}{\pi}\right) d x$

d. $\quad V=\int_{0}^{\pi / 2} \pi\left(\frac{4 x^{2}}{\pi^{2}}-\sin ^{2} x\right) d x$
e. $\quad V=\int_{0}^{\pi / 2} \pi\left(\sin ^{2} x-\frac{4 x^{2}}{\pi^{2}}\right) d x$
7. The region between $y=\sin x$ and $y=\frac{2 x}{\pi}$ for $0 \leq x \leq \frac{\pi}{2}$ is rotated about the x-axis. Which integral gives the volume swept out?
a. $\quad V=\int_{0}^{\pi / 2} 2 \pi x\left(\frac{2 x}{\pi}-\sin x\right) d x$
b. $\quad V=\int_{0}^{\pi / 2} 2 \pi\left(\sin ^{2} x-\frac{4 x^{2}}{\pi^{2}}\right) d x$
c. $\quad V=\int_{0}^{\pi / 2} 2 \pi x\left(\sin x-\frac{2 x}{\pi}\right) d x$

d. $V=\int_{0}^{\pi / 2} \pi\left(\frac{4 x^{2}}{\pi^{2}}-\sin ^{2} x\right) d x$
e. $\quad V=\int_{0}^{\pi / 2} \pi\left(\sin ^{2} x-\frac{4 x^{2}}{\pi^{2}}\right) d x$
8. Solve the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$ with the initial condition $y(1)=2$. Then $y(3)=$
a. -6
b. 4
c. $\sqrt[3]{7}$
d. $\sqrt[3]{20}$
e. $\sqrt[3]{34}$
9. For the differential equation, $\frac{1}{y} \frac{d y}{d x}=\frac{5}{x y}+\frac{3}{x}$, the integrating factor is
a. $\quad-3 \ln x$
b. $\frac{1}{x^{3}}$
c. $-\frac{3}{x}$
d. x^{3}
e. There is no integrating factor since the equation is not linear.
10. Compute $L=\lim _{n \rightarrow \infty}\left(\frac{n-3}{n-1}\right)^{n}$.
a. -2
b. e^{-2}
c. 1
d. e^{2}
e. ∞
11. A sequence a_{n} is defined recursively by $a_{n+1}=\frac{\left(a_{n}\right)^{2}+2}{3}$ and $a_{1}=4$. Find $\lim _{n \rightarrow \infty} a_{n}$.
a. 1
b. 2
c. 4
d. 16
e. ∞
12. The series $\sum_{n=2}^{\infty} \frac{3 n}{n^{3}-2}$
a. converges by Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^{2}}$.
b. diverges by Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^{2}}$.
c. converges by Limit but not Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^{2}}$.
d. diverges by Limit but not Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^{2}}$.
e. converges by the Ratio Test.
13. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}(x-3)^{n}$.
a. 0
b. 1
c. 2
d. 4
e. ∞
14. The series $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n}\left(n^{3}+\sqrt[3]{n}\right)}$ has radius of convergence $R=3$. Find its interval of convergence.
a. $(-1,5)$
b. $[-1,5)$
c. $(-1,5]$
d. $[-1,5]$
15. For the function $f(x)=\cos \left(x^{3}\right)$ which of the following is FALSE?.
a. $f^{(27)}(0)=0$
b. $f^{(28)}(0)=0$
c. $f^{(29)}(0)=0$
d. $f^{(30)}(0)=0$
e. $f^{(31)}(0)=0$

Work Out: (Points indicated. Part credit possible. Show all work.)
16. (10 points) Compute $\int \frac{2}{x^{3}-x} d x$.
a. Find the general partial fraction expansion. (Do not find the coefficients.)

$$
\frac{2}{x^{3}-x}=
$$

b. Find the coefficients and plug them back into the expansion.

$$
\frac{2}{x^{3}-x}=
$$

c. Compute the integral.

$$
\int \frac{2}{x^{3}-x} d x=
$$

17. (10 points) The curve $(x, y)=\left(\frac{1}{2} t^{2}, \frac{1}{3} t^{3}\right)$ for $0 \leq t \leq \sqrt{3}$ is rotated about the y-axis. Find the area of the surface swept out.
18. (15 points) A water tank has the shape of a cone with the vertex at the top. Its height is $H=30 \mathrm{ft}$ and its radius is $R=10 \mathrm{ft}$. It is filled with salt water to a depth of 20 ft which weighs $\delta=63 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$.
Find the work done to pump the water out the top of the tank.

19. (10 points) The Maclaurin series for $f(x)=\frac{1}{1-x}$ is the geometric series $\sum_{n=0}^{\infty} x^{n}$ which converges for $|x|<1$. For $x<0$, the series is alternating; for $x>0$ it is positive. We will approximate the series on the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ by the $9^{\text {th }}$ degree Maclaurin polynomial which is the $9^{\text {th }}$ partial sum $S_{9}(x)=\sum_{n=0}^{9} x^{n}$. The error in this approximation is the remainder $R_{9}(x)=f(x)-S_{9}(x)$, which of course depends on the value of x.
a. Find the Alternating Series bound on the remainder for $x \in\left(-\frac{1}{2}, 0\right)$.

NOTE: This should be a single number which works for all values of x in the interval.
b. The Taylor Remainder Inequality says

$$
\left|R_{n}(x)\right|<\frac{M}{(n+1)!}|x|^{n+1} \quad \text { where } \quad \dot{M} \geq f^{(n+1)}(c) \text { for all } c \quad \text { between } 0 \text { and } x
$$

Find the Taylor Remainder bound on the remainder for $x \in\left(0, \frac{1}{2}\right)$.
NOTE: This should be a single number which works for all values of x in the interval.

