Name				
MATH 172	Exam 2	Spring 2020		
Sections 50	1	P. Yasskin		
Multiple Choice: (Points indicated. No part credit.)				
1. (1 points True [s) An Aggie does not lie, cheat o	or steal or tolerate those who do.		
a rati a rati positi nega conve diver Do not le I read thi True				
3. (5 points a. $-\infty$ b. -1 c. 0 d. 1 e. ∞	s) Compute $\int_0^1 \ln x dx$. If diverge	ent, enter "infinity" or "-infinity".		

1-2	/ 2	14	/16
3-12	/50	15	/16
13	/21	Total	/105

- **4**. (5 points) Compute $\int_0^\infty \frac{e^x}{1+e^{2x}} dx$. If divergent, enter "infinity" or "-infinity".
 - **a**. 0 **b**. $\frac{1}{4}\pi$ **c**. $\frac{1}{2}\pi$
 - **d**. π
 - **e**. ∞
- 5. (5 points) Compute $\int_{-8}^{8} \frac{1}{x^{5/3}} dx$. If divergent, enter "divergent". **a**. 0 **b**. $\frac{3}{8}$ **c**. $\frac{-3}{8}$ **d**. $\frac{6}{8}$

 - e. divergent
- 6. (5 points) What is the total number of coefficients in the general partial fraction expansion of

$$\frac{x^5 + x^4}{(x-2)(x-3)^4(x^2+4)^3}$$

For example $\frac{Bx+C}{(x^2+9)^4}$ has 2 coefficients.

- **a**. 16
- **b**. 11
- **c**. 8
- **d**. 7
- **e**. 4

- 7. (5 points) The base of a solid is the region between $y = x^2$ and y = 4. The crosssectons perpendicular to the y axis are squares. Find its volume.
 - **a**. 2
 - **b**. 4
 - **c**. 8
 - **d**. 16
 - **e**. 32
- 8. (5 points) The region between $y = x^2$ and y = 4 is rotated about the *x* axis. Find the volume.
 - **a**. 8π
 - **b**. 16π
 - **c**. $\frac{64}{15}\pi$
 - **d**. $\frac{128}{15}\pi$
 - **e**. $\frac{256}{15}\pi$
- **9**. (5 points) The region between $y = x^2$ and y = 4 is rotated about the *y* axis. Find the volume.
 - **a**. 8π
 - **b**. 16π
 - **c**. $\frac{64}{15}\pi$
 - **d**. $\frac{128}{15}\pi$

 - **e**. $\frac{256}{15}\pi$

10. (5 points) Duke Skywater just arrived on the planet Corona. He measured that it takes 48 J of work to lift a 3 kg weight by 4 m. What is the acceleration of gravity on the surface of Corona? (Do not enter units.)

a.
$$3 \frac{m}{\sec^2}$$

b. $4 \frac{m}{\sec^2}$
c. $12 \frac{m}{\sec^2}$
d. $60 \frac{m}{\sec^2}$

e.
$$64 \frac{m}{\sec^2}$$

- **11.** (5 points) A 200 foot chain weighs $\delta = 2 \frac{lb}{foot}$. It is hanging from the top of a 200 foot tall building. How much work is done to pull it up to the top of the building.
 - **a**. 5000
 - **b**. 10000
 - **c**. 20000
 - **d**. 40000
 - **e**. 80000
- **12**. (5 points) A weight is attached to a spring whose rest position is at $x_o = 3$ m. It takes 24 J of work to move the weight from x = 3 m to x = 7 m. How much work (in Joules) is needed to stretch the weight from x = 6 m to x = 9 m? (The answer is positive. Do not write the units.)
 - **a**. 9 J
 - **b**. $\frac{27}{2}$ J
 - **c**. 27 J
 - d. $\frac{81}{2}$ J
 - **e**. 81 J

- **13**. (21 points) An oil tank is a cylinder 3 m in radius and 6 m long. Its axis is horizontal. It is filled to a depth of 4 m above the **bottom** of the tank. The oil is flowing out a spout which is 1 m above the **bottom** of the tank. How much work is done by gravity to lower the depth to 2 m above the **bottom** of the tank? Take the density of oil and to be δ and the acceleration of gravity to be g (no numbers for δ and g).
 - **a**. Where should you put the 0 of the *y*-axis? Take *y* to be positive upward.
 - i. at the spout
 - ii. at the top of the tank
 - iii. at the center of the tank
 - $\ensuremath{\text{iv}}\xspace$. at the bottom of the tank

Set up the integral for the work. It will have the form:

$$W = \mathbf{b} \delta g \int_{\mathbf{C}}^{\mathbf{d}} \left(y + \mathbf{e} \right) \left(\mathbf{f} - y^2 \right)^{\mathbf{g}} dy$$

Identify each of the quantities in boxes:

- **b**. coefficient: b =
- **c**. lower limit: c =
- **d**. upper limit: d =
- **e**. coefficient: e =
- **f**. coefficient: f =
- **g**. exponent: g =

14. (16 points) Find the coefficients in the partial fraction expansion:

$$\frac{x^3 + 24x^2 - 4x}{(x-2)(x+2)(x^2+4)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{Cx+D}{x^2+4}$$

15. (16 points) Given the partial fraction expansion

$$\frac{36x+54}{(x^2+9)(x+3)^2} = \frac{1}{x+3} + \frac{-3}{(x+3)^2} + \frac{-x+6}{x^2+9}$$

Compute $\int \frac{36x+54}{(x^2+9)(x+3)^2} dx$.