Name				
MATH 172H	Final	Spring 2021		
Sections 200		P. Yasskin		
Anything above 100 is extra credit.				

1-10	/50	13	/15
11	/15	14	/15
12	/10	Total	/105

Multiple Choice and Short Answer: (5 Points Each)

1. Compute $\int_{0}^{1} 2x \arctan x \, dx$. HINT: $\frac{a}{1+a} = \frac{1+a}{1+a} - \frac{1}{1+a}$ **a.** $\frac{\pi}{4} + 1$ **d.** $\frac{\pi}{4}$ **g.** $\frac{\pi}{4} - 1$ **b.** $\frac{\pi}{2} + 1$ **e.** $\frac{\pi}{2}$ **h.** $\frac{\pi}{2} - 1$ **c.** $\pi + 1$ **f.** π **i.** $\pi - 1$

2. Compute $\int_{0}^{\pi/4} \tan x \sec^{4} x \, dx$. **a.** $-\frac{1}{4}$ **b.** 0 **c.** $\frac{1}{4}$ **d.** $\frac{3}{4}$ **e.** $\frac{5}{4}$

3. Compute
$$\int \frac{1}{x^2 \sqrt{x^2 - 4}} dx.$$

a. $\frac{1}{2} \operatorname{arcsec} \frac{x}{2} + C$
b. $\frac{1}{4} \operatorname{arcsec} \frac{x}{4} + C$
c. $\frac{x}{2} \operatorname{arcsec} \frac{x}{2} + C$
d. $\frac{x}{4\sqrt{x^2 - 4}} + C$
e. $\frac{\sqrt{x^2 - 4}}{4x} + C$

- **4**. Find the center of mass of a 2 m bar whose density is $\delta = \frac{1}{x^4}$ for $2 \le x \le 4$.
 - **a**. $\frac{9}{7}$

 - **b**. $\frac{18}{7}$ **c**. $\frac{18}{9}$ **d**. $\frac{3}{32}$

 - **e**. $\frac{3}{16}$
- **5**. Find the arc length of the parametric curve $\vec{r}(t) = \left(t^2, \frac{2}{3}t^3\right)$ for $0 \le t \le \sqrt{3}$.
 - **a**. 6 **b**. $\frac{16}{3}$ **c**. $\frac{14}{3}$ **d**. 4
 - **e**. $\frac{8}{3}$
- **6**. The region between the parabola $x = 5y y^2$ and the *y*-axis is rotated about the *y*-axis. Find the volume swept out.
 - **a**. $V = \frac{5^4}{3}\pi$ **b**. $V = \frac{5^4}{6}\pi$ **c**. $V = \frac{5^5}{6}\pi$ **d**. $V = \frac{5^5}{12}\pi$
 - **e**. $V = 3 \cdot 5^6 \pi$

7. Solve the initial value problem

$$t^4 \frac{dy}{dt} - t^3 y = t^2$$
 with $y(1) = \frac{3}{2}$

Then y(2) =

- **a**. 30
- **b**. 15
- **c**. $\frac{15}{2}$
- **d**. $\frac{15}{4}$
- **e**. $\frac{15}{8}$
- 8. Find a power series about x = 0 for $f(x) = \frac{2x}{(1-x^2)^2}$.

- 9. Compute $\lim_{n\to\infty} n^{2/n}$.
 - **a**. 0
 - **b**. 1
 - **c**. 2
 - **d**. e
 - **e**. *e*²

11. (15 points) Work Out Problem

A water tank has the shape of a cone with the vertex atthe top. Its height is H = 16 ft and its radius is R = 8 ft. It is filled with salt water to a depth of 10 ft which weighs $\delta = 64 \frac{\text{lb}}{\text{ft}^3}$. Find the work done to pump the water out the top of the tank.

W = _____

12. (10 points) Work Out Problem
Find the length of the infinite zigzag within the 45° right triangle, shown at the right.
Each diagonal is at 45°.
The total length includes the base.

L = _____

13. (15 points) Work Out Problem

A tropical fish tank contains 100 liters of salt water with initial salt concentration $35 \frac{\text{grams}}{\text{liter}}$. In order to reduce the concentration, salt water with concentration $25 \frac{\text{grams}}{\text{liter}}$ is added at 2 $\frac{\text{liters}}{\text{minute}}$. The water is kept thoroughly mixed and drained at 2 $\frac{\text{liters}}{\text{minute}}$. How long will it take until the concentration is reduced to $30 \frac{\text{grams}}{\text{liter}}$? Let S(t) be the number of grams of salt in the 100 liters of water at time t. Then the concentration is $\frac{S(t)}{100} \frac{\text{grams}}{\text{liter}}$.

a. What is the initial condition? (Quantity not concentration.)

S(0) =_____

- b. What is the differential equation?
 - $\frac{dS}{dt} =$ _____
- c. Solve the initial value problem.

S(t) =_____

d. Find the time when $\frac{S(t)}{100} = 30$.

t = _____

14. (15 points) Work Out Problem

Find the interval of convergence of the series

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt[2]{n} - \sqrt[3]{n}} \frac{(x-3)^n}{2^n}.$$

a. Find the radius of convergence.

R = _____

- b. Check the convergence at the left endpoint.Be sure to name any convergence test you use and check out all conditions.
 - \Box Converges \Box Diverges

- c. Check the convergence at the right endpoint.Be sure to name any convergence test you use and check out all conditions.
 - □ Converges □ Diverges

d. State the interval of convergence.

Interval = _____