Name \qquad

MATH 172H
Sections 200

Final Exam
Spring 2019
Solutions
P. Yasskin

15 Multiple Choice: (4 points each. No part credit.)

1. Compute $\int_{1}^{e} \frac{\ln x}{x^{2}} d x$.
a. 1
b. $1-\frac{2}{e}$ correct choice
c. $-1-\frac{2}{e}$
d. $\frac{2}{e}-1$
e. $1+\frac{2}{e}$

Solution: Integration by Parts: $\quad u=\ln x \quad d v=\frac{1}{x^{2}} d x \quad d u=\frac{1}{x} d x \quad v=\frac{-1}{x}$ $\int_{1}^{e} \frac{\ln x}{x^{2}} d x=\frac{-1}{x} \ln x-\int \frac{-1}{x^{2}} d x=\left[\frac{-1}{x} \ln x-\frac{1}{x}\right]_{1}^{e}=\left(\frac{-1}{e}-\frac{1}{e}\right)-\left(-\frac{1}{1}\right)=1-\frac{2}{e}$
2. Compute $\int \frac{\sqrt{x^{2}-4}}{x} d x$.
a. $\sqrt{x^{2}-4}-2 \operatorname{arcsec} \frac{x}{2}+C \quad$ correct choice
b. $2 \operatorname{arcsec} \frac{x}{2}-\sqrt{x^{2}-4}+C$
c. $\frac{\sqrt{x^{2}-4}}{2}-\ln \left(\frac{x}{2}+\frac{\sqrt{x^{2}-4}}{2}\right)+C$
d. $\ln \left(\frac{x}{2}+\frac{\sqrt{x^{2}-4}}{2}\right)-\frac{\sqrt{x^{2}-4}}{2}+C$
e. $\ln \left(x+\sqrt{x^{2}-4}\right)-\sqrt{x^{2}-4}+C$

Solution: $\quad x=2 \sec \theta \quad d x=2 \sec \theta \tan \theta d \theta$
$\int \frac{\sqrt{x^{2}-4}}{x} d x=\int \frac{\sqrt{4 \sec ^{2} \theta-4}}{2 \sec \theta} 2 \sec \theta \tan \theta d \theta=2 \int \tan ^{2} \theta d \theta=2 \int\left(\sec ^{2} \theta-1\right) d \theta=2 \tan \theta-2 \theta+C$
Draw a triangle with x on the hypotenuse, 2 on the adjacent side and $\sqrt{x^{2}-4}$ on the opposite side.
Then $\tan \theta=\frac{\sqrt{x^{2}-4}}{2}$ and $\int \frac{\sqrt{x^{2}-4}}{x} d x=\sqrt{x^{2}-4}-2 \operatorname{arcsec} \frac{x}{2}+C$

$1-15$	$/ 60$	18	$/ 15$
16	$/ 10$	19	$/ 10$
17	$/ 10$	Total	$/ 105$

3. The integral $\int_{1}^{\infty} \frac{1}{x^{3}+\sqrt[3]{x}} d x$
a. converges by comparison to $\int_{1}^{\infty} \frac{1}{x^{3}} d x$. correct choice
b. diverges by comparison to $\int_{1}^{\infty} \frac{1}{x^{3}} d x$.
c. converges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} d x$.
d. diverges by comparison to $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} d x$.

Solution: x is larger than $\sqrt[3]{x}$ for large x. So we compare to $\int_{1}^{\infty} \frac{1}{x^{3}} d x$ which converges because:

$$
\int_{1}^{\infty} \frac{1}{x^{3}} d x=\left[-\frac{1}{2 x^{2}}\right]_{1}^{\infty}=0--\frac{1}{2}=\frac{1}{2} \quad \text { which is finite. }
$$

Since $\frac{1}{x^{3}+\sqrt[3]{x}}<\frac{1}{x^{3}}$, (There's more in the bottom.) the integral $\int_{1}^{\infty} \frac{1}{x^{3}+\sqrt[3]{x}} d x$ also converges.
4. Find the average value of the function $f(x)=\frac{1}{4+x^{2}}$ on the interval $[0,2]$.
a. 2π
b. $\frac{\pi}{2}$
c. $\frac{\pi}{4}$
d. $\frac{\pi}{8}$
e. $\frac{\pi}{16} \quad$ correct choice

Solution: $\int_{0}^{2} \frac{1}{4+x^{2}} d x=\left[\frac{1}{2} \arctan \frac{x}{2}\right]_{0}^{2} \quad$ (If necessary, substitute $x=2 u$ or $x=2 \tan \theta$.)
Then $\int_{0}^{2} \frac{1}{4+x^{2}} d x=\frac{1}{2} \arctan 1-\frac{1}{2} \arctan 0=\frac{\pi}{8} \quad$ since $\quad \arctan 1=\frac{\pi}{4} \quad$ and $\quad \arctan 0=0$.
So $f_{\text {ave }}=\frac{1}{2} \int_{0}^{2} \frac{1}{4+x^{2}} d x=\frac{1}{2} \frac{\pi}{8}=\frac{\pi}{16} \approx 0.2$
5. Find the center of mass of a bar which is 4 cm long and has density $\delta=3 x+2 x^{2}$ where x is measured from one end.
a. $\frac{17}{24}$
b. $\frac{24}{17}$
c. $\frac{25}{72}$
d. $\frac{72}{25}$ correct choice
e. $\frac{200}{3}$

Solution: $\quad M=\int_{0}^{4} \delta d x=\int_{0}^{4}\left(3 x+2 x^{2}\right) d x=\left[\frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}\right]_{0}^{4}=24+\frac{128}{3}=\frac{200}{3}$
$M_{1}=\int_{0}^{4} x \delta d x=\int_{0}^{4}\left(3 x^{2}+2 x^{3}\right) d x=\left[x^{3}+\frac{x^{4}}{2}\right]_{0}^{4}=64+128=192$
$\bar{x}=\frac{M_{1}}{M}=192 \cdot \frac{3}{200}=\frac{72}{25}$
6. The region between $y=\sin x$ and $y=\frac{2 x}{\pi}$ for $0 \leq x \leq \frac{\pi}{2}$ is rotated about the y-axis. Which integral gives the volume swept out?
a. $\quad V=\int_{0}^{\pi / 2} 2 \pi x\left(\frac{2 x}{\pi}-\sin x\right) d x$
b. $\quad V=\int_{0}^{\pi / 2} 2 \pi\left(\sin ^{2} x-\frac{4 x^{2}}{\pi^{2}}\right) d x$
c. $\quad V=\int_{0}^{\pi / 2} 2 \pi x\left(\sin x-\frac{2 x}{\pi}\right) d x \quad$ correct choice

d. $\quad V=\int_{0}^{\pi / 2} \pi\left(\frac{4 x^{2}}{\pi^{2}}-\sin ^{2} x\right) d x$
e. $\quad V=\int_{0}^{\pi / 2} \pi\left(\sin ^{2} x-\frac{4 x^{2}}{\pi^{2}}\right) d x$

Solution: Do a x-integral. Slices are vertical. They rotate about the y-axis into cylinders.

$$
V=\int_{0}^{\pi / 2} 2 \pi r h d x=\int_{0}^{\pi / 2} 2 \pi x\left(\sin x-\frac{2 x}{\pi}\right) d x
$$

7. The region between $y=\sin x$ and $y=\frac{2 x}{\pi}$ for $0 \leq x \leq \frac{\pi}{2}$ is rotated about the x-axis. Which integral gives the volume swept out?
a. $\quad V=\int_{0}^{\pi / 2} 2 \pi x\left(\frac{2 x}{\pi}-\sin x\right) d x$
b. $\quad V=\int_{0}^{\pi / 2} 2 \pi\left(\sin ^{2} x-\frac{4 x^{2}}{\pi^{2}}\right) d x$
c. $\quad V=\int_{0}^{\pi / 2} 2 \pi x\left(\sin x-\frac{2 x}{\pi}\right) d x$

d. $\quad V=\int_{0}^{\pi / 2} \pi\left(\frac{4 x^{2}}{\pi^{2}}-\sin ^{2} x\right) d x$
e. $V=\int_{0}^{\pi / 2} \pi\left(\sin ^{2} x-\frac{4 x^{2}}{\pi^{2}}\right) d x \quad$ correct choice

Solution: Do an x-integral. Slices are vertical. They rotate about the x-axis into washers.

$$
V=\int_{0}^{\pi / 2} \pi\left(R^{2}-r^{2}\right) d x=\int_{0}^{\pi / 2} \pi\left(\sin ^{2} x-\frac{4 x^{2}}{\pi^{2}}\right) d x
$$

8. Solve the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$ with the initial condition $y(1)=2$. Then $y(3)=$
a. -6
b. 4
c. $\sqrt[3]{7}$
d. $\sqrt[3]{20}$
e. $\sqrt[3]{34}$ correct choice

Solution: Separate: $\int y^{2} d y=\int x^{2} d x \quad$ Integrate: $\quad \frac{y^{3}}{3}=\frac{x^{3}}{3}+C \quad$ Find $C: \quad \frac{8}{3}=\frac{1}{3}+C \quad C=\frac{7}{3}$ Plug in and solve for y : $\quad \frac{y^{3}}{3}=\frac{x^{3}}{3}+\frac{7}{3} \quad y=\sqrt[3]{x^{3}+7} \quad$ Then $y(3)=\sqrt[3]{34}$.
9. For the differential equation, $\frac{1}{y} \frac{d y}{d x}=\frac{5}{x y}+\frac{3}{x}$, the integrating factor is
a. $-3 \ln x$
b. $\frac{1}{x^{3}}$ correct choice
c. $-\frac{3}{x}$
d. x^{3}
e. There is no integrating factor since the equation is not linear.

Solution: In standard form the differential equation is $\frac{d y}{d x}-\frac{3}{x} y=\frac{5}{x}$.
We identify $P=-\frac{3}{x}$ So $\int P d x=-3 \ln x=\ln x^{-3} \quad$ and $\quad I=e^{\int P d x}=e^{\ln x^{-3}}=x^{-3}=\frac{1}{x^{3}}$
10. Compute $L=\lim _{n \rightarrow \infty}\left(\frac{n-3}{n-1}\right)^{n}$.
a. -2
b. e^{-2} correct choice
c. 1
d. e^{2}
e. ∞

Solution: $\ln L=\lim _{n \rightarrow \infty} \ln \left(\frac{n-3}{n-1}\right)^{n}=\lim _{n \rightarrow \infty} n \ln \left(\frac{n-3}{n-1}\right)=\lim _{n \rightarrow \infty} \frac{\ln (n-3)-\ln (n-1)}{1 / n}$
$\stackrel{l^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{\frac{1}{n-3}-\frac{1}{n-1}}{-1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{2}{(n-3)(n-1)}\left(-n^{2}\right)=-2 \quad L=e^{\ln L}=e^{-2}$
11. A sequence a_{n} is defined recursively by $a_{n+1}=\frac{\left(a_{n}\right)^{2}+2}{3}$ and $a_{1}=4$. Find $\lim _{n \rightarrow \infty} a_{n}$.
a. 1
b. 2
c. 4
d. 16
e. ∞ correct choice

Solution: If the sequence has a limit $L=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}$, then $L=\frac{L^{2}+2}{3}$ or $0=L^{2}-3 L+2=(L-1)(L-2)$. So the limit (if it exists) must be 1 or 2 . The first few terms are $a_{1}=4, \quad a_{2}=\frac{4^{2}+2}{3}=6, \quad a_{3}=\frac{36+2}{3}=\frac{38}{3} \approx 12.7$.

So the sequence is increasing from 4 and cannot have a limit of 1 or 2. So $\lim _{n \rightarrow \infty} a_{n}=\infty$.
12. The series $\sum_{n=2}^{\infty} \frac{3 n}{n^{3}-2}$
a. converges by Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^{2}}$.
b. diverges by Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^{2}}$.
c. converges by Limit but not Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^{2}}$. correct choice
d. diverges by Limit but not Simple Comparison with $\sum_{n=2}^{\infty} \frac{3}{n^{2}}$.
e. converges by the Ratio Test.

Solution: The series $\sum_{n=1}^{\infty} \frac{3}{n^{2}}$ converges because it is a p-series with $p=2>1$. But $\frac{3 n}{n^{3}-2}>\frac{3}{n^{2}}$, so Simple Comparison fails. However, $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{b}}=\lim _{n \rightarrow \infty} \frac{3 n}{n^{3}-2} \frac{n^{2}}{3}=1$ which is >0 and $<\infty$. So the Limit Comparison Test says $\sum_{n=2}^{\infty} \frac{3 n}{n^{3}-2}$ also converges. The Ratio Test fails.
13. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}(x-3)^{n}$.
a. 0
b. 1
c. 2
d. 4 correct choice
e. ∞

Solution: Ratio Test:

$$
\rho=\lim _{n \rightarrow \infty} \frac{((n+1)!)^{2}|x-3|^{n+1}}{(2 n+2)!} \frac{(2 n)!}{(n!)^{2}|x-3|^{n}}=|x-3| \lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+2)(2 n+1)}=\frac{|x-3|}{4}<1 . \quad \text { So } \quad R=4 \text {. }
$$

14. The series $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n}\left(n^{3}+\sqrt[3]{n}\right)}$ has radius of convergence $R=3$. Find its interval of convergence.
a. $(-1,5)$
b. $[-1,5)$
c. $(-1,5]$
d. $[-1,5]$ correct choice

Solution:

$$
\begin{aligned}
& \text { At } x=-1: \quad \sum_{n=0}^{\infty} \frac{(-3)^{n}}{3^{n}\left(n^{3}+\sqrt[3]{n}\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{3}+\sqrt[3]{n}} \quad \text { which converges by the Alternating Series Test. } \\
& \text { At } x=5: \quad \sum_{n=0}^{\infty} \frac{(3)^{n}}{3^{n}\left(n^{3}+\sqrt[3]{n}\right)}=\sum_{n=0}^{\infty} \frac{1}{n^{3}+\sqrt[3]{n}} \quad \text { which converges by a simple comparison with } \sum_{n=0}^{\infty} \frac{1}{n^{3}}
\end{aligned}
$$

which is a convergent p-series since $p=3>1$.
15. For the function $f(x)=\cos \left(x^{3}\right)$ which of the following is FALSE?.
a. $f^{(27)}(0)=0$
b. $f^{(28)}(0)=0$
c. $f^{(29)}(0)=0$
d. $f^{(30)}(0)=0 \quad$ correct choice
e. $f^{(31)}(0)=0$

Solution: $\quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \quad \cos x^{3}=1-\frac{x^{6}}{2!}+\frac{x^{12}}{4!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{(2 n)!}$ In $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}, f^{(k)}(0)$ is in the coefficient of x^{k}, but $k=6 n$.
So $f^{(k)}(0)=0$ except for $k=30$.

Work Out: (Points indicated. Part credit possible. Show all work.)
16. (10 points) Compute $\int \frac{2}{x^{3}-x} d x$.
a. Find the general partial fraction expansion. (Do not find the coefficients.)

Solution: $\quad \frac{2}{x^{3}-x}=\frac{2}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}$
b. Find the coefficients and plug them back into the expansion.

Solution: Clear the denominator: $2=A(x-1)(x+1)+B x(x+1)+C x(x-1)$
Plug in $x=0: \quad 2=A(-1) \quad A=-2$
Plug in $x=1: \quad 2=B(2) \quad B=1$
Plug in $x=-1: \quad 2=C(2) \quad C=1$

$$
\frac{2}{x^{3}-x}=-\frac{2}{x}+\frac{1}{x-1}+\frac{1}{x+1}
$$

c. Compute the integral.

Solution: $\int \frac{2}{x^{3}-x} d x=\int-\frac{2}{x} d x+\int \frac{1}{x-1} d x+\int \frac{1}{x+1} d x=\underline{-2 \ln |x|+\ln |x-1|+\ln |x+1|+C}$
17. (10 points) The curve $(x, y)=\left(\frac{1}{2} t^{2}, \frac{1}{3} t^{3}\right)$ for $0 \leq t \leq \sqrt{3}$ is rotated about the y-axis. Find the area of the surface swept out.

Solution: The arc length differential is

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\sqrt{(t)^{2}+\left(t^{2}\right)^{2}} d t=t \sqrt{1+t^{2}} d t
$$

The radius of revolution is $r=x=\frac{1}{2} t^{2}$. So the surface area is

$$
A=\int 2 \pi r d s=\int_{0}^{\sqrt{3}} 2 \pi \frac{1}{2} t^{2} t \sqrt{1+t^{2}} d t=\int_{0}^{\sqrt{3}} \pi t^{3} \sqrt{1+t^{2}} d t
$$

Let $u=1+t^{2}$. Then $d u=2 t d t$ and $t^{2}=u-1$. So

$$
\begin{aligned}
A & =\frac{\pi}{2} \int_{1}^{4}(u-1) \sqrt{u} d u=\frac{\pi}{2}\left[\frac{2 u^{5 / 2}}{5}-\frac{2 u^{3 / 2}}{3}\right]_{1}^{4}=\pi\left[\frac{u^{5 / 2}}{5}-\frac{u^{3 / 2}}{3}\right]_{1}^{4} \\
& =\pi\left[\frac{32}{5}-\frac{8}{3}\right]-\pi\left[\frac{1}{5}-\frac{1}{3}\right]=8 \pi\left[\frac{4}{5}-\frac{1}{3}\right]-\pi\left[\frac{1}{5}-\frac{1}{3}\right]=8 \pi \frac{12-5}{15}-\pi \frac{-2}{15}=\frac{58}{15} \pi
\end{aligned}
$$

18. (15 points) A water tank has the shape of a cone with the vertex at the top. Its height is $H=30 \mathrm{ft}$ and its radius is $R=10 \mathrm{ft}$.
It is filled with salt water to a depth of 20 ft which weighs $\delta=63 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$.
Find the work done to pump the water out the top of the tank.

Solution: Put the y-axis measuring down from the top. The slice which is a distance y down from the top is a circle of radius r. By similar triangles, $\frac{r}{y}=\frac{R}{H}=\frac{10}{30}=\frac{1}{3}$. So $r=\frac{1}{3} y$. The area is $A=\pi r^{2}=\frac{\pi y^{2}}{9}$ and the volume of the slice of thickness $d y$ is $d V=A d y=\frac{\pi y^{2}}{9} d y$. It weighs $d F=\delta d V=63 \frac{\pi y^{2}}{9} d y=7 \pi y^{2} d y$. It is lifted a distance $D=y$. There is water between $y=10$ and $y=30$. So the work done is

$$
W=\int_{10}^{30} D d F=\int_{10}^{30} y 7 \pi y^{2} d y=\left[7 \pi \frac{y^{4}}{4}\right]_{10}^{30}=\frac{7}{4} \pi\left(30^{4}-10^{4}\right)=1400000 \pi \mathrm{ft}-\mathrm{lb}
$$

19. (10 points) The Maclaurin series for $f(x)=\frac{1}{1-x}$ is the geometric series $\sum_{n=0}^{\infty} x^{n}$ which converges for $|x|<1$. For $x<0$, the series is alternating; for $x>0$ it is positive. We will approximate the series on the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ by the $9^{\text {th }}$ degree Maclaurin polynomial which is the $9^{\text {th }}$ partial sum $S_{9}(x)=\sum_{n=0}^{9} x^{n}$. The error in this approximation is the remainder $R_{9}(x)=f(x)-S_{9}(x)$, which of course depends on the value of x.
a. Find the Alternating Series bound on the remainder for $x \in\left(-\frac{1}{2}, 0\right)$.

NOTE: This should be a single number which works for all values of x in the interval.
Solution: Since the series is alternating on this interval, the error is bounded by the next term:

$$
\left|R_{n}(x)\right|<\left|x^{10}\right|
$$

For $x \in\left(-\frac{1}{2}, 0\right)$ the largest this could be is

$$
\left|R_{n}(x)\right|<\left|\frac{1}{2^{10}}\right| \approx 10^{-3}
$$

b. The Taylor Remainder Inequality says

$$
\left|R_{n}(x)\right|<\frac{M}{(n+1)!}|x|^{n+1} \quad \text { where } \quad \dot{M} \geq f^{(n+1)}(c) \text { for all } c \quad \text { between } 0 \text { and } x
$$

Find the Taylor Remainder bound on the remainder for $x \in\left(0, \frac{1}{2}\right)$.
NOTE: This should be a single number which works for all values of x in the interval.
Solution: $f(x)=\frac{1}{1-x} \quad f^{\prime}(x)=\frac{1}{(1-x)^{2}} \quad f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}} \quad f^{(10)}(x)=\frac{10!}{(1-x)^{11}}$
The largest value on $\left(0, \frac{1}{2}\right)$ occurs at $x=\frac{1}{2}$. So we take
$M=f^{(10)}\left(\frac{1}{2}\right)=\frac{10!}{\left(1-\frac{1}{2}\right)^{11}}=2^{11} 10!$.
Also the largest value of $|x|$ is $\frac{1}{2}$. So

$$
\left|R_{9}(x)\right|<\frac{M}{10!}|x|^{10} \leq \frac{2^{11} 10!}{10!}\left(\frac{1}{2}\right)^{10}=2
$$

