Name \qquad
MATH 172H
Final
Spring 2021
Sections 200
P. Yasskin

Anything above 100 is extra credit.

$1-10$	$/ 50$	13	$/ 15$
11	$/ 15$	14	$/ 15$
12	$/ 10$	Total	$/ 105$

1. Compute $\int_{0}^{1} 2 x \arctan x d x$ HINT: $\frac{a}{1+a}=\frac{1+a}{1+a}-\frac{1}{1+a}$
a. $\frac{\pi}{4}+1$
b. $\frac{\pi}{2}+1$
d. $\frac{\pi}{4}$
e. $\frac{\pi}{2}$
f. π
g. $\frac{\pi}{4}-1$
h. $\frac{\pi}{2}-1$
C. $\pi+1$
i. $\pi-1$
2. Compute $\int_{0}^{\pi / 4} \tan x \sec ^{4} x d x$.
a. $-\frac{1}{4}$
b. 0
c. $\frac{1}{4}$
d. $\frac{3}{4}$
e. $\frac{5}{4}$
3. Compute $\int \frac{1}{x^{2} \sqrt{x^{2}-4}} d x$.
a. $\frac{1}{2} \operatorname{arcsec} \frac{x}{2}+C$
b. $\frac{1}{4} \operatorname{arcsec} \frac{x}{4}+C$
c. $\frac{x}{2} \operatorname{arcsec} \frac{x}{2}+C$
d. $\frac{x}{4 \sqrt{x^{2}-4}}+C$
e. $\frac{\sqrt{x^{2}-4}}{4 x}+C$
4. Find the center of mass of a 2 m bar whose density is $\delta=\frac{1}{x^{4}}$ for $2 \leq x \leq 4$.
a. $\frac{9}{7}$
b. $\frac{18}{7}$
c. $\frac{18}{9}$
d. $\frac{3}{32}$
e. $\frac{3}{16}$
5. Find the arc length of the parametric curve $\vec{r}(t)=\left(t^{2}, \frac{2}{3} t^{3}\right)$ for $0 \leq t \leq \sqrt{3}$.
a. 6
b. $\frac{16}{3}$
c. $\frac{14}{3}$
d. 4
e. $\frac{8}{3}$
6. The region between the parabola $x=5 y-y^{2}$ and the y-axis is rotated about the y-axis. Find the volume swept out.
a. $V=\frac{5^{4}}{3} \pi$
b. $V=\frac{5^{4}}{6} \pi$
c. $V=\frac{5^{5}}{6} \pi$
d. $V=\frac{5^{5}}{12} \pi$
e. $V=3 \cdot 5^{6} \pi$
7. Solve the initial value problem

$$
t^{4} \frac{d y}{d t}-t^{3} y=t^{2} \quad \text { with } \quad y(1)=\frac{3}{2}
$$

Then $y(2)=$
a. 30
b. 15
c. $\frac{15}{2}$
d. $\frac{15}{4}$
e. $\frac{15}{8}$
8. Find a power series about $x=0$ for $f(x)=\frac{2 x}{\left(1-x^{2}\right)^{2}}$.
a. $\sum_{n=0}^{\infty} 2 n x^{2 n-1}$
b. $\sum_{n=0}^{\infty} 2 x^{2 n-1}$
c. $\sum_{n=0}^{\infty} 2 n x^{2 n+1}$
d. $\sum_{n=0}^{\infty} 2 x^{2 n+1}$
e. $\sum_{n=0}^{\infty} 4 n^{3} x^{2 n-1}$
f. $\sum_{n=0}^{\infty} 4 n^{3} x^{2 n+1}$
9. Compute $\lim _{n \rightarrow \infty} n^{2 / n}$.
a. 0
b. 1
c. 2
d. e
e. e^{2}
10. Compute $\lim _{x \rightarrow 0} \frac{x^{2}-\frac{x^{6}}{6}-\sin \left(x^{2}\right)}{x^{10}}$.
a. $-\frac{1}{120}$
b. $-\frac{1}{24}$
c. 0
d. $\frac{1}{24}$
e. $\frac{1}{120}$
f. ∞
11. (15 points) Work Out Problem

A water tank has the shape of a cone with the vertex atthe top. Its height is $H=16 \mathrm{ft}$ and its radius is $R=8 \mathrm{ft}$. It is filled with salt water to a depth of 10 ft which weighs $\delta=64 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$.

Find the work done to pump the water out the top of the tank.

$W=$ \qquad
12. (10 points) Work Out Problem

Find the length of the infinite zigzag within
the 45° right triangle, shown at the right.
Each diagonal is at 45°.
The total length includes the base.

$L=$ \qquad
13. (15 points) Work Out Problem

A tropical fish tank contains 100 liters of salt water with initial salt concentration $35 \frac{\mathrm{grams}}{\text { liter }}$. In order to reduce the concentration, salt water with concentration $25 \frac{\mathrm{grams}}{\mathrm{liter}}$ is added at 2 $\frac{\text { liters }}{\text { minute }}$.
The water is kept thoroughly mixed and drained at $2 \frac{\text { liters }}{\text { minute }}$.
How long will it take until the concentration is reduced to $30 \frac{\mathrm{grams}}{\text { liter }}$?
Let $S(t)$ be the number of grams of salt in the 100 liters of water at time t.
Then the concentration is $\frac{S(t)}{100} \frac{\text { grams }}{\text { liter }}$.
a. What is the initial condition? (Quantity not concentration.)
$S(0)=$ \qquad
b. What is the differential equation?
$\frac{d S}{d t}=$ \qquad
c. Solve the initial value problem.
$S(t)=$ \qquad
d. Find the time when $\frac{S(t)}{100}=30$.
$t=$ \qquad
14. (15 points) Work Out Problem

Find the interval of convergence of the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt[2]{n}-\sqrt[3]{n}} \frac{(x-3)^{n}}{2^{n}}$.
a. Find the radius of convergence.

$$
R=
$$

\qquad
b. Check the convergence at the left endpoint.

Be sure to name any convergence test you use and check out all conditions.ConvergesDiverges
c. Check the convergence at the right endpoint.

Be sure to name any convergence test you use and check out all conditions.ConvergesDiverges
d. State the interval of convergence.

Interval = \qquad

