Name_____

MATH 172H

Exam 3

Spring 2021

Sections 200

P. Yasskin

1-11

12

/55

/20

13

14

Total

/15

/15

/105

Multiple Choice and Short Answer: (Points indicated.)

- **1**. (5 pts) Compute $\lim_{n\to\infty} \left(\sqrt{n^2 4n + 3} \sqrt{n^2 + 5n 2} \right)$.
 - **a**. 0
 - **b**. -9
 - **c**. $-\frac{9}{2}$
 - **d**. $\frac{9}{2}$
 - **e**. 9
- **2**. (5 pts) Compute $L = \lim_{n \to \infty} n^{1/n}$ (Type infinity for ∞ , pi for π and e for e.)

 $L = \underline{\hspace{1cm}}$

3. (5 pts) The spiral at the right is made from an infinite number of semicircles whose centers are all on the x-axis. The first semicircle has radius $r_1 = 1$. The radius of each subsequent semicircle is half of the radius of the previous semicircle. Find the total length of the spiral. (Type infinity for ∞ , pi for π and e for e.)

0.5 0.5 0.5 0.5

 $L = \underline{\hspace{1cm}}$

- **4.** (5 pts) Compute $\sum_{n=3}^{\infty} \left(\frac{\sqrt{n}}{\sqrt{n+1}} \frac{\sqrt{n+1}}{\sqrt{n+2}} \right)$
 - **a**. $\frac{\sqrt{3}}{2}$
 - **b**. $\frac{2-\sqrt{3}}{2}$
 - **c**. 0
 - **d**. $\frac{\sqrt{3}-2}{2}$
 - **e**. $\frac{-\sqrt{3}}{2}$
- **5**. (5 pts) Which of the following are correct about the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + \sqrt{n}}$? Answer all that are correct.

Scoring: Grade = $\frac{\text{# answered correctly}}{\text{# correct answers}} \cdot 5 - \text{# answered incorrectly}$

- ${\bf a}$. diverges by the $n^{\rm th}$ Term Divergence Test
- **b**. diverges by the Simple Comparison Test comparing to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
- **c**. diverges by the Limit Comparison Test comparing to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
- ${f d}$. converges because it is a p-series
- **e**. converges by the Simple Comparison Test comparing to $\sum_{n=1}^{\infty} \frac{1}{n^2}$
- f. converges by the Limit Comparison Test comparing to $\sum_{n=1}^{\infty} \frac{1}{n^2}$
- g. converges by the Ratio Test

6. (5 pts) Find a power series about x = 0 for $f(x) = \frac{4x^3}{1 - x^2}$.

a.
$$\sum_{n=0}^{\infty} (4x^3)^{2n}$$

d.
$$\sum_{n=0}^{\infty} 4x^{2(n+3)}$$

b.
$$\sum_{n=0}^{\infty} 8nx^{2n+3}$$

b.
$$\sum_{n=0}^{\infty} 8nx^{2n+3}$$
 e. $\sum_{n=0}^{\infty} 4nx^{2n+3}$

c.
$$\sum_{n=0}^{\infty} 4x^{2n+3}$$

f.
$$\sum_{n=0}^{\infty} 4nx^{2(n+3)}$$

7. (5 pts) Find a power series about x = 0 for $f(x) = \frac{2x}{(1-x^2)^2}$.

$$a. \quad \sum_{n=0}^{\infty} 2nx^{2n-1}$$

d.
$$\sum_{n=0}^{\infty} 2x^{2n+1}$$

b.
$$\sum_{n=0}^{\infty} 2x^{2n-1}$$

b.
$$\sum_{n=0}^{\infty} 2x^{2n-1}$$
 e. $\sum_{n=0}^{\infty} 4n^3x^{2n-1}$

$$c. \sum_{n=0}^{\infty} 2nx^{2n+1}$$

f.
$$\sum_{n=0}^{\infty} 4n^3 x^{2n+1}$$

8. (5 pts) Find the Taylor series for $f(x) = \frac{1}{x}$ about x = 2.

$$a. \quad \sum_{n=0}^{\infty} \frac{1}{2^n} x^n$$

g.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} x^n$$

b.
$$\sum_{n=0}^{\infty} \frac{1}{2^n} (x-2)^n$$

b.
$$\sum_{n=0}^{\infty} \frac{1}{2^n} (x-2)^n$$
 h. $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} (x-2)^n$

$$c. \quad \sum_{n=0}^{\infty} \frac{n!}{2^n} x^n$$

i.
$$\sum_{n=0}^{\infty} \frac{(-1)^n n!}{2^n} x^n$$

d.
$$\sum_{n=0}^{\infty} \frac{n!}{2^n} (x-2)^n$$

d.
$$\sum_{n=0}^{\infty} \frac{n!}{2^n} (x-2)^n$$
 j. $\sum_{n=0}^{\infty} \frac{(-1)^n n!}{2^n} (x-2)^n$

e.
$$\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} x^n$$

k.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

f.
$$\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} (x-2)^n$$

f.
$$\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} (x-2)^n$$
 I. $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-2)^n$

- **9**. (5 pts) Use the 3^{rd} degree Taylor polynomial for $\sin(x)$ centered at x = 0 to approximate $\sin(0.3)$.
 - **a**. .3
 - **b**. .309
 - **c**. .291
 - **d**. .3045
 - **e**. .2955
- **10**. (5 pts) Compute $S = \sum_{n=0}^{\infty} \frac{1}{2^n n!}$
 - a. sin(2)

g. cos(2)

- b. $\sin\left(\frac{1}{2}\right)$
- h. $\cos\left(\frac{1}{2}\right)$

c. $\frac{\sin(1)}{2}$

i. $\frac{\cos(1)}{2}$

d. e^2

j. -1

e. \sqrt{e}

k. 2

f. $\frac{e}{2}$

- I. ∞
- **11**. (5 pts) Compute $L = \lim_{x \to \infty} \frac{1 \cos(2x)}{x^2}$

12. (20 pts) Work Out Problem

For each power series, find the radius and interval of convergence. Give complete explanations. (Type infinity for ∞ .)

a.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n(n+1)} (x-3)^n$$

b.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n (n+1)!} (x-3)^n$$

13. (15 pts) Work Out Problem

Consider the sequence given by the recursion relation $a_{n+1} = 2\sqrt{a_n}$ starting from $a_1 = 1$. Does the sequence have a limit? If so, find the limit. If not, enter divergent. Be sure to use sentences, name the theorem you use and prove all statements.

 $\lim_{n\to\infty}a_n=\underline{\hspace{1cm}}$

14. (15 pts) Work Out Problem

Give a complete explantion as to why the series $\sum_{n=2}^{\infty} \frac{(-1)^n (n+1)}{n^2 + \sqrt{n}}$ is absolutely convergent, conditionally convergent or divergent.

- a. absolutely convergent
- ${\bf b}. \ \ conditionally \ convergent$
- c. divergent